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This article is designed to give a short introduction to the theory of partial differential operators
(”PDO”). It is though of as an analouge to the ”Introduction to Pseudo-Differential Operators” by
Wong and in fact contains the solution of some prerequisites and exercises from this book. The
treatment of Pseudo-Differential Operators (”ΨDO”) is even more technical than the one of partial
differential operators. So in order to understand the ideas behind the ΨDO theory, the PDOs are
helpful and of course also useful and nice for themselves.
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1 Local Theory

1.1 Notation and Basic Definitions

Global notation Conventions
• n denotes the Dimension of the space in which we are operating
• U ⊂ Rn is an open set
• ∂j denotes the partial differentitation with respect to the j-th coordinate direction ej

• Dj := −i∂j , where i is the imaginary unit
• For any multi-index α ∈ Nn and any i ∈ N, 0 ≤ i ≤ n, we denote by

α + i := (α1, . . . , αi−1, αi + 1, αi+1, . . . , αn),

which will be very helpful for inductions.
(to be extended...)

1.1.1 Definition (Differential Operator). Let U ⊂ Rn be open. A complex (partial) differential
operator on U of order k, k ∈ N, (a ”PDO”) is a C -linear map P : C∞(U,C r) → C∞(U,C s) such that
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for every α ∈ Nn, |α| ≤ k, there exists Pα ∈ C∞(U,HomC (C r,C s)) such that

P =
∑

|α|≤k

PαDα

A real differential operator is defined analogously. The set of all such operators is denoted by

Diffk
C (U,C r,C s)

1.1.2 Remark. Of course we assume that HomC (C r,C s) is given the smooth structure obtained by
identifying with C s×r. The set Diffk

C (U,C r,C s) itself is a module over C∞(U) and a C -vector space.
Chosing a bases {Eµ} of C r and {Fν} of C s, we can fully expand P in coordinates as

Ps =
∑

|α|≤k

r∑

µ=1

s∑

ν=1

(Pα)ν
µDα(sµ)eν .

1.1.3 Definition (Symbol). Define the map σ : Diffk
C (U,C r,C s) → C∞(U,HomC (C r,C s))[ξ1, . . . , ξn]

by
P =

∑

|α|≤k

PαDα 7→
∑

|α|≤k

Pαξα

where C∞(U,HomC (C r,C s))[ξ1, . . . , ξn] is the ”polynomial ring” in the n variables ξ = (ξ1, . . . , ξn)
over C∞(U,HomC (C r,C s)). We call σ(P ) the symbol of P .

It is clear, that we may identify differential operators with their symbols.

1.1.4 Lemma. The map σ is bijective. Its inverse is given by the substitution homomorphism induced
by

ξj 7→ Dj

1.2 Leibniz Formulae

Before we can start with the analysis of the PDO Algebra itself, we first have to investigate the
application of a PDO to a function especially to the product of two functions. We assume the reader
to be very familiar with the product rule from basic calulus, i.e. if f, g ∈ C1(U), then

∀x ∈ U : ∂i(fg)(x) = (∂if)(x)g(x) + f(x)(∂ig(x))

This can be generalized considerably and will be done in this section.

1.2.1 Theorem (Leibniz Rule). Let U ⊂ Rn be open, f, g ∈ Ck(U), α ∈ Nn, |α| = k. Then

∂α(fg) =
∑

β≤α

(
α
β

)
(∂βf)(∂α−βg) =

∑

β+γ=α

α!
β!γ!

(∂βf)(∂γg)

As a didactial motivation we will proof the very important special case n = 1 seperately. Logically it
is not needed in the proof of the general case and thus may be skipped.

Proof. [for n = 1] In that case, the statement is

(f · g)(k) =
k∑

ν=0

(
k
ν

)
f (ν) · g(k−ν)
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We will proof this via induction over k. For k = 1 this is the ordinary product rule:

(f · g)′(x) = f ′(x)g(x) + f(x)g′(x)

For the induction step k → k + 1 consider

(f · g)(k+1) =
(
(f · g)(k)

)′
=

(
k∑

ν=0

(
k
ν

)
f (ν) · g(k−ν)

)′

=
k∑

ν=0

(
k
ν

)
f (ν+1) · g(k−ν) + f (ν) · g(k+1−ν)

(1)
=

k+1∑

ν=1

(
k

ν − 1

)
f (ν) · g(k−(ν−1)) +

k∑

ν=0

(
k
ν

)
f (ν) · g(k+1−ν)

(2)
=

k+1∑

ν=0

(
k

ν − 1

)
f (ν) · g(k+1−ν) +

k+1∑

ν=0

(
k
ν

)
f (ν) · g(k+1−ν)

(3)
=

k+1∑

ν=0

(
k + 1

ν

)
f (ν) · g(k+1−ν)

(1): Here we splitted up the sum and shifted the first one up by one.
(2): Here we added the zero summands

(
k
−1

)
= 0 and

(
k

k + 1

)
= 0

(3): This uses the addition theorem for binomials:
(

k
ν − 1

)
+

(
k
ν

)
=

(
k + 1

ν

)

Proof. [General Case] We will proof this statment as well by induction over k = |α|. If k = 1, the
statement is just the ordinary product rule. So by induction assume the statement is valid for k. If
|α| = k + 1, there exists 1 ≤ j ≤ n such that α can be written as α = α̃ + (0, . . . , 0, 1, 0, . . . , 0) where
the 1 is at position j and |α̃| = k. So

∀1 ≤ i 6= j ≤ n : α̃i = αi and α̃j + 1 = αj
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Using induction hypothesis we calculate:

∂α(fg) = ∂j∂
α̃(fg) = ∂j

∑

β≤α̃

(
α̃
β

)
(∂βf)(∂α̃−βg

=
∑

0≤β≤α̃

(
α̃
β

)
(∂j∂

βf)(∂α̃−βg) + (∂βf)(∂j∂
α̃−βg)

(1)
=

∑

i6=j:0≤βi≤α̃i,0≤βj≤α̃j

n∏

i=1,i 6=j

(
α̃i

βi

)(
α̃j

βj

)
(∂j∂

βf)(∂α̃−βg) +
∑

0≤β≤α

(
α̃
β

)
(∂βf)(∂α−βg)

(2)
=

∑

i6=j:0≤βi≤αi,1≤βj≤αj

n∏

i=1,i 6=j

(
αi

βi

)(
αj − 1
βj − 1

)
(∂βf)(∂α−βg) +

∑

0≤β≤α

(
α̃
β

)
(∂βf)(∂α−βg)

(3)
=

∑

0≤β≤α

n∏

i=1,i 6=j

(
αi

βi

)(
αj − 1
βj − 1

)
(∂βf)(∂α−βg) +

∑

0≤β≤α

n∏

i=1,i6=j

(
αi

βi

)(
αj − 1

βj

)
(∂βf)(∂α−βg)

=
∑

0≤β≤α

((
αj − 1
βj − 1

)
+

(
αj − 1

βj

)) n∏

i=1,i 6=j

(
αi

βi

)
(∂βf)(∂α−βg)

(4)
=

∑

0≤β≤α

(
αj

βj

) n∏

i=1,i6=j

(
αi

βi

)
(∂βf)(∂α−βg)

=
∑

0≤β≤α

(
α
β

)
(∂βf)(∂α−βg)

Where we have used the following facts:
(1) In the first sum, we just wrote down the index set and the expression more complicated. In the

second sum we only added summands with multi-indices β, such that
(

α̃
β

)
=

∏

1≤i6=j≤n

(
αi

βi

)
·
(

αj

αj + 1

)

(2) In the first sum this is an index shift

(0 ≤ βj ≤ α̃j = αj − 1) 7→ (1 ≤ βj ≤ αj)

and the plugging in of the definition of α̃.
(3) In the first sum, we just added summands where βj = 0 and thus

(
αj − 1
βj − 1

)
= 0

In the second sum we plugged in the definitions.
(4) This is the addition law for binomial coefficients.

1.2.2 Remark. This statement is also valid for Dα instead of ∂α (by just multiplying the equation
with (−i)α).

1.2.3 Corollary (Vector valued Leibniz Formula). Let U ⊂ Rn be open and F ∈ Ck(U,C s×r),
g ∈ Ck(U,C r) and α ∈ Nn such that |α| ≤ k. Then

∂α(Fg)(x) =
∑

β≤α

(
α

β

)
(∂βF )(x)(∂α−βg)(x)
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Proof. We calculate

∂α(Fg)(x) = ∂α
( s∑

i=1

r∑

j=1

F i
jg

jei

)
(x) =

s∑

i=1

r∑

j=1

∂α(F i
jg

jei)(x)

1.2.1=
s∑

i=1

r∑

j=1

∑

β≤α

(
α

β

)
(∂βF i

j )(x)(∂α−βgj)(x)ei =
∑

β≤α

(
α

β

) s∑

i=1

r∑

j=1

(∂βF i
j )(x)(∂α−βgj)(x)ei

=
∑

β≤α

(
α

β

)
(∂βF )(x)(∂α−βg)(x)

One specific product is of particular importance.

1.2.4 Lemma. Let α, δ ∈ Nn be any two multi-indices. Then for all ξ ∈ Rn

∂δ
ξξ

α =





δ!

(
α

δ

)
, δ ≤ α

0 , otherwise

Proof. By induction over n.
n = 1: Then there exist i, j ∈ N such that ∂δ

ξ = ∂i and ξα = ξj . If δ ≤ α then i = j and thus

∂δ
ξξ

α = ∂iξi = 1 = δ!
(

α
δ

)
ξα−δ

Otherwise ∂δ
ξξ

α = ∂iξj = 0.
n → n + 1: Suppose the formula is valid for multi-indices of length n and α, δ ∈ Nn+1. Define

α̃ := (α1, . . . , αn), δ̃ := (δ1, . . . , δn) ∈ Nn

We regard

αn+1 , (αn+1, 0, . . . , 0) ∈ Nn δn+1 , (δn+1, 0, . . . , 0) ∈ Nn

Thus if δn+1 ≤ αn+1

∂δ
ξξ

α = ∂
δn+1

ξ (∂ δ̃
ξ (ξ

α̃ξ
αn+1

n+1 )) = ∂
δn+1

ξ ξ
αn+1

n+1 · δ̃!
(

α̃

δ̃

)
ξα̃−δ̃ =

δn+1−1∏

i=0

(αn+1 − i)ξαn+1−δn+1

n+1 · δ̃!(
(

α̃

δ̃

)
ξα̃−δ̃

=
δn+1∏

i=1

(αn+1 − i + 1)ξαn+1−δn+1

n+1 · δ̃! α̃!
δ̃!(α̃− δ̃)!

ξα̃−δ̃ =
αn+1!

(αn+1 − δn+1)!
ξ
αn+1−δn+1

n+1 · δ̃! α̃!
δ̃!(α̃− δ̃)!

ξα̃−δ̃

= δ!
α!

δ!(α̃− δ̃)!(αn+1 − δn+1)!
ξα−δ = δ!

(
α
δ

)
ξα−δ

Otherwise ∂
δn+1

ξ ξ
αn+1

n+1 = 0 and thus the entire expression would be zero.

This allows us to generalize Leibniz formula for PDOs.
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1.2.5 Theorem (Leibniz Formula for PDO). Let U ⊂ Rn be open F ∈ Ck(U,C r×s), g ∈ Ck(U,C r)
open and

P (x,D) =
∑

|α|≤k

pα(x)Dα ∈ Diffk
C (U, s, t)

be a PDO with symbol p(x, ξ). Then

P (D)(Fg) =
∑

|µ|≤k

1
µ!

P (µ)(D)(F )Dµg

where P (µ)(D) ∈ Diffk−|µ|
C (U, s, t) is the PDO with symbol

p(µ)(x, ξ) = ∂µ
ξ p(x, ξ)

Proof. By the Leibniz formula 1.2.3 above

P (x,D)(Fg) =
∑

|α|≤k

pα(x)Dα(Fg) =
∑

|α|≤k

pα(x)
∑

µ≤α

(
α

µ

)
Dα−µ(F )Dµ(g)

Furthermore
p(µ)(x, ξ) =

∑

|α|≤k

pα(x)∂µ
ξ ξα 1.2.4=

∑

|α|≤k

pα(x)µ!
(

α

µ

)
ξα−µ

Consequently

P (x,D)(Fg) =
∑

|α|≤k

∑

µ≤α

pα(x)
(

α

µ

)
Dα−µ(F )Dµg

1.2.4=
∑

|µ|≤k

1
µ!

∑

|α|≤k

pα(x)µ!
(

α

µ

)
Dα−µ(F )Dµg

=
∑

|µ|≤k

1
µ!

P (µ)(D)(F )Dµg

We would like to generalize generalize these results to products with finitely many factors.

1.2.6 Theorem (Binomial Theorem). For any x, y ∈ C , n ∈ N

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk

In this context 00 := 1.

1.2.7 Theorem (Multinomial Theorem). Let z1, . . . , zk ∈ C n, α ∈ Nn. Then
(

k∑

i=1

zi

)α

=
∑

B∈(Nn)k,|B|=α

(
α

B

)
ZB

where B = (B1, . . . , Bk) is a tuple of multi-indices, ZB := zB1
1 . . . zBk

k and

|B| :=
k∑

i=1

Bi

(
α

B

)
:=

α!
B1! . . . Bk!
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Proof. We use induction over k. For k = 1, the statement is clear since both side equal zα
1 . For k = 2

(
k∑

i=1

zi

)α

=
n∏

i=1

(zi
1 + zi

2)
αi 1.2.6=

n∏

i=1

αi∑

γi=1

(
αi

γi

)
(zi

1)
γi(zi

2)
αi−γi

=
α1∑

γ1=1

. . .

αn∑

γn=1

n∏

i=1

(
αi

γi

)
zγi
1 zαi−γi

2 =
∑

γ≤α

α!
γ!(α− γ)!

zγ
1 zα−γ

2 =
∑

B∈(Nn)2,|B|=α

(
α

B

)
ZB

For the induction step assume k ≥ 3 and that the statement holds for k. Define y :=
∑k

i=1 zk,
Y = (z1, . . . , zk) ∈ (C n)k Using the induction start for k = 1, 2 and the induction hypothesis, we
obtain:

(
k+1∑

i=1

zi

)α

=

(
k∑

i=1

zi + zk+1

)α

= (y + zk+1)
α =

∑

γ+δ=α

(
α

(γ, δ)

)
(y, zk+1)(γ,δ)

=
∑

γ+δ=α

α!
γ!δ!

zδ
k+1

(
k∑

i=1

zi

)γ

=
∑

γ+δ=α

α!
γ!δ!

zδ
k+1


 ∑

C∈(Nn)k,|C|=γ

(
γ

C

)
Y C




=
∑

γ+δ=α

∑

C∈(Nn)k,|C|=γ

α!
γ!δ!

γ!
C1! . . . Ck!

zC1
1 . . . zCk

k zδ
k+1 =

∑

B∈(Nn)k+1,|B|=α

(
α

B

)
ZB

1.2.8 Theorem (Leibniz rule for multiple factors). Let f1, . . . , fk ∈ C∞(U,C ), U ⊂ Rn , α ∈ Nn.
Then

∂α

(
k∏

i=1

fi

)
=

∑

B∈(Nn)k,|B|=α

(
α

B

)
∂BF

where F = (f1, . . . , fk) : U → C k, B = (B1, . . . , Bk) is a tuple of multi-indices, ∂BF := (∂B1f1) . . . (∂Bkfk)
and

|B| :=
k∑

i=1

Bi

(
α

B

)
:=

α!
B1! . . . Bk!

Proof. We use induction over k. For k = 1, the statement is clear since both side equal ∂αf1. For
k = 2 this has already been proven as 1.2.1. For the induction step k → (k + 1) consider:

∂α

(
k+1∏

i=1

fi

)
= ∂α

(
k∏

i=1

fifk+1

)
=

∑

γ+δ=α

(
α

(γ, δ)

)
∂γ

(
k∏

i=1

fifk+1

)
f δ

k+1

=
∑

γ+δ=α

α!
γ!δ!

zδ
k+1


 ∑

C∈(Nn)k,|C|=γ

(
γ

C

)
∂C(f1, . . . , fk)




=
∑

γ+δ=α

∑

C∈(Nn)k,|C|=γ

α!
γ!δ!

γ!
C1! . . . Ck!

(∂C1f1) . . . (∂Ckfk)(∂δ
k+1f) =

∑

B∈(Nn)k+1,|B|=α

(
α

B

)
∂BF
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1.3 The Composition of two PDO

1.3.1 Theorem (Composition Symbol). Let U ⊂ Rn be open and

P =
∑

|α|≤k

pαDα ∈ Diffk
C (U, r, s) and Q =

∑

|β|≤l

qβDβ ∈ Diffk
C (U, s, t)

be two PDO with symbols

σ(P )(x, ξ) = p(x, ξ) =
∑

|α|≤k

pα(x)ξα and σ(Q)(x, ξ) = q(x, ξ) =
∑

|β|≤l

qβ(x)ξβ

Then the P ◦Q ∈ Diffk+l
C (U, r, t) is a PDO with symbol

σ(P ◦Q)(x, ξ) =
∑

|γ|≤l

(−i)γ

γ!
(∂γ

ξ p)(x, ξ)(∂γ
xq)(x, ξ)

Proof. For any f ∈ C∞(U,C r)

(P ◦Q)(f)(x) =
∑

|α|≤k

pα(x)Dα
x


∑

|β|≤l

(qβDβ
xf)(x)


 =

∑

|α|≤k

∑

|β|≤l

pα(x)Dα
x (qβDβ

xf)(x)

1.2.3=
∑

|α|≤k

∑

|β|≤l

pα(x)
∑

γ≤α

(
α

γ

)
(Dγ

xqβ)(x)(Dβ+α−γ
x f)(x)

=
∑

|α|≤k

∑

|β|≤l

∑

γ≤α

(
α

γ

)
pα(x)(Dγ

xqβ)(x)(Dβ+α−γ
x f)(x)

Consequently

σ(P ◦Q)(x, ξ) =
∑

|α|≤k

∑

|β|≤l

∑

γ≤α

(
α

γ

)
pα(x)(Dγ

xqβ)(x)ξβ+α−γ

=
∑

|α|≤k

∑

|γ|≤α

∑

|β|≤l

(
α

γ

)
pα(x)(Dγ

xqβ)(x)ξβ+α−γ =
∑

|α|≤k

∑

|γ|≤α

(
α

γ

)
pα(x)ξα−γDγ

x

( ∑

|β|≤l

qβ(x)ξβ
)

=
∑

|α|≤k

∑

γ≤α

(
α

γ

)
ξα−γpα(x)Dγ

xq(x, ξ)
(1)
=

∑

|α|≤k

∑

γ≤α

1
γ!

(∂γ
ξ ξα)pα(x)Dγ

xq(x, ξ)

(2)
=

∑

|α|≤k

∑

|γ|≤k

1
γ!

(∂γ
ξ ξα)pα(x)Dγ

xq(x, ξ) =
∑

|γ|≤k

( 1
γ!

∂γ
ξ

( ∑

|α|≤k

pα(x)ξα
)
Dγ

xq(x, ξ)
)

=
∑

|γ|≤k

1
γ!

(∂γ
ξ p)(x, ξ)Dγ

xq(x, ξ) =
∑

|γ|≤k

(−i)γ

γ!
(∂γ

ξ p)(x, ξ)∂γ
xq(x, ξ)

Remember from Lemma 1.2.4, that for any two multi-indices α, γ, we have

∂γ
ξ ξα =

{
γ!

(
α
γ

)
, γ ≤ α

0 , otherwise

This is the justification for (1) and also for (2) since we only added zero summands!
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1.4 The Adjoint of a PDO

1.4.1 Definition (L2 scalar product). We define the space

L2(U,C r) := {f : U → C r | ‖f‖2
L2(U,C r) :=

r∑

i=1

||fi||L2(U) < ∞}

and call ‖_‖L2(U,C r) the L2-norm. This norm is induced by the L2-scalar product

〈f, g〉L2(U,C r) :=
r∑

i=1

〈f, g〉L2(U) :=
r∑

i=1

∫

U
fi(x)ḡi(x)dx

on L2(U,C r).

1.4.2 Definition (Vector valued Schwarz space). The space

1.4.3 Theorem (Adjoint Symbol). Let P (x,D) =
∑
|α|≤m pα(x)Dα

x be a PDO with symbol

σ(P )(x, ξ) = p(x, ξ) =
∑

|α|≤m

pα(x)ξα

Then the adjoint Operator P ∗ has the symbol

σ(P ∗) =
∑

|γ|≤m

(−i)γ

γ!
∂γ

x∂γ
ξ p̄(x, ξ)

Proof. Take ϕ, ψ ∈ S and consider

〈P (x,D)ϕ,ψ〉L2 =
∫

Rn

∑

|α|≤m

pα(x)Dα
xϕ(x) · ψ̄(x)dx =

∑

|α|≤m

(−i)α

∫

Rn

(∂α
x ϕ)(x)pα(x) · ψ̄(x)dx

=
∑

|α|≤m

iα
∫

Rn

ϕ(x)∂α
x (pα(x) · ψ̄(x))dx =

∫

Rn

ϕ(x)
∑

|α|≤m

(−i)α
∑

γ≤α

(
α
γ

)
∂γ

x(p̄α(x))(∂α−γ
x ψ)(x)dx

=

〈
ϕ,

∑

|α|≤m

(−i)α
∑

γ≤α

(
(

α
γ

)
∂γ

x(p̄α(x))(∂α−γ
x ψ)(x)

〉

=

〈
ϕ,

∑

|α|≤m

(−i)α
∑

γ≤α

(
α
γ

)
∂γ

x(p̄α(x))iα−γ(Dα−γ
x ψ)(x)

〉

Consequently

σ(P ∗)(x, ξ) =
∑

|α|≤m

∑

γ≤a

(−i)αiα−γ∂γ
x(p̄α(x))

(
α
γ

)
ξα−γ (1)

=
∑

|α|≤m

∑

γ≤α

(−i)αiα−γ∂γ
x(p̄α(x))

1
γ!

∂γ
ξ ξα

(2)
=

∑

|α|≤m

∑

|γ|≤m

(−i)γ

γ!
∂γ

x(p̄α(x))∂γ
ξ ξα =

∑

|γ|≤m

(−i)γ

γ!
∂γ

x∂γ
ξ (

∑

|α|≤m

p̄α(x)ξα)

=
∑

|γ|≤m

(−i)γ

γ!
∂γ

x∂γ
ξ p̄(x, ξ)

(1),(2): Remember from Lemma 1.2.4, that

∂γ
ξ ξα =





γ!

(
α

γ

)
, γ ≤ α

0 , otherwise

This justifies (1) and it also justifies (2), since we only added zero summands.
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2 PDO between vector bundles

Let M be a smooth manifold of dimension m.

2.1 Basic Definitions and Properties

2.1.1 Definition (Complex vector bundle). A map π : E → M is a smooth complex vector bundle of
rank r if the following conditions are satisfied:
(i) E is a smooth manifold.
(ii) The map π is smooth and surjective.
(iii) For all p ∈ M fibre over p Ep := π−1(p) is endowed with a complex vector space structure of

dimension k.
(iv) For every p ∈ M there exists an open neighbourhood U ⊂ M of p and a local trivialization, i.e. a

diffeomorphism Φ : EU := π−1(U) → U × C r such that pr ◦Φ = idU , where pr : U × C r → U is
the canonical projection, and for every q ∈ U the restriction Φ : Eq → q×C r ∼= C r is a complex
vector space isomorphism.

2.1.2 Definition (Section). If π : E → M is a complex vector bundle, a smooth map s : M → E such
that π ◦ s = idM is a section in E over M . The space of all such sections is denoted by Γ(M, E).

Before we are able to define PDO on vector bundles, one additional local property is required, we have
not yet established.

2.1.3 Definition (Push-forward of operators). Let V, Ṽ ⊂ Rn be open, P ∈ Diffk(V,C r,C s) be a PDO
and F : V → Ṽ be a smooth diffeomorphism. Then the map P̃ := F∗P : C∞(Ṽ ,C r) → C∞(Ṽ ,C s)
defined by

s̃ 7→ P (s̃ ◦ F ) ◦ F−1

is the push-forward of P along F .

We would like to show, that PDOs are in some sense invariant under push-forwards.

2.1.4 Lemma (Diffeomorphism invariance). With the notation of Definition 2.1.3 above: Let α ∈ Nn,
|α| = k ≥ 1, be a multi-index and P := Dα ∈ Diffk(V,C r,C r). Then P̃ := F∗(Dα) ∈ Diffk(Ṽ ,C r,C r),
thus there exist P̃α ∈ C∞(Ṽ ,Hom(C r,C r)) such that

∀s̃ ∈ C∞(Ṽ ,C r,C r) = P̃ (s̃) = F∗(Dα)(s̃) = Dα(s̃ ◦ F ) ◦ F−1 =
∑

|β|≤k

P̃ βDβ(s̃).

Moreover the symbols satisfy

σDα(x, ξ) = Irξ
α σF∗(Dα)(x̃, ξ) =

∑

|β|=k

P̃ β(x̃)ξβ = Ir(At(x̃)ξ)α,

where Ir ∈ Hom(C r,C r) is the identity and A := ∇F ◦ F−1.

Proof. We will show the statement by induction over k.
Step 1 (k = 1): This implies, that α = ej for some 1 ≤ j ≤ n. The chain rule for total derivatives
states

∇(s̃ ◦ F ) = ∇s̃ ◦ F · ∇F,

which implies
∂j(s̃ ◦ F ) = ∇s̃ ◦ F · ∂jF.
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Consequently by definition

F∗(∂α) = F∗(∂j) = ∂j(s̃ ◦ F ) ◦ F−1 = ∇s̃ · ∂jF ◦ F−1 =
n∑

i=1

∂jF
i ◦ F−1∂is̃.

By multiplying with −i, this shows F∗(Dα) ∈ Diff1(Ṽ ,C r,C r). The symbols are given by

σ∂j (x, ξ) = ξj σF∗(∂j)(x, ξ) =
n∑

i=1

Ir(∂jF
i ◦ F−1)(x)ξi = Ir(Atξ)j .

Step 2 (k → k + 1): There exists α̂ ∈ Nn, |α̂| = k, and 1 ≤ j ≤ n, such that α = α̂ + ej . We calculate

F∗(∂α)(s̃) = ∂α(s̃ ◦ F ) ◦ F−1 = ∂α̂∂j(s̃ ◦ F ) ◦ F−1 = ∂α̂
( n∑

i=1

∂jF
i · ∂is̃ ◦ F

)
◦ F−1

=
( ∑

β≤α̂

n∑

i=1

(
α̂

β

)
∂α̂−β∂jF

i · ∂β(∂is̃ ◦ F )
)
◦ F−1

=
∑

β≤α̂

n∑

i=1

(
α̂

β

)
∂α̂−β∂jF

i ◦ F−1 · F∗(∂β)(∂is̃)

=
∑

β≤α̂

n∑

i=1

∑

|γ|≤|β|
P γ

β

(
α̂

β

)
∂α̂−β∂jF

i ◦ F−1∂γ∂i(s̃).

By multiplying with (−i)k−1, this shows F∗(Dα) ∈ Diffk+1(Ṽ ,C r,C r). We analyse the highest order
terms. These occure precisely, if |γ + ei| = k + 1 ⇔ |γ| = k. Since |γ| ≤ |β| and β ≤ α̂, this can only
happen if β = α̂ and |γ| = k. Obviously σ∂α(x, ξ) = Irξ

α and

σF∗(Dα)(x, ξ) =
∑

|γ|=k

P γ
α̂ (x)

( n∑

i=1

(∂jF
i ◦ F−1)(x)ξi

)
ξγ =

∑

|γ|=k

P γ
α̂ (x)(At(x)ξ)jξ

γ

= (At(x)ξ)j

∑

|γ|=k

P γ
α̂ (x)ξγ = Ir(At(x)ξ)j(At(x)ξ)α̂ = Ir(At(x)ξ)α.

2.1.5 Theorem (Diffeomorphism Invariance). With the notation of Definition 2.1.3 we claim: P̃ =
F∗(P ) ∈ Diffk(Ṽ ,C r,C s), i.e. there exist P̃α such that

∀s̃ ∈ C∞(Ṽ ,C r,C s) : P̃ (s̃) = F∗(P )(s̃) =
∑

|α|≤k

P̃αDα.

Moreover the symbol has a representation

σP̃ (x̃, ξ) =
∑

|α|=k

P̃α(x̃)ξα =
∑

|α|=k

(Pα ◦ F−1)(x̃)(At(x̃)ξ)α = σP (F−1(x̃), At(x̃)ξ),

where A := ∇F ◦ F−1.

Proof. By definition we obtain

P̃ (s̃) = F∗(P )(s̃) =
( ∑

|α|≤k

PαDα(s ◦ F )
)
◦ F−1 =

∑

|α|≤k

Pα ◦ F−1F∗(Dα)(s̃).
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Applying the first part of Lemma 2.1.4, we conclude P̃ ∈ Diffk(Ṽ ,C r,C s). Applying the second part
and analyzing the highest order terms, we conclude, that the symbol satisfies:

σP̃ (x̃, ξ) =
∑

|α|=k

(Pα ◦ F−1)(x̃)σF∗(Dα)(x̃, ξ) =
∑

|α|=k

(Pα ◦ F−1)(x̃)
∑

|β|=k

Qβ
α(x̃)ξβ

=
∑

|α|=k

(Pα ◦ F−1)(x̃)(At(x̃)ξ)α.

2.1.6 Definition (Associated Pushforwards). Let π : E → M be a complex vector bundle of rank r
and Φ : EU → U×C r be a local trivialization. Denote by pr2 : U×C r → C r the canonical projection.
We obtain the pushforward Φ∗ : Γ(U,E) → C∞(U,C r) defined by

s 7→ pr2 ◦Φ ◦ s = Φ2 ◦ s

and for any chart ϕ : U → V of M the pushforward ϕ∗ : C∞(U,C r) → C∞(V,C r)

f 7→ f ◦ ϕ−1.

By composing we obtain a map ϕ∗ ◦ Φ∗ : Γ(U,E) → C∞(V,C r).

2.1.7 Lemma.
(i) By construction the following diagram commutes:

EU

π

²²

Φ // U × C r

pr2
²²

U

s

OO

Φ∗s // C r

V

ϕ−1

OO

ϕ∗Φ∗s

::uuuuuuuuuu

(ii) The map ϕ∗ is bijective with inverse (ϕ∗)−1 : C∞(V,C r) → C∞(U,C r) given by (ϕ−1)∗.

(iii) The map Φ∗ is bijective with inverse Φ∗ : C∞(U,C r) → Γ(U,E) given by f 7→ Φ−1 ◦ idU ×f .

Proof. The first two statements are clear. To see the third one, remember that any local trivialization
can be written as Φ = (Φ1, Φ2) = (idU , Φ2) = idU ×Φ2. Therefore we obtain

∀s ∈ Γ(U,E) : (Φ−1
∗ ◦ Φ∗)(s) = Φ−1

∗ (Φ2 ◦ s) = Φ−1 ◦ idU ×(Φ2 ◦ s) = Φ−1((Φ1, Φ2)(s)) = s

and
∀f ∈ C∞(U,C r) : (Φ∗ ◦ Φ−1

∗ )(f) = Φ∗(Φ−1 ◦ idU ×f) = pr2 ◦Φ ◦ Φ−1 ◦ idU ×f = f.

2.1.8 Definition (Differential operators between vector bundles). Let E, F be smooth complex vector
bundles over M of rank r and s. A linear map P : Γ(M,E) → Γ(M,F ) is a differential operator of
rank k, if for any chart ϕ : U → V and local trivializations Φ : EU → U × C r and Ψ : FU → U × C s,
there exists D ∈ Diffk(V ;C r,C s), called a local representation of P , such that

Γ(U,E)

ϕ∗Φ∗
²²

P // Γ(U,F )

ϕ∗Ψ∗
²²

C∞(V,C r) D // C∞(V,C s)
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commutes, i.e. ϕ∗Ψ∗ ◦ P ◦ (ϕ∗Φ∗)−1 = D. The set of all differential operators of order k between E
and F is denoted by

Diffk(M ; E,F ).

2.1.9 Theorem (Local independence). Let P : Γ(M, E) → Γ(M, F ) be a linear map, let ϕ : U → V ,
ψ : U → Ṽ be any charts and Φ, Φ̃ : EU → U × C r, Ψ, Ψ̃ : FU → U × C s be local trivializations.
(i) Then

D := ϕ∗Ψ∗ ◦P ◦ (ϕ∗Φ∗)−1 ∈ Diffk(V,C r,C s) =⇒ D̃ := ψ̃∗Ψ̃∗ ◦P ◦ (ψ∗Φ̃∗)−1 ∈ Diffk(Ṽ ,C r,C s).

So the local property of beeing a differential operator does not depend on the choice of charts or
trivializations, but only on the smooth structures of M , E and F .

(ii) Denote by F := ψ ◦ ϕ−1 : V → Ṽ the transition map between the charts, A := ∇F ◦ F−1, and
by gE and gF the transition functions between the local trivializations (see equation (2.1)) and
let D =

∑
|α|≤k PαDα. Then the symbol satisfies

∀x̃ ∈ Ṽ : ∀ξ ∈ Rn : σD̃(x̃, ξ) =
∑

|α|=k

(gF Pαg−1
E )(F−1(x̃))(At(x̃)ξ)α.

Proof.
Step 1 (Independence of trivializations): First we fix the chart ϕ and consider different trivializations.
There exist functions (c.f. [2, 5.4])) gE ∈ C∞(V,GL(r,C )), gF ∈ C∞(V,GL(s,C )) such that

∀x ∈ V : ∀ξ ∈ C r : (Φ̃ ◦ Φ−1)(ϕ−1(x), ξ) = (ϕ−1(x), gE(x)ξ) (2.1)

∀x ∈ V : ∀ξ ∈ C s : (Ψ̃ ◦Ψ−1)(ϕ−1(x), ξ) = (ϕ−1(x), gF (x)ξ).

We redefine D̃ := ϕ∗Ψ̃∗ ◦P ◦ (ϕ∗Φ̃∗)−1 (valid for this step of the proof) and remark that the following
diagram commutes:

C∞(V,C r)

ϕ∗Φ̃∗◦(ϕ∗Φ∗)−1

²²

D // C∞(V,C s)

ϕ∗Ψ̃∗◦(ϕ∗Ψ∗)−1

²²

Γ(U,E)
ϕ∗Φ∗

ffMMMMMMMMMM

ϕ∗Φ̃∗xxqqqqqqqqqq

P // Γ(U,F )

ϕ∗Ψ∗
88qqqqqqqqqq

ϕ∗Ψ̃∗

&&MMMMMMMMMM

C∞(V,C r) D̃ // C∞(V,C s)

We calculate

D̃ = ϕ∗Ψ̃∗ ◦ P ◦ (ϕ∗Φ̃∗)−1 = ϕ∗Ψ̃∗ ◦ (ϕ∗Ψ∗)−1 ◦D ◦ ϕ∗Φ∗ ◦ (ϕ∗Φ̃∗)−1

= ϕ∗ ◦ Ψ̃∗ ◦Ψ−1
∗ ◦ ϕ−1

∗ ◦D ◦ ϕ∗ ◦ Φ∗ ◦ Φ̃−1
∗ ◦ ϕ−1

∗ .

The map ϕ∗ ◦ Ψ̃∗ ◦Ψ−1∗ ◦ϕ−1∗ : C∞(V,C r) → C∞(V,C r) can be simplified drastically. By construction
for any f ∈ C∞(V,C r)

ϕ∗(Ψ̃∗(Ψ−1
∗ (ϕ−1

∗ (f))))
2.1.7,(iii)

= ϕ∗(Ψ̃∗(Ψ−1
∗ (f ◦ ϕ))) = ϕ∗(Ψ̃∗(Ψ−1 ◦ idU ×(f ◦ ϕ)))

= ϕ∗(pr2 ◦Ψ̃ ◦Ψ−1 ◦ idU ×(f ◦ ϕ)) = gF (f ◦ ϕ) ◦ ϕ−1 = gF f

and analogously
(ϕ∗ ◦ Φ∗ ◦ Φ̃−1

∗ ◦ ϕ−1
∗ )(f) = g−1

E f.
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Since D ∈ Diffk(M ;E,F ) by hypothesis, there exist Pα ∈ C∞(V, Hom(C r,C s)) such that

D =
∑

|α|≤k

PαDα ∈ Diffk
C (V, r, s).

Alltogether we obtain

D̃f = gF

( ∑

|α|≤k

PαDα
)
(g−1

E f) =
∑

|α|≤k

gF PαDα(g−1
E f) 1.2.3=

∑

|α|≤k

gF Pα

( ∑

β≤α

(
α

β

)
(Dα−βg−1

E )Dβf
)

=
∑

|α|≤k

∑

β≤α

(
α

β

)
gF Pα(Dα−βg−1

E )Dβf,

which shows D̃ ∈ Diffk(V,C r,C s).
We analyze the highest order terms: These occur precisely if |β| = k. But since β ≤ α this happens if
and only if β = α. So the symbol is given by

σD̃(x, ξ) =
∑

|α|=k

gF (x)Pα(x)g−1
E (x)ξα.

Step 2 (Independence of the chart): Now fix the trivialization Φ and consider the two different charts
ϕ,ψ. Analogously we redefine D̃ := ψ∗Ψ∗ ◦P ◦ (ψ∗Φ∗)−1 (valid for this step of the proof) and calculate

D̃ = ψ∗Ψ∗ ◦ P ◦ (ψ∗Φ∗)−1 = ψ∗Ψ∗ ◦ (ϕ∗Ψ∗)−1 ◦D ◦ ϕ∗Φ∗ ◦ (ψ∗Φ∗)−1

= ψ∗ ◦Ψ∗ ◦Ψ−1
∗ ◦ ϕ−1

∗ ◦D ◦ ϕ∗ ◦ Φ∗ ◦ Φ−1
∗ ◦ ψ−1

∗ = ψ∗ ◦ ϕ−1
∗ ◦D ◦ ϕ∗ ◦ ψ−1

∗ .

Thus for any f̃ ∈ C∞(Ṽ ,C r,C s), we obtain

D̃(f̃) = D(f̃ ◦ F ) ◦ F−1 = F∗(D)(f),

which implies D̃ ∈ Diffk(Ṽ ,C r,C s) by Theorem 2.1.5. It was already shown there, that the symbol is
given by

σD̃(x̃, ξ) =
∑

|α|=k

Pα(F−1(x̃))(At(x̃)ξ)α.

Redefining D̃ := ψ̃∗Ψ̃∗ ◦ P ◦ (ψ∗Φ̃∗)−1 as in the statement of the theorem and combining both steps,
we obtain both claims.
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2.1.10 Definition (Symbol). Let P ∈ Diffk(M ; E,F ) be a PDO. For any p ∈ M and any ξ ∈ T ∗p M
define σP (p, ξ) ∈ Hom(Ep, Fp) to be the homomorphism given as follows: Choose a chart ϕ : U → V
near p and local trivializations Φ : EU → U × C r, Ψ : FU → U × C s. Let D be the local coordinate
representation of P with respect to this chart and these trivializations and define

∀v ∈ Ep : σP (p, ξ)(v) := Ψ−1
2 (σD(ϕ(p), ξie

i)(Φ2(e))).

We call σP the symbol of P .

2.1.11 Remark. This definition produces two problems: First of all, the homomorphism σP (p, ξ) is
defined in terms of various non canonical choices, so we have to show, that it is well-defined. Secondly,
we would like to state more precisely, what σP is. Therefore denote by π : T ∗M → M the cotangant
bundle. Notice, that for any ξ ∈ T ∗M we could define a homomorphism σP (ξ) := σP (π(ξ), ξ) ∈
Hom(Eπ(ξ), Fπ(ξ)), so the base point p ∈ M is somewhat superflous. But if we drop it, we can no
longer think of Hom(E, F ) as a bundle over M . But if we think of Hom(E, F ) as a bundle over T ∗M ,
then we may think of an element in Hom(Eπ(ξ), Fπ(ξ)) as beeing attatched to ξ. These notions are
made precise in the following Lemma.

2.1.12 Lemma. The symbol is a well-defined section

σP ∈ Γ(T ∗M, Hom(π∗E, π∗F )),

i.e.: Let ϕ̃ : Ũ → Ṽ be another chart, Φ̃, Ψ̃ be other local trivializations for E and F and let σ̃P be
the symbol defined in terms of this chart and these local trivializations. Then

∀p ∈ U ∩ Ũ : ∀ξ ∈ T ∗p M : ∀e ∈ Ep : σP (p, ξ)(e) = σ̃P (p, ξ)(e).

Proof. By shrinking the coordinate neighbourhoods if necessary, we may assume that U = Ũ , and
calculate there. As usual, we define F := ϕ̃ ◦ϕ−1, A := ∇F ◦F−1. Denote by Ξ := (ξ1, . . . , ξn) the co-
ordinate vector function of ξ seen as a column vector in Rn (define Ξ̃ analogously). The transformation
law for the cotangent bundle states that

ξ = ξidϕi = ξ̃idϕ̃i,

where Ξ = ∇F t ◦ ϕ · Ξ̃. This implies Ξ = At ◦ ϕ̃ · Ξ̃, which is equivalent to

Ξ̃ = (At)−1 ◦ ϕ̃ · Ξ (2.2)

Remember the defining equations (2.1) for the transition functions. Define τ : U × C r → U × C r,
(p, v) 7→ (p, gE(ϕ(p))v). Then we can reformulate

Φ̃ ◦ Φ = τ ⇐⇒ Φ = Φ̃ ◦ τ−1,

which implies in particular

Φ̃(e) = (τ(Φ(e))) = τ(Φ1(e), Φ2(e)) = (p, gE(ϕ(p))Φ2(e)) (2.3)

and analogously for Ψ̃. Alltogether we obtain

σ̃P (p, ξ)(e) = Ψ̃−1
2 (σD̃(ϕ̃(p), Ξ̃(p))(Φ̃2(e)))

= Ψ̃−1
2

( ∑

|α|=k

(gF Pαg−1
E )(F−1(ϕ̃(p)))(At(ϕ̃(p))Ξ̃(p))α

)
(Φ̃2(e)))

(2.2)
= Ψ̃−1

2

( ∑

|α|=k

(gF Pαg−1
E )(ϕ(p))(At(ϕ̃(p))(At)−1(ϕ̃(p))Ξ(p)α

)
(Φ̃2(e)))

(2.3)
= Ψ−1

2 g−1
F (ϕ(p))

( ∑

|α|=k

(gF Pαg−1
E )(ϕ(p))Ξ(p)α

)
(gE(ϕ(p)Φ2(e)))

= Ψ−1
2 (σD(ϕ(p), Ξ(p))(Φ2(e))) = σP (p, ξ)(v).
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2.1.13 Definition (Elliptic PDO). An operator P ∈ Diffk(M ; E, F ) is called elliptic, if its symbol is
invertible outside the zero section, i.e.

∀p ∈ M : ∀0 6= ξ ∈ T ∗p M : σP (p, ξ) ∈ Iso(Ep, Fp).
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