Dirac Eigenvalues of higher Multiplicity

Nikolai Nowaczyk

<u>Outline</u>

Introduction

Classical Spin Geometry Main Result Main Idea

Proof of Main Theorem Construction of the Set A Construction of the Bundle E Construction of the Loop g Loops of Metrics via Loops of Diffeomorphisms Surgery Stability

18 mm

<u>Outline</u>

Introduction Classical Spin Geometry Main Result Main Idea

Proof of Main Theorem Construction of the Set A Construction of the Bundle E Construction of the Loop g Loops of Metrics via Loops of Diffeomorphisms Surgery Stability

18 mm

General Setup

- M smooth closed spin manifold of dimension $m \ge 3$

General Setup

- M smooth closed spin manifold of dimension $m \ge 3$

1 CT. 81

- $\Theta: \widetilde{\mathsf{GL}}^+ M \to \mathsf{GL}^+ M$ a fixed topological spin structure

General Setup

- M smooth closed spin manifold of dimension $m \ge 3$
- $\Theta: \widetilde{\operatorname{GL}}^+ M \to \operatorname{GL}^+ M$ a fixed topological spin structure

4 / 35

- $\mathcal{R}(M)$ Riemannian metrics on M with \mathcal{C}^1 -topology

General Setup

- M smooth closed spin manifold of dimension $m \ge 3$
- $\Theta: \widetilde{\operatorname{GL}}^+ M \to \operatorname{GL}^+ M$ a fixed topological spin structure

- $\mathcal{R}(M)$ Riemannian metrics on M with \mathcal{C}^1 -topology
- Θ^g : Spin^g $M \to \operatorname{SO}^g M$ metric spin structure

General Setup

- M smooth closed spin manifold of dimension $m \ge 3$
- $\Theta: \widetilde{\operatorname{GL}}^+ M \to \operatorname{GL}^+ M$ a fixed topological spin structure
- $\mathcal{R}(M)$ Riemannian metrics on M with \mathcal{C}^1 -topology
- Θ^g : Spin^g $M \to \operatorname{SO}^g M$ metric spin structure
- ρ : Spin_m \rightarrow GL_K V spinor representation, K $\in \{\mathbb{R}, \mathbb{C}\}$

General Setup

- M smooth closed spin manifold of dimension $m \ge 3$
- $\Theta: \widetilde{\operatorname{GL}}^+ M \to \operatorname{GL}^+ M$ a fixed topological spin structure
- $\mathcal{R}(M)$ Riemannian metrics on M with \mathcal{C}^1 -topology
- Θ^g : Spin^g $M \to \operatorname{SO}^g M$ metric spin structure
- $\rho: {\rm Spin}_m \to {\rm GL}_{\mathbb K} V$ spinor representation, $\mathbb K \in \{\mathbb R, \mathbb C\}$

4 / 35

- $\Sigma^g_{\mathbb{K}}M := \operatorname{Spin}^g M imes_{
ho} V o M$ spinor bundle w.r.t. g

General Setup

- M smooth closed spin manifold of dimension $m \ge 3$
- $\Theta: \widetilde{\operatorname{GL}}^+ M \to \operatorname{GL}^+ M$ a fixed topological spin structure
- $\mathcal{R}(M)$ Riemannian metrics on M with \mathcal{C}^1 -topology
- Θ^g : Spin^g $M \to \operatorname{SO}^g M$ metric spin structure
- $\rho : \operatorname{Spin}_m \to \operatorname{GL}_{\mathbb{K}} V$ spinor representation, $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$
- $\Sigma^g_{\mathbb{K}}M := \operatorname{Spin}^g M \times_{\rho} V \to M$ spinor bundle w.r.t. g
- $otin _{\mathbb{K}}^{g}: H^{1}(\Sigma_{\mathbb{K}}^{g}M) \subset L^{2}(\Sigma_{\mathbb{K}}^{g}M) \to L^{2}(\Sigma_{\mathbb{K}}^{g}M)$ Dirac operator

General Setup

- M smooth closed spin manifold of dimension $m \ge 3$
- $\Theta: \widetilde{\operatorname{GL}}^+ M \to \operatorname{GL}^+ M$ a fixed topological spin structure
- $\mathcal{R}(M)$ Riemannian metrics on M with \mathcal{C}^1 -topology
- Θ^g : Spin^g $M \to \operatorname{SO}^g M$ metric spin structure
- $\rho : \operatorname{Spin}_m \to \operatorname{GL}_{\mathbb{K}} V$ spinor representation, $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$
- $\Sigma^g_{\mathbb{K}}M := \operatorname{Spin}^g M \times_{\rho} V \to M$ spinor bundle w.r.t. g
- $otin _{\mathbb{K}}^{g}: H^{1}(\Sigma_{\mathbb{K}}^{g}M) \subset L^{2}(\Sigma_{\mathbb{K}}^{g}M) \to L^{2}(\Sigma_{\mathbb{K}}^{g}M)$ Dirac operator

4 / 35

- $H^1(\Sigma^g_{\mathbb{K}}M)$ first order Sobolev space

General Setup

- M smooth closed spin manifold of dimension $m \ge 3$
- $\Theta: \widetilde{\operatorname{GL}}^+ M \to \operatorname{GL}^+ M$ a fixed topological spin structure
- $\mathcal{R}(M)$ Riemannian metrics on M with \mathcal{C}^1 -topology
- Θ^g : Spin^g $M \to \operatorname{SO}^g M$ metric spin structure
- $\rho : \operatorname{Spin}_m \to \operatorname{GL}_{\mathbb{K}} V$ spinor representation, $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$
- $\Sigma^g_{\mathbb{K}}M := \operatorname{Spin}^g M \times_{\rho} V \to M$ spinor bundle w.r.t. g
- $otin _{\mathbb{K}}^{g}: H^{1}(\Sigma_{\mathbb{K}}^{g}M) \subset L^{2}(\Sigma_{\mathbb{K}}^{g}M) \to L^{2}(\Sigma_{\mathbb{K}}^{g}M)$ Dirac operator

- $H^1(\Sigma^g_{\mathbb{K}}M)$ first order Sobolev space
- spec ${
 ot\!\!/}^g_{\mathbb K}\subset {\mathbb R}$ spectrum of ${
 ot\!\!/}^g_{\mathbb K}$

Dirac Spectral Geometry

And address

AND STATE

Dirac Spectral Geometry

100 CT. 81

 \mapsto

Dirac operator

Dirac Spectral Geometry

10.000

and

Lemma:

Lemma:

1. spec $p^g \subset \mathbb{R}$ is discrete and unbounded from both sides.

Lemma:

- 1. spec $p^g \subset \mathbb{R}$ is discrete and unbounded from both sides.
- 2. $m \equiv 2, 3, 4 \mod 8 \implies \exists$ quaternionic structure.

Lemma:

- 1. spec $p^{g} \subset \mathbb{R}$ is discrete and unbounded from both sides.
- 2. $m \equiv 2, 3, 4 \mod 8 \implies \exists$ quaternionic structure.
- 3. $m \not\equiv 3 \mod 4 \implies$ Dirac spectrum is symmetric.

Lemma:

- 1. spec $p^g \subset \mathbb{R}$ is discrete and unbounded from both sides.
- 2. $m \equiv 2, 3, 4 \mod 8 \implies \exists$ quaternionic structure.
- 3. $m \not\equiv 3 \mod 4 \implies$ Dirac spectrum is symmetric.
- 4. dim ker $p^g \ge c(M)$ (Atiyah-Singer index theorem)

$$c(M) = \begin{cases} |\hat{A}(M)|, & m \equiv 0, 4 \mod 8, \\ 1, & m \equiv 1 \mod 8 \text{ and } \alpha(M) \neq 0, \\ 2, & m \equiv 2 \mod 8 \text{ and } \alpha(M) \neq 0, \\ 0, & \text{otherwise.} \end{cases}$$

Lemma:

1. spec $p^g \subset \mathbb{R}$ is discrete and unbounded from both sides.

- 2. $m \equiv 2, 3, 4 \mod 8 \implies \exists$ quaternionic structure.
- 3. $m \not\equiv 3 \mod 4 \implies$ Dirac spectrum is symmetric.
- 4. dim ker $\not{D}^{g} \ge c(M)$ (Atiyah-Singer index theorem)
- 5. Weyl's Law

Lemma:

- 1. spec $p^g \subset \mathbb{R}$ is discrete and unbounded from both sides.
- 2. $m \equiv 2, 3, 4 \mod 8 \implies \exists$ quaternionic structure.
- 3. $m \not\equiv 3 \mod 4 \implies$ Dirac spectrum is symmetric.
- 4. dim ker $p^g \ge c(M)$ (Atiyah-Singer index theorem)
- 5. Weyl's Law

Apart from these, it seems that Dirac spectra can take any form.

Lemma:

- 1. spec $p^g \subset \mathbb{R}$ is discrete and unbounded from both sides.
- 2. $m \equiv 2, 3, 4 \mod 8 \implies \exists$ quaternionic structure.
- 3. $m \not\equiv 3 \mod 4 \implies$ Dirac spectrum is symmetric.
- 4. dim ker $p^g \ge c(M)$ (Atiyah-Singer index theorem)

5. Weyl's Law

Conjecture (Dahl '05): For any spin manifold (M, Θ) and any $\lambda_1 \leq \ldots \leq \lambda_n \in]\Lambda_1, \Lambda_2[$ satisfying 2.-4. there exists a metric g on M such that

spec
$$\mathcal{D}_{\mathbb{C}}^{g} \cap]\Lambda_{1}, \Lambda_{2}[= \{\lambda_{1} \leq \ldots \leq \lambda_{n}\}$$

August and

ACCOUNT OF ALL

AND STATE

 $\lambda_j = \lambda_j(g)$ at least for finitely many j?

14 CT- 81

Dahl's Conjecture

Conjecture (Dahl '05): For any spin manifold (M, Θ) and any $\lambda_1 \leq \ldots \leq \lambda_n \in]\Lambda_1, \Lambda_2[$ satisfying 2.-4. there exists a metric g on M such that

spec
$$\mathcal{D}^{g}_{\mathbb{C}} \cap]\Lambda_1, \Lambda_2[= \{\lambda_1 \leq \ldots \leq \lambda_n\}$$

Dahl's Conjecture

Conjecture (Dahl '05): For any spin manifold (M, Θ) and any $\lambda_1 \leq \ldots \leq \lambda_n \in]\Lambda_1, \Lambda_2[$ satisfying 2.-4. there exists a metric g on M such that

spec
$$oldsymbol{D}_{\mathbb{C}}^{g} \cap]\Lambda_{1}, \Lambda_{2}[= \{\lambda_{1} \leq \ldots \leq \lambda_{n}\}$$

Theorem (Dahl '05): Conjecture is true, if all λ_j 's are simple and non-zero.

Dahl's Conjecture

Conjecture (Dahl '05): For any spin manifold (M, Θ) and any $\lambda_1 \leq \ldots \leq \lambda_n \in]\Lambda_1, \Lambda_2[$ satisfying 2.-4. there exists a metric g on M such that

spec
$$oldsymbol{D}_{\mathbb{C}}^{g} \cap]\Lambda_{1}, \Lambda_{2}[= \{\lambda_{1} \leq \ldots \leq \lambda_{n}\}$$

Theorem (Dahl '05): Conjecture is true, if all λ_j 's are simple and non-zero.

A subtlety: $\lambda \in \mathbb{R}$ is simple, if

<u>Outline</u>

Introduction Classical Spin Geometry Main Result Main Idea

Proof of Main Theorem Construction of the Set A Construction of the Bundle E Construction of the Loop **g** Loops of Metrics via Loops of Diffeomorphisms Surgery Stability

- 18.45

40000 Em. 81

Thats.

1 CT. 81

Main Theorem (Nowaczyk 2014): Let (M, Θ) be a closed spin manifold of dimension $m \equiv 0, 6, 7 \mod 8$.

Main Theorem (Nowaczyk 2014): Let (M, Θ) be a closed spin manifold of dimension $m \equiv 0, 6, 7 \mod 8$.

1. There exists a Riemannian metric g on M such that the Dirac operator p^{g} has at least one eigenvalue of multiplicity at least two.

Main Theorem (Nowaczyk 2014): Let (M, Θ) be a closed spin manifold of dimension $m \equiv 0, 6, 7 \mod 8$.

- 1. There exists a Riemannian metric g on M such that the Dirac operator p^{g} has at least one eigenvalue of multiplicity at least two.
- 2. The metric g can be chosen such that it agrees with an arbitrary metric \tilde{g} outside an arbitrary small neighborhood on the manifold.

<u>Outline</u>

Introduction

Classical Spin Geometry Main Result Main Idea

Proof of Main Theorem Construction of the Set A Construction of the Bundle E Construction of the Loop g Loops of Metrics via Loops of Diffeomorphisms Surgery Stability

Lemma: Let $X := (\mathcal{R}(M), \mathcal{C}^1)$ (simply connected)

August and

-

Lemma: Let $X := (\mathcal{R}(M), \mathcal{C}^1)$ (simply connected) and $\mathcal{R}_1(M) \subset A \subset X$ be any subspace.

 $\mathcal{R}_1(M) := \{g \in \mathcal{R}(M) \mid \text{all eigenvalues of }
otin g^g \text{ are simple} \}$

Lemma: Let $X := (\mathcal{R}(M), \mathcal{C}^1)$ (simply connected) and $\mathcal{R}_1(M) \subset A \subset X$ be any subspace.

Want: Then $X \setminus A$ not empty.

10.000

Lemma: Let $X := (\mathcal{R}(M), \mathcal{C}^1)$ (simply connected) and $\mathcal{R}_1(M) \subset A \subset X$ be any subspace. Let $g : S^1 \to A$ be not null-homotopic. Then $X \setminus A \neq \emptyset$.

1 CT. 81

Lemma: Let $X := (\mathcal{R}(M), \mathcal{C}^1)$ (simply connected) and $\mathcal{R}_1(M) \subset A \subset X$ be any subspace. Let $E \to A$ be a vector bundle such that $g^*E \to S^1$ is not trivial. Then $X \setminus A \neq \emptyset$.

Lemma: Let $X := (\mathcal{R}(M), \mathcal{C}^1)$ (simply connected) and $\mathcal{R}_1(M) \subset A \subset X$ be any subspace. Let $E \to A$ be a real vector bundle such that $\mathbf{g}^* E \to S^1$ is non-orientable. Then $X \setminus A \neq \emptyset$.

ς1

Outline

Introduction Classical Spin Geometry Main Result Main Idea

Proof of Main Theorem

Construction of the Set *A* Construction of the Bundle *E* Construction of the Loop **g** Loops of Metrics via Loops of Diffeomorphisms Surgery Stability

- 18.415 -

13 / 35

Outline

Introduction Classical Spin Geometry Main Result Main Idea

Proof of Main Theorem Construction of the Set A Construction of the Bundle E Construction of the Loop g Loops of Metrics via Loops of Diffeomorphism Surgery Stability

- 18.415 -

Construction of A

-

Definition: For $n \in 2 \mathbb{N} + 1$ define

$$egin{aligned} \mathcal{A} &:= \{ egin{aligned} g \in \mathcal{R}(\mathcal{M}) \mid &\exists 1 \leq j \leq n : \mu_{\mathbb{R}}(\lambda_j(g)) \in 2 \, \mathbb{N} \, + 1, \ &\lambda_0(g) < \lambda_1(g), \lambda_n(g) < \lambda_{n+1}(g) \} \end{aligned}$$

Construction of A

Definition: For $n \in 2 \mathbb{N} + 1$ define

$$egin{aligned} \mathcal{A} &:= \{ egin{aligned} g \in \mathcal{R}(\mathcal{M}) \mid &\exists 1 \leq j \leq n : \mu_{\mathbb{R}}(\lambda_j(m{g})) \in 2 \, \mathbb{N} \, + 1, \ &\lambda_0(m{g}) < \lambda_1(m{g}), \lambda_n(m{g}) < \lambda_{n+1}(m{g}) \} \end{aligned}$$

Remark:

$$X \setminus A = \{g \in \mathcal{R}(M) \mid \forall 1 \leq j \leq n : \mu_{\mathbb{R}}(\lambda_j(g)) \in 2 \mathbb{N} \text{ or} \ \lambda_0(g) = \lambda_1(g) \text{ or } \lambda_n(g) = \lambda_{n+1}(g) \}$$

 $\subset \{g \in \mathcal{R}(M) \mid \exists 1 \leq j \leq n : \mu_{\mathbb{R}}(\lambda_j(g)) \in 2 \mathbb{N} \}.$

1 CT. 81

Theorem (Bär 1996): A bounded spectral interval of the Dirac operator can be described locally by continuous functions.

Theorem (Bär 1996): Let $\Lambda > 0$ such that $\pm \Lambda \notin \text{spec } \mathcal{D}^g_{\mathbb{C}}$ and enumerate

spec
$$olimits \mathcal{D}_{\mathbb{C}}^{g} \cap]-\Lambda, \Lambda[=\{\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}\}.$$

For any $\varepsilon > 0$, there exists a C^1 -neighborhood U of g such that for any $g' \in U$, we have

spec
$$otin _{\mathbb{C}}^{g'} \cap]-\Lambda, \Lambda[=\{\lambda_1' \leq \cdots \leq \lambda_n'\}\$$

and

$$\forall 1 \leq i \leq n : |\lambda_i - \lambda'_i| < \varepsilon.$$

16 / 35

1 CT. 81

Theorem (Bär 1996): A bounded spectral interval of the Dirac operator can be described locally by continuous functions.

Theorem (Bär 1996): A bounded spectral interval of the Dirac operator can be described locally by continuous functions.

Main Theorem (Nowaczyk 2013): There exists a family of continuous functions $\{\lambda_j : \mathcal{R}(M) \to \mathbb{R})\}_{j \in \mathbb{Z}}$ such that

Theorem (Bär 1996): A bounded spectral interval of the Dirac operator can be described locally by continuous functions.

Main Theorem (Nowaczyk 2013): There exists a family of continuous functions $\{\lambda_j : \mathcal{R}(M) \to \mathbb{R})\}_{j \in \mathbb{Z}}$ such that

1. For all $g \in \mathcal{R}(M)$, the sequence $(\lambda_j(g))_{j \in \mathbb{Z}}$ is non-decreasing

Theorem (Bär 1996): A bounded spectral interval of the Dirac operator can be described locally by continuous functions.

Main Theorem (Nowaczyk 2013): There exists a family of continuous functions $\{\lambda_j : \mathcal{R}(M) \to \mathbb{R})\}_{j \in \mathbb{Z}}$ such that

- 1. For all $g \in \mathcal{R}(M)$, the sequence $(\lambda_j(g))_{j \in \mathbb{Z}}$ is non-decreasing
- 2. and represents all the eigenvalues of p^{g} (counted with multiplicities).

Theorem (Bär 1996): A bounded spectral interval of the Dirac operator can be described locally by continuous functions.

Main Theorem (Nowaczyk 2013): There exists a family of continuous functions $\{\lambda_j : \mathcal{R}(M) \to \mathbb{R})\}_{j \in \mathbb{Z}}$ such that

- 1. For all $g \in \mathcal{R}(M)$, the sequence $(\lambda_j(g))_{j \in \mathbb{Z}}$ is non-decreasing
- 2. and represents all the eigenvalues of D^g (counted with multiplicities).
- 3. In addition, the sequence $\{\operatorname{arsinh}(\lambda_j)\}_{j\in\mathbb{Z}}$ is equicontinuous.

Outline

Introduction Classical Spin Geometry Main Result Main Idea

Proof of Main Theorem

Construction of the Set *A* Construction of the Bundle *E*

Construction of the Loop **g** Loops of Metrics via Loops of Diffeomorphisms Surgery Stability

- 18.415 -

Definition of E

Remark: Recall

$$egin{aligned} \mathcal{A} = \{ egin{aligned} g \in \mathcal{R}(\mathcal{M}) \mid & \exists 1 \leq j \leq n : \mu_{\mathbb{R}}(\lambda_j(g)) \in 2\,\mathbb{N}\,+\!1, \ & \lambda_0(g) < \lambda_1(g), \lambda_n(g) < \lambda_{n+1}(g) \} \end{aligned}$$

Thats.

Definition of E

Remark: Recall

$$egin{aligned} \mathcal{A} = \{ egin{aligned} g \in \mathcal{R}(\mathcal{M}) \mid & \exists 1 \leq j \leq n : \mu_{\mathbb{R}}(\lambda_j(m{g})) \in 2 \, \mathbb{N} + 1, \ & \lambda_0(m{g}) < \lambda_1(m{g}), \lambda_n(m{g}) < \lambda_{n+1}(m{g}) \} \end{aligned}$$

Definition:

$$E := \prod_{g \in A} \sum_{1 \le j \le n} \ker(\mathcal{D}^g_{\mathbb{R}} - \lambda_j(g)) \to A$$

18 / 35

-

Universal Spinor Field Bundle

Theorem (Bourguignon, Gauduchon 1992): For any $g, h \in \mathcal{R}(M)$, there exists an identification isomorphism

$$\bar{\beta}_{g,h}: L^2(\Sigma^g_{\mathbb{K}}M) \to L^2(\Sigma^h_{\mathbb{K}}M),$$

which is an isometry of Hilbert spaces.

Universal Spinor Field Bundle

Theorem (Bourguignon, Gauduchon 1992): For any $g, h \in \mathcal{R}(M)$, there exists an identification isomorphism

$$\bar{\beta}_{g,h}: L^2(\Sigma^g_{\mathbb{K}}M) \to L^2(\Sigma^h_{\mathbb{K}}M),$$

which is an isometry of Hilbert spaces.

Theorem: The universal spinor field bundle

$$\begin{aligned} L^2(\Sigma_{\mathbb{K}} M) &:= \coprod_{g \in \mathcal{R}(M)} L^2(\Sigma_{\mathbb{K}}^g M) &\to \mathcal{R}(M) \\ \psi \in L^2(\Sigma_{\mathbb{K}}^g M) &\mapsto g \end{aligned}$$

carries a unique **Hilbert bundle** topology such that any identification isomorphism yields a global trivialization.

<u>Outline</u>

Introduction Classical Spin Geometry Main Result Main Idea

Proof of Main Theorem

Construction of the Set *A* Construction of the Bundle *E* Construction of the Loop **g**

18.000 200 81

Loops of Metrics via Loops of Diffeomorphisms Surgery Stability

20 / 35

Loops induced by Diffeomorphisms

Definition: Let $F : S^1 \to \text{Diff}(M)$ be a loop of diffeomorphisms and $g \in \mathcal{R}(M)$ be any metric. Then

is the associated loop of metrics.

Spin Diffeomorphisms

10.000

Definition: A diffeomorphism $f : M \to M$ is a spin diffeomorphism, if

commutes.

Odd and even Loops

And address

Let M be connected.

$$\mathsf{Diff}^{\mathsf{spin}}(M) := \{ f \in \mathsf{Diff}(M) \mid \exists \tilde{F} : \Theta \circ \tilde{F} = f_* \circ \Theta \}$$
$$\widetilde{\mathsf{Diff}}^{\mathsf{spin}}(M) := \{ (f, \tilde{F}) \mid f \in \mathsf{Diff}^{\mathsf{spin}}(M) \}$$

Odd and even Loops

Let M be connected.

$$\operatorname{Diff}^{\operatorname{spin}}(M) := \{ f \in \operatorname{Diff}(M) \mid \exists \tilde{F} : \Theta \circ \tilde{F} = f_* \circ \Theta \}$$

 $\widetilde{\operatorname{Diff}}^{\operatorname{spin}}(M) := \{ (f, \tilde{F}) \mid f \in \operatorname{Diff}^{\operatorname{spin}}(M) \}$

Definition: A loop $F : S^1 \to \text{Diff}^{\text{spin}}(M)$ is even, if

18 223 81

and odd otherwise.

The san Invariant

Remark: Let $F : [0,1] \to \text{Diff}^{\text{spin}}(M)$ be a loop. Then the lift

exists always, but $\hat{F}(1) = \pm \hat{F}(0)$.

The san Invariant

Remark: Let $F : [0,1] \to \text{Diff}^{\text{spin}}(M)$ be a loop. Then the lift

exists always, but $\hat{F}(1) = \pm \hat{F}(0)$. This defines an invariant

$$sgn: \pi_1(\mathsf{Diff}^{\mathsf{spin}}(M), \mathsf{id}_M) \to \mathbb{Z}_2$$

$$F \mapsto \begin{cases} +1, & F \text{ is even} \\ -1, & F \text{ is odd.} \end{cases}$$

Non-Orientability

100 CT. 81

Theorem: Let $F : S^1 \to \text{Diff}^{\text{spin}}(M)$ and $g \in A \implies g : S^1 \to A)$.

Non-Orientability

Theorem: Let $F : S^1 \to \text{Diff}^{\text{spin}}(M)$ and $g \in A \implies g : S^1 \to A$. If $n = \dim E$ is odd and F is odd, then $g^*E \to S^1$ is non-orientable.

Non-Orientability

Theorem: Let $F : S^1 \to \text{Diff}^{\text{spin}}(M)$ and $g \in A \implies g : S^1 \to A$. If $n = \dim E$ is odd and F is odd, then $g^*E \to S^1$ is non-orientable.

Recall:

In that case, the hypothesis of the Lasso Lemma is satisfied and we can conclude $X \setminus A \neq \emptyset$.

Odd Loops of Metrics

Definition: A spin manifold (M, Θ) admits an odd loop of metrics, if there exists a continuous map

$$\mathbf{g}: (S^1, \tau_{S^1}) \to (A, \mathcal{C}^2)$$

such that the bundle E is odd dimensional and

$$\mathbf{g}^* E \to S^1$$

is non-orientable.

Just one slight Problem...

14 CT- 81

Finding $F: S^1 \to \text{Diff}^{\text{spin}}(M)$ is more difficult than finding $\mathbf{g}: S^1 \to A$

Just one slight Problem...

Finding $F : S^1 \to \text{Diff}^{\text{spin}}(M)$ is more difficult than finding $\mathbf{g} : S^1 \to A$ is more difficult than finding $g \in \mathcal{R}(M)$ as required by the Main Theorem.

The Sphere

Theorem (odd loops on the sphere): The sphere (S^m, Θ) , $m \ge 3$, admits an odd loop of metrics.

18.000
The Sphere

Theorem (odd loops on the sphere): The sphere (S^m, Θ) , $m \ge 3$, admits an odd loop of metrics.

Lemma: The map $F: S^1 \to \text{Diff}^{\text{spin}}(S^m)$, $\alpha \mapsto R_{2\pi\alpha}|_{S^m}$, where

$$\forall \alpha \in \mathbb{R} : R_{\alpha} := \begin{pmatrix} I_{m-1} & 0 & 0\\ 0 & \cos(\alpha) & -\sin(\alpha)\\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} : \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$$

is an odd loop of spin diffeomorphisms.

14 CT- 81

The Sphere

Theorem (odd loops on the sphere): The sphere (S^m, Θ) , $m \ge 3$, admits an odd loop of metrics.

Lemma: The map $F: S^1 \to \text{Diff}^{\text{spin}}(S^m)$, $\alpha \mapsto R_{2\pi\alpha}|_{S^m}$, where

$$\forall \alpha \in \mathbb{R} : R_{\alpha} := \begin{pmatrix} I_{m-1} & 0 & 0\\ 0 & \cos(\alpha) & -\sin(\alpha)\\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} : \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$$

is an odd loop of spin diffeomorphisms.

Lemma: There exists a metric g on S^m arbitrary close to g° such that $\mathcal{P}^g_{\mathbb{C}}$ has at least one eigenvalue λ of odd multiplicity.

The Sphere

Theorem (odd loops on the sphere): The sphere (S^m, Θ) , $m \ge 3$, admits an odd loop of metrics.

Lemma: The map $F: S^1 \to \text{Diff}^{\text{spin}}(S^m)$, $\alpha \mapsto R_{2\pi\alpha}|_{S^m}$, where

$$\forall \alpha \in \mathbb{R} : R_{\alpha} := \begin{pmatrix} I_{m-1} & 0 & 0\\ 0 & \cos(\alpha) & -\sin(\alpha)\\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix} : \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$$

is an odd loop of spin diffeomorphisms.

Lemma: There exists a metric g on S^m arbitrary close to g° such that $\mathcal{P}^g_{\mathbb{C}}$ has at least one eigenvalue λ of odd multiplicity.

$$n := \dim \ker(\not\!\!D^g - \lambda).$$

Idea: Transport odd loop of metrcis from S^m to M^m

Surgery

Idea: Transport odd loop of metrcis from S^m to M^m via surgery.

10.000

Surgery and Dirac Spectra

Theorem (Bär, Dahl 2002): Let (N, g) be a closed Riemannian spin manifold. Let $S \subset N$ be an embedded sphere of codimension $m-k \geq 3$ and with trivialized tubular neighborhood. Let \tilde{N} be obtained from N by surgery along S together with the resulting spin structure. Let $\varepsilon > 0$ and $\Lambda > 0$, $\pm \Lambda \notin \text{spec } \mathcal{D}^g$. Then there exists a Riemannian metric \tilde{g} on \tilde{N} such that \mathcal{D}^g and $\mathcal{D}^{\tilde{g}}$ are (Λ, ε) -spectral close.

Surgery and Dirac Spectra

Theorem (Bär, Dahl 2002): Let (N, g) be a closed Riemannian spin manifold. Let $S \subset N$ be an embedded sphere of codimension $m-k \geq 3$ and with trivialized tubular neighborhood. Let \tilde{N} be obtained from N by surgery along S together with the resulting spin structure. Let $\varepsilon > 0$ and $\Lambda > 0$, $\pm \Lambda \notin$ spec \mathcal{D}^g . Then there exists a Riemannian metric \tilde{g} on \tilde{N} such that \mathcal{D}^g and $\mathcal{D}^{\tilde{g}}$ are (Λ, ε) -spectral close.

Dirac spectrum before surgery

Surgery and Dirac Spectra

Theorem (Bär, Dahl 2002): Let (N, g) be a closed Riemannian spin manifold. Let $S \subset N$ be an embedded sphere of codimension $m-k \geq 3$ and with trivialized tubular neighborhood. Let \tilde{N} be obtained from N by surgery along S together with the resulting spin structure. Let $\varepsilon > 0$ and $\Lambda > 0$, $\pm \Lambda \notin$ spec \mathcal{D}^g . Then there exists a Riemannian metric \tilde{g} on \tilde{N} such that \mathcal{D}^g and $\mathcal{D}^{\tilde{g}}$ are (Λ, ε) -spectral close.

Dirac spectrum after surgery

Surgery Stability

Theorem (Nowaczyk 2014): Odd loops of metrics are stable under surgeries.

 $X = \mathcal{R}(N)$

18 223 81

Surgery Stability

Theorem (Nowaczyk 2014): Odd loops of metrics are stable under surgeries.

 $\tilde{X} = \mathcal{R}(\tilde{N})$

1 CT. 81

<u>Conclusion</u>

- 1. Construction of the set $A \checkmark$ \rightsquigarrow Continuity of Dirac Spectra
- 2. Construction of the bundle $E \rightarrow A \checkmark$ \rightsquigarrow Universal Spinor Bundle
- 3. Construction of the Loop ${\boldsymbol{g}}$
 - \rightsquigarrow Odd loops of diffeomorhpisms \checkmark

1 CT. 81

 \rightsquigarrow Surgery stability of odd loops of metrics \checkmark

<u>Conclusion</u>

- Construction of the set A √

 ~→ Continuity of Dirac Spectra
- 2. Construction of the bundle $E \rightarrow A \checkmark$ \rightsquigarrow Universal Spinor Bundle
- Construction of the Loop g
 → Odd loops of diffeomorhpisms √
 → Surgery stability of odd loops of metrics √

 \implies Existence of Dirac eigenvalues of higher multiplicity is not topologically obstructed in dimensions $m \equiv 0, 6, 7 \mod 8$.

Comparison to other operators

- For the Laplace operator g → Δ^g on a compact manifold, it is kown that finitely many eigenvalues can be prescribed arbitrarily including multiplicity (by Verdiere 1986-1993, Jammes 2009-2012).
- For the Laplace operator Ω → Δ_Ω on a domain Ω with Dirichlet boundary conditions, the spectrum cannot be prescribed arbitrarily if the volume of Ω is fixed. (Henrot 2006)
- For the Sturm-Liouville operator,

$$(p,q)\mapsto -\Big(rac{d}{dx}\Big(p\cdot rac{d}{dx}\Big)+q\Big),$$

(with boundary conditions) higher multiplicities do not exist. (Hartmann 1964)

Thanks for your attention.

100 CT. 81

Open Problems

- Can one prescribe double eigenvalues?
- Is the set of metrics R₁(M) for which all Dirac eigenvalues are simple generic in R(M)?
- Can one build a finite dimensional spinor bundle that is independent of the metric?
- Can one approach these problems by variational techniques?