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Backtesting
Use Cases

Front Office / Market Risk:
returns/risks of trading strategies
market risk metrics (e.g. VaR)
margin models (e.g. SIMM)

Counterparty Credit Risk (CCR):
EAD

risk factor evolution
portfolio MtMs

Challenges

Data scarcity and quality
Computational intensity
Legacy infrastructures
Complex statistical evaluations

Which test to choose?
Which test is “better”?
...
How to deal (best) with
correlations?
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Backtesting

Statistical theory typically starts with:
Let xi , i = 1, . . . , n, be the independent samples...
Statistical reality in finance typically starts with the insight that this basic
assumption is not met due to

auto-correlation within a single time series whenever the samples correspond
to overlapping returns.
cross-correlation between any two quantites (e.g. IR/FX).

All typical applications are affected, e.g. CCR backtesting, SIMM
backtesting etc.
Ignoring the correlations leads to materially incorrect results.
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Example of Auto-correlation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time index

Samples: Given n = 250 daily
independent time series returns
Yi ∼ N (0, σ2), we consider the
m = 10-day returns X

Xi :=
i+m−1∑
j=i

Yj ∼ N (0,mσ2),

i = 1, . . . , n −m + 1, which slide
forward by 1-day.

=⇒ Obtain nm := 241 samples, but
with up to 90% correlation.
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Framework

Hypothesis Test: Ingredients

1 Formulate null hypothesis:
The model’s predictive distributions are consistent with market
realizations.

2 Collect sample x̂ from a sample space X = (X,F ,Pϑ)θ∈Θ.
3 Split Θ = Θ0∪̇Θ1: We call Θ0 null hypothesis and Θ1 is called alternative.
4 Choose a significance level α, e.g. α = 5%.
5 Choose a test statistic T : X → R and a critical value tcrit = Q1−α(T ).

This requires the distribution of the test statistic T under the null
hypothesis.

6 A decision rule φ : (X,F) → {0, 1}, e.g. for upper-tailed test

φ(x̂) =

{
1, T (x̂) > tcrit =⇒ reject null hypothesis
0, T (x̂) ≤ tcrit=⇒ retain null hypothesis
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Framework

Example:

Hypothesis: We want to test the null hypothesis

H0 : σ ≤ σ0 := 100 against H1 : σ > σ0

Test statistic definition: Exceedence counting at quantile level γ := 95%

T :=
nm∑
j=1

1{Xj>h}, h := Qγ(N (0,mσ2
0)) = σ0

√
mΦ−1(γ).

Test statistic T does not have a Binomial distribution under null
hypothesis due to correlation in the data.
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Strategies

Strategy 1: Filtering

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

time index

Throw away the correlated samples, i.e.
only work with the 25 independent
samples

Xmi , i = 1, . . . , n/m.

Then

T0 :=

n/m∑
j=1

1{Xmj>h},

has Binomial distribution Binn/m(1 − γ).
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Strategies

Strategy 2: Correlate null distributions via Monte Carlo
Simulation

Generate Monte Carlo paths of the samples

Yi (ω) ∼ N (0, σ2
0), Xi (ω) :=

i+m−1∑
j=i

Yj(ω)

and the test statistic via

T (ω) :=
nm∑
j=1

1{Xj (ω)>h},

and calculate the quantile tcrit := Q1−α(T ) empirically.
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Strategies

Strategy 3: Decorrelation
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Sample Correlations

Under null hypothesis, correlation matrix C of
sample vector X = (X1, . . . ,Xnm) is known (in
this case analytically).
Hence:

Compute Cholesky decomposition C = LL⊤

Decorrelate samples to X̄ := L−1X .
=⇒ Exceedence count statistic

T̄ :=
nm∑
j=1

1{X̄j>h},

now has Binomial distribution with sample
size nm and success probability 1 − γ.
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Strategies

How to decide which strategy is best?

independent
samples

T0 //
test statistic
assuming independence

correlated
samples

T //

filter
77

decorrelate ''

test statistic
assuming correlation

independent
samples

T̄ //
test statistic
assuming independence
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Evaluation Metrics

Hypothesis Test: Evaluation
Test Result

retain H0 reject H0

Assumption H0 correct retention incorrect rejection
(α), type I

H1 incorrect retention
(β), type II

correct rejection

Using the Discriminatory Power function:

Gφ : Θ → [0, 1], ϑ 7→ Pϑ[{φ = 1}] = 1 − Pϑ[T ≤ tcrit]

we obtain for
Type I: Pϑ0 [{φ = 1}] ≤ α by construction (=⇒ no choice)
Type II: βφ(ϑ1) = 1 − Gφ(ϑ1) (=⇒ natural metric to optimize)
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Evaluation Metrics

Visualizing Type I & Type II error
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Evaluation Metrics

Which Alternative should we choose?

In our case the null hypothesis pertains to one probability measure Pϑ0

given by the model.
Notice that the power of testing the null hypothesis ϑ0 against an
alternative ϑ1 depends on the alternative. What alternative should we
choose?
Theoretically, every other probability measure Pϑ1 could be an
alternative.
Practically evaluating this is not really feasible.
Pragmatic approach (common in empirical research, medicine, psychology
etc.) is to assess the power on a 1-parameter family of interesting
alternatives.
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Evaluation Metrics

Optimizing Hypothesis Tests
We evaluate the strategies

filtering,
correlating the test statistic,
decorrelating the samples,

by
constructing prototypical hypothesis tests,
calculating power curves for pragmatic family of alternatives,
compare the results.
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Gaussian Time Series Returns: Exceedence Counting

Impact of correlation strategy on power
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Why does this work?
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Gaussian Time Series Returns: Exceedence Counting

PDF of Null Hypothesis vs. Alternative: Filtered
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Test parameters
n = 250 days of returns
m = 10 window size



Intro Statistics with Correlated Data Numerical Case Studies Conclusion FAQ

Gaussian Time Series Returns: Exceedence Counting

PDF of Null Hypothesis vs. Alternative: Correlated
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Gaussian Time Series Returns: Exceedence Counting

PDF of Null Hypothesis vs. Alternative: Decorrelated
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Gaussian Time Series Returns: Exceedence Counting

Extreme example of parameters
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We test
using n = 2Y of history
with a window size of m = 1Y

in the three set ups:
r = 250: 0.5% power (2 samples)
r = 1 (correlated samples): 7.7% power
(251 samples)
r = 1 (decorrelated samples): 77% power
(251 samples)
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Gaussian Time Series Returns: Chi Squared
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Gaussian Time Series Returns: Chi Squared

A two-sided alternative & Chi Squared test

Hypothesis: We want to test the null hypothesis

H0 : σ = σ0 against H1 : σ ̸= σ0

Test statistic: Choose some quantile level grid of length k , say
γ = {0%, 1%, 5%, 20%, 50%, 80%, 95%, 99%, 100%}, construct the
associated thresholds hj := Qγk (N (0,mσ2

0) and for each bin [hj−1, hj [,
compare the observed samples oj in the bin with the expected samples
ej = nr (γj − γj+1) via the chi squared as test statistic:

χ2
r :=

k∑
j=1

(ej − oj)
2

ej
.

For r = m, χ2
r is asymptotically distributed as χ2(k − 1). But for r < m,

this distribution needs to be estimated via Monte Carlo simulation.
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Gaussian Time Series Returns: Chi Squared

Impact of step size: Power
correlated
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Uniform PITs (CCR)

CCR backtesting
non-overlapping
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Uniform PITs (CCR)

Test Setup and Null Hypothesis
We assume the quantity to be backtested is given by

dXt = σdWt Xt = X0 + σ
√
tZ , Z ∼ N (0, 1)

No recalibration of σ, but initialization of start value.
Hypothesis: We want to test the null hypothesis

H0 : σ = σ0 against H1 : σ ̸= σ0

Simulation setup:
Fix backtesting date grid t1 < . . . < tn of width e.g. δ = 2W over
observation window, e.g. 5Y
Fix horizon, e.g. τ = 1Y and generate simulations Xi := X (ti , ti + τ) with
Nsim paths
Obtain their distribution F̂i (does not need simulation in this case)
For any given sample x̂ test if the resulting PITs πi := F̂i (x̂i ) are uniform
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Uniform PITs (CCR)

Probability Integral Transform to the Uniform
A key trick is to make the statistical framework independent of the underlying
distribution via the following.

Lemma
Let X be a real valued random variable with continuous CDF F . Then F (X ) is
uniformly distributed on [0, 1].

Definition
For any sample x̂ of X , we call π(x̂) := F (x̂) the probability integral transform
(PIT) of x̂ with respect of F .
=⇒ We can work with πi := Fi (x̂i ) where Fi is the CDF of X (ti ,Ti ) and test for
uniformity if πi are independent.
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Uniform PITs (CCR)

Uniformity metrics
Exceedence counting over some quantile
χ2 with some binning
Cramer-von-Mises metric (CvM):∫

R
|F (x)− F̂ (x)|2dF (x)

Anderson-Darling (AD)∫
R
|F (x)− F̂ (x)|2w(x)dF (x), w(x) =

1
F (x)(1 − F (x))

Kolmogorov-Smirnoff (KS)

sup
x∈R

|F (x)− F̂ (x)|

Here F̂ is an estimated ECDF and F (x) = x is the CDF of U(0, 1).
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Uniform PITs (CCR)

Decorrelation of uniformly distributed PITs
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Under the null hypothesis, the correlation matrix
C of the pits is known as well.
Hence:

Compute Cholesky decomposition C = LL⊤

PITs are on [0, 1] and hence L cannot be
applied directly.
Hence, decorrelate samples via

π̄ := Φ(L−1(Φ−1(π))),

where Φ is the CDF of the standard normal
distribution.
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Uniform PITs (CCR)

Power Analysis CCR: correlated & decorrelated
correlated
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(5Y observation window, 1Y simulation horizon, 2W grid width)
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Uniform PITs (CCR)

PDF of Chi Squared Null vs. Alt in correlated case
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Very hard to detect for the test
though due to shape of distributions
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Joint Distributions / Multivariate Tests
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Joint Distributions / Multivariate Tests

Multi-variate time series setting
Assume we have two correlated daily returns Y

(1)
i , Y (2)

i such that

Y
(1)
i ∼ N (0, σ2

0,1), Y
(2)
i ∼ N (0, σ2

0,2), ρ0 := ρ(Y
(1)
i ,Y

(2)
i )

This means that their corresponding m-day returns X
(1)
i , X (2)

i now have
auto-correlation and cross-correlation.
The null hypothesis now has three parameters (σ0,1, σ0,2, ρ0) and hence
testing for canonical alternatives can also be performed in 3 dimensions.
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Joint Distributions / Multivariate Tests

Decorrelation

0 50 100 150 200

0

25

50

75

100

125

150

175

200
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Decorrelation can be applied as well:

Zip together the components X
(1)
i and X

(2)
i

into one big vector

X = (X
(1)
1 ,X

(2)
1 ,X

(1)
2 ,X

(2)
2 , . . . ,X

(1)
n ,X

(2)
n ).

Vector has correlation matrix C = LL⊤.
Perform same tests (exceedence count,
χ2...) on zipped vector.
Notice that we now have twice as many
samples (not all equally sensitive to all
alternatives though).
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Joint Distributions / Multivariate Tests

Power of Chi Squared at alternatives
alternative volatility
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Summary

The impact of correlations on the distribution of the test statistics and the
power of the test is very high and hence must not be ignored.
The impact of how choosing a strategy how to handle correlations is very
high, often higher than the choice of test statistic.
Decorrelating the samples

leads to higher power than correlating the test statistics,
avoids long-tailed distributions,
allows to re-use established statistical tests,
leads to natural generalizations for backtesting correlations itself or joint
distributions of multiple quantities.
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Long vs. Short Horizons

Derivation of Correlation Matrix
Question: Given that the decorrelated test of the m-day returns has the
same power curve as the 1-day return test, are those the same tests?
Answer: No.
Let X = (X1, . . . ,Xm−n+1) the vector of m-day returns,
let Y = (Y1, . . . ,Yn) the vector of 1-day returns.

A ∈ R(n−m+1)×n Aij :=

{
1, i ≤ j ≤ i +m − 1,
0, otherwise.

Then Consequently X = AY and

V[X ] = V[AX ] = AV[X ]A⊤ = σ2AA⊤ ∈ Rn×n

C =
1
m
AA⊤ = LL⊤,

but this does not imply that A =
√
mL.
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Long vs. Short Horizons

Linear Algebra
Matrix A is

rectangular, A ∈ R(n−m+1)×n,
upper-triangular,
surjective, but not injective since
dim kerA = m − 1, hence not
invertible.
Example (n = 5, m = 2):

A =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1



Matrix
√
mL is

square,
√
mL ∈ Rn×n,

lower-triangular,
invertible.
Example (n = 5, m = 2):

√
mL =


1.41 0 0 0
0.70 1.22 0 0
0 0.81 1.15 0
0 0 0.86 1.11


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Long vs. Short Horizons

Statistical Example: Setup
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Let the model be dXt = σdWt , but
with weekly recalibration.
Assume the market follows an ABM
but every week there is a regime
change and the vol increases.
Expect perfect performance of
model at weekly horizon, but bad
performance at yearly horizon.
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Long vs. Short Horizons

Statistical Example: Probability of rejection
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Choice of Decorrelator

Choice of Decorrelator
Question: Is the Cholesky decomposition the only possibility to decorrelate
the samples?
Answer: No.
The Cholesky decomposition C = LL⊤ is one possible choice that is
computationally efficient, canonical as it is used in the Monte Carlo
simulation to produce the correlation in the first place and it preserves
temporal consistency as L is lower triangular.
The spectral decomposition C = OΛO⊤ with Λ a diagonal matrix and O an
orthogonal matrix is an alternative decomposition that leads to the

decorrelator M−1, where M = OΛ
1
2O⊤. This decorrelator has the

advantage that it is a symmetric matrix and that the resulting samples are
as close as possible to the original samples, i.e.

M = argminAA⊤=C E[∥A−1X − X∥2]
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Choice of Decorrelator

Impact of decorrelator on power
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No impact on power as power only depends on distribution
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Uncorrelated vs Independent

Higher order Interactions

Question: Are the decorrelated samples always independent?
Answer: No.
For Gaussian distributions uncorrelated and independent is the same, for
many distributions it is similar, but it is in general not the same.
It might still be helpful to decorrelate to remove first order interaction.
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Interpretation of Decorrelated Samples
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Interpretation of Decorrelated Samples

Practical Interpretation

Question: How to interpret the decorrelated samples? Can I plot them
against a time series and do exception analysis?
Answer: Not really.
The intended purpose of the decorrelated samples is for calculation of the
p-value only.
Analysing the cause of a rejected model is still much easier using the original
correlated sample but keeping in mind that the rejection can be caused by
wrong volatility, wrong correlation or both.
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Interpretation of Decorrelated Samples

Example
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time index i
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correlated realizations
decorrelated realizations
80th quantile
20th quantile

Example of correlated and decorrelated sample
Example: n = 36, m = 4, and a
sample drawn from distribution
with correct vol, but wrong (=0)
correlation
Correlated: T = 10 < tcrit, i.e. H0
is retained
Decorrelated: T̄ = 16 > t̄crit, hence
H0 is rejected
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Theoretical Background

Question: Is there really no analytic formula for the distribution of a
correlated exceedence counter?
Answer: No.
The distribution of the correlated exceedence counter has this neat compact
formula:

∀0 ≤ m ≤ n : P[T ≤ m] =
m∑

k=0

∑
I ∪̇J=n

|I |=k

k∑
ν=0

∑
L⊂I

|L|=ν

(−1)νFJ,L(hJ,L),

where n := {1, . . . , n} and for any multi-index I , FI is the CDF of
XI := (Xi1 , . . . ,Xik ) and X is any n-dimensional random variable with
continuous CDF and T :=

∑n
i=1 1Xi>hi is its exceedence counter.
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