A Universal Spinor Bundle and Applications to the Calculus of Variations of Spinorial Equations

Nikolai Nowaczyk (joint work with Olaf Müller)

2017-07-05

Outline

Introduction

A Universal Spinor Bundle

A Universal Spinor Jet Bundle

Outlook on Killing equation

Appendix

Setup of Spin Geometry

- M closed spin manifold of dimension m
- $\tau_M: TM \to M$ tagent bundle of M
- $S_{r,s}(M)$ space of pseudo-Riemannian metrics of signature (r,s) with C^1 -topology, $g \in S_{r,s}(M)$
- Θ^g : Spin^g $M \to SO^g M$ a metric spin structure for M
- $ot\!\!/ \, \, ^g : H^1(\Sigma^g M) \subset L^2(\Sigma^g M) o L^2(\Sigma^g M)$ Dirac operator

Dirac equation:

Setup of Spin Geometry

- M closed spin manifold of dimension m
- $\tau_M:TM\to M$ tagent bundle of M
- $S_{r,s}(M)$ space of pseudo-Riemannian metrics of signature (r,s) with C^1 -topology, $g \in S_{r,s}(M)$
- Θ^g : Spin^g $M \to SO^g M$ a metric spin structure for M
- $ot\!\!/ \, \, ^g : H^1(\Sigma^g M) \subset L^2(\Sigma^g M) o L^2(\Sigma^g M)$ Dirac operator

Dirac equation:

How to formulate if many metrics are involved?

Einstein-Dirac Equation

Definition: For any $\lambda, \varepsilon \in \mathbb{R}$, the system of equations

$$\label{eq:power_power} \begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100}}$$

is called Einstein-Dirac equation.

Here, $T_{(g,\psi)} \in T^2(M)$ is the *energy momentum tensor of* ψ defined by

$$\forall X, Y \in \mathcal{T}(M): T_{(g,\psi)}(X,Y) := \frac{1}{2} \operatorname{Re} \langle X \cdot \nabla_Y^g \psi + Y \cdot \nabla_X^g \psi, \psi \rangle,$$

Definition: The *Einstein-Dirac functional* \mathcal{L} is given by

$$(g,\psi)\mapsto \int_{M}\operatorname{scal}^{g}+arepsilon\lambda\langle\psi,\psi\rangle-arepsilon\langle
ot\! D^{g}\psi,\psi\rangle dv^{g},$$

where g is a Riemannian metric and $\psi \in \Gamma(\Sigma^g M)$ is a spinor field.

Definition: The *Einstein-Dirac functional* \mathcal{L} is given by

$$(g,\psi)\mapsto \int_{M}\operatorname{scal}^{g}+arepsilon\lambda\langle\psi,\psi
angle-arepsilon\langle
olimitseta^{g}\psi,\psi
angle dv^{g},$$

where g is a Riemannian metric and $\psi \in \Gamma(\Sigma^g M)$ is a spinor field.

Theorem: The Einstein-Dirac equations are the Euler-Lagrange equations of the Einstein-Dirac functional.

Definition: The *Einstein-Dirac functional* \mathcal{L} is given by

$$(g,\psi)\mapsto \int_{M}\operatorname{scal}^{g}+arepsilon\lambda\langle\psi,\psi\rangle-arepsilon\langle
ot\! D^{g}\psi,\psi\rangle dv^{g},$$

where g is a Riemannian metric and $\psi \in \Gamma(\Sigma^g M)$ is a spinor field.

Theorem: The Einstein-Dirac equations are the Euler-Lagrange equations of the Einstein-Dirac functional.

How can this hold? The bundle $\Sigma^g M$ depends on g.

Definition: The *Einstein-Dirac functional* \mathcal{L} is given by

$$(g,\psi)\mapsto \int_{M}\operatorname{scal}^{g}+arepsilon\lambda\langle\psi,\psi
angle-arepsilon\langle
olimitseta^{g}\psi,\psi
angle dv^{g},$$

where g is a Riemannian metric and $\psi \in \Gamma(\Sigma^g M)$ is a spinor field.

Theorem: The Einstein-Dirac equations are the Euler-Lagrange equations of the Einstein-Dirac functional.

How can this hold? The bundle $\Sigma^g M$ depends on g.

What is the domain of definition for \mathcal{L} ?

A known way out

Theorem: The map

$$L^{2}(\Sigma M) := \coprod_{g \in \mathcal{S}_{m,0}(M)} L^{2}(\Sigma^{g} M) \to \mathcal{S}_{m,0}(M)$$
$$\psi \in L^{2}(\Sigma^{g} M) \mapsto g$$

is a continuous bundle of Hilbert spaces such that, the *identification isomorphisms*

$$\bar{\beta}_{g,h}: L^2(\Sigma^g M) \to L^2(\Sigma^h M), \qquad g,h \in S_{m,0}(M)$$

(constructed in Bourguignon/Gauduchon '92 for the Riemannian case and in Bär/Gauduchon/Moroianu '03 for Lorentzian metrics) provide a global trivialization

$$\bar{\beta}_{g}, : L^2(\Sigma M) \to L^2(\Sigma^g M) \times S_{m,0}(M).$$

Pros and Cons

- As $L^2(\Sigma M)$ has an infinite-dimensional fibre over an infinite dimensional base, the topology is very "large".
- Identification isomorphisms $\beta_{g,h}$ are well known and often sufficient to carry out local computations.
- Hard to study global questions.
- Can we find a natural finite dimensional bundle that captures the spinor bundles of a spin manifold with respect to all metrics including their Dirac structure?

Recall: Dirac Structure

On a metric spinor bundle $\pi_M^g: \Sigma^g M \to M$ there exists

- an extention of the Levi-Civita connection $\nabla^g: \Gamma(\pi_M^g) \to \Gamma(\tau_M^* \otimes \pi_M^g),$
- an extension of the metric g to the spinor bundle,
- a Clifford multiplication $\mathfrak{m}^g:TM\otimes_{\mathbb{R}}\Sigma^gM\to\Sigma^gM$, $V\otimes\psi\mapsto V\cdot_g\psi$

such that for all $\psi, \psi' \in \Gamma(\pi_M^g)$, $V, W \in \Gamma(\tau_M)$

$$\begin{aligned} -2g(V,W)\psi &= V \cdot_{g} W \cdot_{g} \psi + W \cdot_{g} V \cdot_{g} \psi, \\ \nabla_{V}^{g}g(\psi,\psi') &= g(\nabla_{V}^{g}\psi,\psi') + g(\psi,\nabla_{V}^{g}\psi'), \\ \nabla_{V}^{g}(W \cdot_{g} \psi) &= \nabla_{V}^{g}W \cdot_{g} \psi + W \cdot_{g} \nabla_{V}^{g}\psi, \\ g(V \cdot_{g} \psi,\psi') &= (-1)^{s+1}g(\psi,V \cdot_{g} \psi'). \end{aligned}$$

Main Theorem 1

Main Theorem: There exists a finite dimensional vector bundle $\bar{\pi}_{SM}^{\Sigma}: \bar{\Sigma}M \to J^1\pi^{r,s}$ such that for each pseudo-Riemannian metric $g \in \mathcal{S}_{r,s}(M)$, the associated metric spinor bundle $\pi^g: \Sigma^gM \to M$ can be recovered from it (including the Dirac structure), i.e. there exists there exists a morphism of (generalized) Dirac bundles $\bar{\iota}_g$ such that

$$\begin{array}{ccc}
\Sigma^{g} M - \overline{}^{\underline{r}_{g}} & \rightarrow \overline{\Sigma} M \\
\downarrow^{\pi^{g}_{M}} & \downarrow^{\overline{\pi}^{\Sigma}_{SM}} \\
M & \xrightarrow{j^{1}(g)} & J^{1}\pi^{r,s}
\end{array}$$

commutes. Here, $J^1\pi^{r,s}$ denotes the first jet bundle of $\pi^{r,s}:S_{r,s}M\to M$. In addition, $\bar{\pi}_{SM}^{\Sigma}$ is natural with respect to spin diffeomorphisms.

Main Theorem 1

Main Theorem: There exists a maximal Cauchy development for the Einstein-Dirac equation on Lorentzian manifolds.

<u>Outline</u>

Introduction

A Universal Spinor Bundle

A Universal Spinor Jet Bundle

Outlook on Killing equation

Appendix

On Vector Spaces

Definition: Let V be an oriented real m-dimensional vector space, GL^+V be the set of oriented bases of V and $S_{r,s}V$ the set of non-degenerate symmetric bilinear forms of signature (r,s) on V. The canonical map

$$\kappa^{V}: \mathsf{GL}^{+} V \rightarrow S_{r,s} V$$
 $b \mapsto g_{b}$

such that g_b is b-pseudo-orthonormal is surjective and there exists a diffeomorphism such that the following diagram commutes:

$$\widetilde{\operatorname{GL}}^+ V \xrightarrow{\begin{array}{c} \theta \\ 2:1 \end{array}} \operatorname{GL}^+ V \xrightarrow{\kappa^V} S_{r,s} V$$

$$\downarrow \qquad \qquad \qquad \cong \\ \widetilde{\operatorname{GL}}^+ V / \operatorname{Spin}_{r,s} \xrightarrow{\cong} \operatorname{GL}^+ V / \operatorname{SO}_{r,s}.$$
We set $\widetilde{\kappa}^V := \kappa^V \circ \theta$.

Connection

For any two bases $b,b'\in \operatorname{GL}^+V$, let $\tau_b(b')\in \mathbb{R}^{m\times m}$ be the coordinate matrix defined by $b'_j=\tau_b(b')^i_jb_i$, $1\leq j\leq m$. For any $X,Y\in T_b\operatorname{GL}^+V$, we define

$$\langle X, Y \rangle_b := \langle d\tau_b X, d\tau_b Y \rangle := \operatorname{tr}((d\tau_b X)^{\dagger} d\tau_b Y),$$

where $A^{\dagger}:=I_{r,s}A^TI_{r,s}$. Then the $\langle _,_\rangle_b$ assemble to a natural pseudo-Riemannian metric on GL^+V such that $\operatorname{SO}_{r,s}$ acts by isometries. In particular,

$$T_b^v \operatorname{GL}^+ V := \ker d_b \kappa^V, \qquad T^h \operatorname{GL}^+ V := (T_b^v \operatorname{GL}^+ V)^{\perp},$$

defines an orthogonal decomposition such that $T^h \operatorname{GL}^+ V$ is a connection on $\operatorname{GL}^+ V$, the *Bourguignon-Gauduchon horizontal* distribution. (Again, lifts to universal cover $\widetilde{\kappa}^V : \widetilde{\operatorname{GL}}^+ V \to S_{r,s} V$.)

Universal Spinor Bundle

Theorem: There exists a finite-dimensional vector bundle π_{SM}^{Σ} ,

$$\Sigma M := \widetilde{\mathsf{GL}}^+ M \times_{\rho_{r,s}} \Sigma_{r,s} \xrightarrow{\pi_{SM}^{\Sigma}} S_{r,s} M \xrightarrow{\pi^{r,s}} M,$$

natural w.r.t. spin diffeomorphisms, together with

- a vertical connection ∇ : $\Gamma(\tau_{S_{r,s}M}^{\vee}) \times \Gamma(\pi_{SM}^{\Sigma}) \to \Gamma(\pi_{SM}^{\Sigma})$,
- a universal spinorial metric $oldsymbol{\eta}$ on π_{SM}^{Σ}
- a universal Clifford multiplication $\mathfrak{m}: (\pi^{r,s})^*(TM) \otimes \Sigma M \to \Sigma M$

compatible with the universal pseudo-Riemannian

- metric \mathbf{g} on $\tau_M^{r,s} := (\pi^{r,s})^*(\tau_M)$.
- vertical connection $\nabla : \Gamma(\tau_{\pi^{r,s}}^{v}) \times \Gamma(\tau_{M}^{r,s}) \to \Gamma(\tau_{M}^{r,s})$.

Universal Structures

Definition: Let $\phi, \phi' \in \Sigma M|_{g_x}$, $X^* = (g_x, V) \in (\pi^{r,s})^*(TM)$, $V \in T_x M$. We define the *universal pseudo-Riemannian metric* by

$$\mathbf{g}(X^*,X^*):=g_{\mathsf{x}}(V,V),$$

the universal spinorial metric by

$$\eta(\phi,\phi'):=\mathsf{g}_{\mathsf{x}}(\phi,\phi'),$$

and the universal Clifford multiplication

$$\mathfrak{m}(X^*\otimes\phi):=X^*\bullet\phi:=V\cdot_{g_{\mathsf{x}}}\phi.$$

Properties of universal structures

Lemma: The universal structures satisfy the compatibility conditions

$$-2g(X^*, X^*) = X^* \bullet Y^* \bullet \psi + Y^* \bullet X^* \bullet \psi$$

$$\nabla_X(\eta(\phi, \phi')) = \eta(\nabla_X \phi, \phi') + \eta(\phi, \nabla_X \phi'),$$

$$\nabla_X(Y^* \bullet \phi) = \nabla_X Y^* \bullet \phi + Y^* \bullet \nabla_X \phi,$$

$$\eta(X^* \bullet \phi, \phi') = (-1)^{s+1} \eta(\phi, X^* \bullet \phi).$$

where
$$X^*, Y^* \in \Gamma(\tau_M^{r,s}), X \in \Gamma(\tau_{S_{r,s}M}^v), \phi, \phi' \in \Gamma(\pi_{SM}^{\Sigma}).$$

We call this a generalized Dirac structure.

Pullback Theorem

Theorem: For any metric g, there exists a morphism I_g of vector bundles such that

commutes. In addition, I_g is an isometric isomorphism with respect to the spinorial metric on π_M^g and $g^*\eta$ and it is compatible with the Clifford multiplications \mathfrak{m}^g and $g^*\mathfrak{m}$.

Problem:

But I_g is **not** compatible with the vertical connections, since we would have to check that

$$(g^*\nabla)_V(I_g(\psi)) = \nabla_{dgV}(\iota_g(\psi)) = \nabla_{dgV}^g\psi,$$

which makes absolutely no sense, since a **horizontal** lift dgV is certainly **not** vertical, so ∇_{dgV} is **not defined**.

<u>Outline</u>

Introduction

A Universal Spinor Bundle

A Universal Spinor Jet Bundle

Outlook on Killing equation

Appendix

Jet Spaces

Definition: Let $\pi^X: X \to M$ be a smooth fibre bundle. For any $p \in M$, denote by $\Gamma_p(\pi^X)$ the space of sections defined on a neighbourhood near p. Two such sections s_1, s_2 have the same 1-jet at $p \in U$, if $s_1(p) = s_2(p) \in X$ and $ds_1|_{T_pM} = ds_2|_{T_pM}$. The equivalence class $j_p^1(s)$ of a local section $s \in \Gamma_p(\pi^X)$ is the 1-jet of s at p. The set

$$J^1\pi^X := \{j^1_p(s) \mid p \in M, s \in \Gamma_p(\pi^X)\}$$

is the first jet space of π . The space $J^1\pi^X$ comes along with two canonical projections called the *source* respectively *target* projection:

$$\pi_1^X:J^1\pi^X
ightarrow \qquad \qquad M \qquad \qquad \pi_{1,0}^X:J^1\pi^X
ightarrow \qquad \qquad X \ j_p^1(s)\mapsto \qquad \qquad p \qquad \qquad j_p^1(s)\mapsto \qquad \qquad s(p)$$

Relevance to Geometry

Let $g \in \mathcal{S}_{r,s}(M)$ be a pseudo-Riemannian metric on M. This metric induces a *Levi-Civita connection* and its Christoffel symbols Γ^i_{ik} are given by

$$2\Gamma_{jk}^{i}=g^{kl}(\partial_{i}g_{jl}+\partial_{j}g_{il}-\partial_{l}g_{ij}),$$

which depends only on the 1-jet of g. Consequently, the Levi-Civita connection and therefore the spinorial Levi-Civita connection depend only on the 1-jet of g.

Holonomic Lifts

Theorem: For any fibre bundle $\pi^X: X \to M$ be a fibre bundle. Consider the pull-back diagram

For any $j_p^1(s) \in J^1\pi^X$, there exists a natural decomposition

$$\pi_{1,0}^*(TX)|_{j_p^1(s)} = \pi_{1,0}^*(T^{\nu}X)|_{j_p^1(s)} \oplus \underbrace{(j_p^1(s), ds(T_pM))}_{\in \pi_{1,0}^*(TX)|_{j_1^1(s)}}.$$

This decomposition is well-defined (i.e. does not depend on the choice of s for a given $j_p^1(s)$). For any $Y \in T_pM$ the tuple $(j_p^1(s), ds(Y))$ is called a *holonomic lift*.

Universal Spinor Jet Bundle

Theorem: The universal spinor bundle can be extended to a commutative diagram $= \dots = F^{\Sigma}$

Moreover, the vector bundle $\bar{\pi}_{SM}^{\Sigma}$ carries a connection $\bar{\nabla}$ satisfying

$$F^{\Sigma}(\bar{\nabla}_{\bar{X}}\bar{\phi}|_{j_{\mathbf{x}}^{1}(g)}) = \nabla_{X^{\mathbf{v}}}\phi|_{g(x)} + \nabla_{X_{b}}^{g}(\phi \circ g)|_{x},$$

where
$$\bar{\phi}:=(\mathrm{id},\pi_{1,0}^{r,s}\circ\phi)\in\Gamma(\bar{\pi}_{SM}^{\Sigma})$$
, $\phi\in\Gamma(\pi_{SM}^{\Sigma})$,

$$\bar{X} \in T_{j_x^1(g)}(J^1\pi^{r,s})$$
, $X := d\pi_{1,0}^{r,s}\bar{X}$ and X^v and X_h are the vertical and horizontal part. Here, $\pi_{1,0}^{r,s} = j_{1,0}^1\pi^{r,s}$ and $\pi_0^{r,s} := j_0^1\pi^{r,s}$.

Universal Dirac structure

Definition: Consider the vector bundle $\bar{\pi}_{SM}^{\Sigma}: \bar{\Sigma}M \to J^1\pi^{r,s}$ We define

$$\overline{\mathbf{g}}(\overline{X}^*, \overline{Y}^*) := g_{\mathsf{x}}(V, W),
\overline{\boldsymbol{\eta}}_{j_{\mathsf{x}}^1(g)}(\overline{\phi}, \overline{\phi}') := \boldsymbol{\eta}_{g_{\mathsf{x}}}(\phi, \phi'),
\overline{\mathfrak{m}}(\overline{X}^* \otimes \overline{\phi}) := \overline{X}^* \overline{\bullet} \overline{\phi} := V \cdot_{g_{\mathsf{x}}} \phi,$$

where
$$j_x^1(g) \in J^1\pi^{r,s}$$
, $\bar{X}^* = (j_x^1(g), V), \bar{Y}^* = (j_x^1(g), W) \in (\pi_0^{r,s})^*(TM), \bar{\phi}, \bar{\phi}' \in \Gamma(\bar{\pi}_{SM}^{\Sigma}), \phi := F^{\Sigma}(\bar{\phi}), \phi' := F^{\Sigma}(\bar{\phi}').$

Compatibility Relations

Lemma: The universal structures satisfy the following compatibility relations:

$$\begin{split} -2\overline{\mathbf{g}}(\bar{X}^*,\bar{Y}^*)\bar{\phi} &= \bar{X}^*\,\bar{\bullet}\,\bar{Y}^*\,\bar{\bullet}\,\bar{\phi} + \bar{Y}^*\,\bar{\bullet}\,\bar{X}^*\,\bar{\bullet}\,\bar{\phi}, \\ \bar{\nabla}_{\bar{X}}\bar{\eta}(\bar{\phi},\bar{\phi}') &= \bar{\eta}(\bar{\nabla}_{\bar{X}}\bar{\phi},\bar{\phi}') + \bar{\eta}(\bar{\phi},\bar{\nabla}_{\bar{X}}\bar{\phi}'), \\ \bar{\nabla}_{\bar{X}}(\bar{Y}^*\,\bar{\bullet}\,\bar{\phi}) &= \bar{\nabla}_{\bar{X}}\bar{Y}^*\,\bar{\bullet}\,\bar{\phi} + \bar{Y}^*\,\bar{\bullet}\,\bar{\nabla}_{\bar{X}}\bar{\phi}, \\ \bar{\eta}(\bar{X}\,\bar{\bullet}\,\bar{\phi},\bar{\phi}') &= (-1)^{s+1}\bar{\eta}(\bar{\phi},\bar{X}\,\bar{\bullet}\,\bar{\phi}'), \end{split}$$

where $\bar{X}\in TJ^1\pi^{r,s}$, $\bar{X}^*, \bar{Y}^*\in (\pi_0^{r,s})^*(TM)$, $\bar{\phi}, \bar{\phi}'\in \Gamma(\bar{\pi}_{SM}^{\Sigma})$.

Pullback Property

Theorem: For every metric g on M, there exists a morphism \overline{I}_g of vector bundles such that

commutes. In addition, \bar{l}_g is isometric with respect to the spinorial metric on π_M^g and $j^1(g)^*\bar{\eta}$, it is compatible with the Clifford multiplication \mathfrak{m}^g and $j^1(g)^*\bar{\mathfrak{m}}$ and it is compatible with the spinorial Levi-Civita connection on π_M^g and $j^1(g)^*\bar{\nabla}$.

<u>Outline</u>

Introduction

A Universal Spinor Bundle

A Universal Spinor Jet Bundle

Outlook on Killing equation

Appendix

A technicality on Jet Spaces

There exists $_^*$ such that

Universal Killing Operator

$$\begin{split} \bar{K}_{\lambda} := \bar{\nabla} - \lambda \bar{\mathfrak{m}}^* : \Gamma(\bar{\pi}^{\Sigma}_{\underline{S}M}) & \rightarrow & \Gamma(\tau^*_{J^1\pi^{r,s}} \otimes \bar{\pi}^{\Sigma}_{\underline{S}M}) \\ \bar{\phi} & \mapsto & (\bar{X} \mapsto \bar{\nabla}_{\bar{X}} \bar{\phi} - \lambda \bar{X}^* \, \bar{\bullet} \, \bar{\phi}) \end{split}$$

For a universal spinor field $F^{\Sigma}(\bar{\phi}) = \phi \circ g =: \psi$, we obtain $\bar{K}_{\lambda}(\bar{\phi})|_{j^{1}(g)} = 0$ if and only if

$$\forall x \in M : \forall \bar{X} \in T_{J_X^1(g)} J^1 \pi^{r,s} : \nabla_{X^v} \phi|_{g(x)} + \nabla_{X_h}^g \psi|_x = \lambda X_h \cdot_{g_x} \psi$$

Some Observations / Questions

Assume $\bar{\phi}$ satisfies

$$\forall x \in M : \forall \bar{X} \in T_{J_x^1(g)} J^1 \pi^{r,s} : \nabla_{X^v} \phi|_{g(x)} + \nabla_{X_h}^g \psi|_x = \lambda X_h \cdot_{g_x} \psi.$$

- If ϕ is vertically parallel, then ψ is a g-Killing spinor. Conversely, can one always extend a Killing spinor to a vertically parallel $\bar{\phi}$?
- Does $\bar{\phi}$ have any interesting properties even if its not vertically parallel?
- Can we use this framework to obtain results about pseudo-Riemannian Killing spinors?

Thank you for your attention!

- Get in touch: mail@nikno.de or www.nikno.de
- Get the PDF slides: http://bit.ly/2tloYAg
- Talk to Olaf: olaf.mueller@uni-regensburg.de
- Download the paper: http://arxiv.org/abs/1504.01034
- Some references:
 - ▶ J.-P. Bourguignon and P. Gauduchon. "Spineurs, Opérateurs de Dirac et Variations de Métriques". In: Communications in Mathematical Physics 144.3 (1992), pp. 581–599. http://link.springer.com/article/10.1007/BF02099184.
 - ► C. Bär, P. Gauduchon, and A. Moroianu. "Generalized Cylinders in Semi-Riemannian and Spin Geometry". In: Mathematische Zeitschrift 249.3 (2005), pp. 545–580. http://arxiv.org/abs/math/0303095.

Some more References

- R. F. Pérez and J. M. Masqué. "Natural connections on the bundle of Riemannian metrics". In: Monatsh. Math. 155.1 (2008), pp. 67–78. issn: 0026-9255.
 - http://dx.doi.org/10.1007/s00605-008-0565-x
 - ► B. Ammann, H. Weiss, and F. Witt. A spinorial energy functional: critical points and gradient flow. 2012. http://arxiv.org/abs/1207.3529

<u>Outline</u>

Introduction

A Universal Spinor Bundle

A Universal Spinor Jet Bundle

Outlook on Killing equation

Appendix

Universal Levi Civita Connection

Definition: Via pullback

$$(\pi^{r,s})^*(\mathsf{GL}^+ M) \longrightarrow \mathsf{GL}^+ M$$

$$\downarrow^{\pi_{r,s}^+} \qquad \downarrow^{\pi^+}$$

$$S_{r,s}M \xrightarrow{\pi^{r,s}} M$$

we obtain a vertical distribution on $\pi_{r,s}^+$. Let $\gamma: \operatorname{GL}_m^+ \to \operatorname{GL}(\mathbb{R}^m)$ be the standard representation (given by matrix multiplication). Recall that $\operatorname{GL}^+ M \times_\gamma \mathbb{R}^m = TM$, so $(\pi^{r,s})^*(TM) = (\pi^{r,s})^*(\operatorname{GL}^+ M) \times_\gamma \mathbb{R}^m$ and therefore, we obtain a vertical connection on $\tau_M^{r,s}: (\pi^{r,s})^*(TM) \to S_{r,s}M$, which is denoted by

$$\nabla: \Gamma(\tau_{m^{r,s}}^{v}) \times \Gamma(\tau_{M}^{r,s}) \to \Gamma(\tau_{M}^{r,s}).$$

We call ∇ the vertical universal Levi-Civita connection.

Universal Levi-Civita connection

Definition: For any $\bar{X} \in T_{j_x^1(g)}J^1\pi^{r,s}$, $\bar{Y}^* = (j_x^1(g), V) \in (\pi_0^{r,s})^*(TM)$, $\bar{Y} = (g_x, V) \in (\pi^{r,s})^*(TM)$, $V \in T_xM$, we set

$$\bar{\nabla}_{\bar{X}}\bar{Y}^*|_{j_x^1(g)}:=\nabla_{X^{\nu}}Y^*+\nabla_{X_h}^gV,$$

where $d\pi_{1,0}^{r,s}\bar{X}=:X=X^v\oplus d_xgX_h$ is decomposed into its vertical part and horizontal lift. The connection $\bar{\nabla}$ is called *universal Levi-Civita connection*, c.f. Pérez/Masqué 08.

Details on Vertical Connection

Definition: For any $x \in M$, we define

$$T_x^{vv}\operatorname{\mathsf{GL}}^+M:=T^v\operatorname{\mathsf{GL}}^+(T_xM),\quad T_x^{vh}\operatorname{\mathsf{GL}}^+M:=T^h\operatorname{\mathsf{GL}}^+(T_xM),$$

and analogously for $\widetilde{\operatorname{GL}}^+M$. The resulting decomposition $T^v\operatorname{GL}^+M=T^{vv}\operatorname{GL}^+M\oplus T^{vh}\operatorname{GL}^+M$ is called a *vertical distribution* on $\kappa^M:\operatorname{GL}^+M\to S_{r,s}M$ (and analogously on $\widetilde{\kappa}^M:\widetilde{\operatorname{GL}}^+M\to S_{r,s}M$). We denote by

$$\mathbf{\nabla}: \Gamma(au_{S_{r,s}M}^{\mathsf{v}}) imes \Gamma(\pi_{SM}^{\mathsf{\Sigma}}) o \Gamma(\pi_{SM}^{\mathsf{\Sigma}})$$

the induced *vertical connection*, i.e. the connection induced on the associated bundle $\pi_{SM}^{\Sigma}: \Sigma M \to S_{r,s}M$ that is only defined for all directions in the vertical space $\tau_{S_{r,s}M}^{\nu}: T^{\nu}S_{r,s}M \to M$.