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1 Overview and Main Result

Global Setup: Let M be a smooth oriented Riemannian m- manifold without boundary. Let
K be a simplicial complex in some Rn with star-bound N (c.f. 2.12). Let h : |K| → M be a
smooth triangulation of M , and 1 ≤ p ≤ ∞. In the following graph we will add a node for every
cohomology theory of interest and an edge, if under certain reasonable assumptions there exists
an isomorphism between them.

HdR(M)

de Rham complex

��

//

Hp(M)

Wp complex

��

Hsing(M)

singular simplices

��

H(K)

simplicial cochains

��

//

Hp(K)

simplicial-p-cochains

��

H (K)

S-forms
//

Hp(K)

Lp-S-forms

1.1 Main Theorem. If h : |K| → M is GKS (c.f. 3.1), then there exists a commutative
diagram of isomorphisms

Hp(M)

Hp(K)

99

//Hp(K).

ee

Therefore all Lp-cohomolgies of M are mutually isomorphic.
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2 Definition of Lp-spaces

2.1 Differential Forms

2.1 Convention (exterior direct sums).We will frequently define Z-indexed systems of vec-
tor spaces (V k)k∈Z. In that case, the space V is understood to be

V :=
⊕
k∈Z

V k.

2.2 Definition (Lp-spaces). Let

Lk(M) := {ω : M → ΛkTM | ω is a measurable section}/ ∼,

where ω ∼ ω′ if and only if ω equals ω′ outside a set of measure zero. For any 1 ≤ p <∞, define

Lkp(M) := {ω ∈ Lk(M) | ‖ω‖p
Lkp(M)

:=

∫
M
|ω|pdgV <∞}

the p-integrable forms. In case p =∞ the norm is replaced by

‖ω‖Lk∞(M) := ess supx∈M |ω(x)|.

Sometimes it is nice to have the following local version of Lp-spaces:

Lkp,loc(M) := {ω ∈ Lk(M) | ∀K ⊂M compact : ω ∈ Lkp(K)}.

The modulus |ω| of a differential form is defined below.

2.3 Definition (modulus). For any Riemannian metric g on M there exists exactly one fibre
metric g̃ on ΛkTM such that for any g-ONB B = (b1, . . . , bk) of any TpM the set

ΛkB := {bi1 ∧ . . . ∧ bik | 0 ≤ i1 < . . . < ik ≤ m}

is a g̃-ONB for ΛkTpM . Denote by |_| the norm generated by g̃. Then |ω| : M → R is the
modulus of ω.

2.4 Theorem (completeness of Lp-spaces). For every 1 ≤ p ≤ ∞ and every 0 ≤ k ≤ m the
space Lkp(M) is a Banach space.

2.5 Definition (weak differential). Let ω ∈ Lkp,loc(M) and ω′ ∈ Lk+1
p,loc(M). Then ω′ is a

weak differential of ω if

∀η ∈ Ωm−k−1
c (M) :

∫
M
ω′ ∧ η = (−1)k+1

∫
M
ω ∧ dη.

In that case we denote dω := ω′. The space of all those forms is denoted by W k
p,loc(M).

2.6 Lemma. The weak differential of a form ω ∈ Lkp,loc(M) is uniquely determined (if it exists).
If ω is smooth, the weak differential equals the exterior differential.

Proof. The first claim follows from the Fundamental Lemma of the calculus of variations. For
the second, notice that by Stokes’ theorem and Leibniz rule

∀η ∈ Ωm−k−1
c (M) : 0 =

∫
∂M

ω ∧ η =

∫
M
d(ω ∧ η) =

∫
M
dω ∧ η + (−1)k

∫
M
ω ∧ dη.
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2.7 Definition (exterior Sobolev spaces). Employing the notation

‖ω‖p
Wk
p (M)

:= ‖ω‖p
Lkp(M)

+ ‖dω‖p
Lk+1
p (M)

, ‖ω‖Wk
∞(M) := max{‖ω‖Lk∞(M), ‖ω‖Lk+1

∞ (M)},

we define the (exterior) Sobolev spaces

W k
p (M) := {ω ∈W k

p,loc(M) | ‖ω‖Wk
p (M) <∞}.

2.8 Lemma (completeness of exterior Sobolev spaces). For every 1 ≤ p ≤ ∞ and every
0 ≤ k ≤ m the map d : W k

p (M) → W k+1
p (M) is a bounded linear operator between Banach

spaces.

2.9 Theorem (Hölder Inequality and Leibniz rule). Let 1 ≤ p, q ≤ ∞, ω ∈ Lkp(M),
η ∈ Llq(M) and 1

r = 1
p + 1

q .

(i) ω ∧ η ∈ Lk+lr (M),
(ii) ‖ω ∧ η‖Lr(M) ≤ ‖ω‖Lr(M)‖η‖Lr(M),
(iii) if ω ∈W k

p (M), η ∈W l
q(M), then ω ∧ η ∈W k+l

r (M) and

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

2.10 Definition (Lp-cohomology). The cohomology of the exterior Sobolev spaces called the
Lp-complex of M . Its cohomology groups

Hk
p (M) :=

Zkp (M)

Bk
p (M)

:=
ker
(
dk : W k

p (M)→W k+1
p (M)

)
im
(
dk : W k−1

p (M)→W k
p (M)

) = Hk((Wp(M), d))

are called Lp-cohomology of M . This is a Z-indexed system of vector spaces endowed with the
ordinary quotient semi-norm ‖_‖Hk

p
induced by ‖_‖Wk

p
. The spaces

H̄k
p (M) :=

Zkp (M)

Bk
p (M)

∼=
Hk
p (M)

{x ∈ Hk
p (M) | ‖x‖Hk

p
= 0}

are called reduced Lp-cohomology of M . The space

T kp (M) :=
Bk
p (M)

Bk
p (M)

is the Torsion of M .

2.11 Example (L1-cohomology of the half-line). The following example illustrates that Lp-
cohomology can be very different from the classical de Rham cohomology. For simplicity let p = 1,
define M :=]1,∞[⊂ R and remember that

t 7→ t−s ∈ L0
1(M)⇔ s > 1.

Similiarly, for an antiderivative of this function, we obtain

t 7→ 1

−s+ 1
t−(s−1) ∈ L0

1(M)⇔ s > 2.
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(i) Define

f : M → R, f(t) := t−2, ω := f dt ∈ L1
1(M).

Since dimM = 1, dω = 0, thus ω is closed and ω ∈ W 1
1 (M). An antiderivative is easily

seen to be F : M → R, t 7→ −t−1. So in the classical de Rham cohomology we would
conclude that ω = dF is exact. Since every smooth function on M has an antiderivative,
we obtain H1

dR(M) = 0. The crucial observation here is that

∀c ∈ R : F + c /∈ L0
1(M),

i.e. no antiderivative of ω is integrable. Thus 0 6= [ω] ∈ H1
1 (M).

(ii) The sequence

gn := t−(2+
1
n
) ∈W 1

1 (M), Gn :=
−1

1 + 1
n

t−(1+
1
n
) ∈ L0

1(M), ωn := gndt = dGn ∈W 1
1 (M)

satisfies

∀n ∈ N : 0 = [ωn] ∈ H1
1 (M), ωn

W 1
1 (M)

// ω , [ω] 6= 0 ∈ H1
1 (M).

So this is an example of a non-exact W1-form ω, which is a W 1
1 -limit of exact forms ωn. In

particular d : W 0
1 (M)→W 1

1 (M) is not a closed operator.
(iii) It is also remarkable that M =]1,∞[ is homotopy equivalent to the one point space {∗}.

Clearly H1
1 ({∗}) = 0, so Lp-cohomology is not homotopy invariant (and therefore does

not satisfy the Eilenberg-Steenrod axioms of a (co-)homology theory). One can show that
H1

1 (M) is not even finitely generated. For each 0 < ε < 1 the form ωε := t−(1+ε)dt ∈
W 1

1 (M) is L1-closed, but not exact, since its antiderivative Fε := −1
ε t
−ε /∈ L0

1(M).

2.2 Simplicial Lp-cohomology

We assume the audience to be familiar with the basic notions about simplices and simplicial
complexes. Therefore we will briefly recall some selected definitions of particular importance.

2.12 Definition (star-bounded). Let K be a simplicial complex and S ⊂ K be an arbitrary
subset. The star of S in K is the set

st(S) := stK(S) := {σ ∈ K | ∃τ ∈ S : τ ≤ σ}.

A simplicial complex K is star-bounded N , if the stars of all the simplices in K contain no more
than N simplices, i.e.

∃N ∈ N : ∀σ ∈ K : ] stK(σ) ≤ N.

2.13 Definition (simplicial homology). Let K be a simplicial complex. Define

Ck(K) := R〈{oriented k-simplices [σ] = [x0, . . . , xk]}〉/∼,

where [σ] ∼ −[σ]−1. In other words: We take all the topological simplices in K, choose both
possible orientations, take all these oriented simplices, form the free module and then identify.
The module Ck(K) is the k-th simplicial chain group of K.
The map d : Ck(K)→ Ck−1(K) is defined as the linear extension of

[σ] = [xi0 , . . . , xik ] 7→
k∑
ν=0

(−1)ν [xi0 , . . . , x̂iν , . . . , xik ].
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These groups and maps assemble to a chain complex of R-modules (C∗, d∗). The homology
groups

H∗(K) := H∗(C∗(K))

are the simplicial homology groups.

2.14 Definition (simplicial cohomology). Let K be a simplicial complex. We call

(Ck(K), dk) := (HomR(Ck(K),R),HomR(dk,R))

the simplicial cochains of K. The cohomology groups

H∗(K) := H∗(C∗(K))

are the simplicial cohomology groups.

2.15 Definition (simplicial Lp-cohomology). Let K be a simplicial complex. We call

∀1 ≤ p <∞ : Ckp (K) :=

{
c ∈ Ck(K)

∣∣∣ ‖c‖Ckp (K) :=
( ∑
σ∈K(k)

|c([σ])|p
) 1
p
<∞

}
,

Ck∞(K) :=
(
c ∈ Ck(K) | ‖c‖Ck∞(K) := sup

σ∈K(k)

|c([σ])| <∞
)
,

the k-th simplicial Lp-cochain group of K. Let K be a star-bounded simplicial complex. Then
we call

H∗p(K) := H∗(C∗p(K), d∗)

the simplicial Lp-cohomology of K. We denote its closed and exact forms by Zp(K) respectively
Bp(K). The norm on Ckp (K) induces a semi-norm on Hkp(K). We call

H̄∗p(K) :=
H∗p(K){

x ∈ H∗p (K)
∣∣ ‖x‖H∗p (K) = 0

}
the reduced simplicial Lp-cohomology.

2.3 S-Forms

2.16 Definition (S-form). Let K be a star-bounded simplicial complex. For any two simplices
τ, σ ∈ K, τ ≤ σ consider the inclusion map jτ,σ : τ ↪→ σ. A collection of forms

θ := {θ(σ) ∈W k
∞(σ) | σ ∈ K}

such that

∀τ ≤ σ ∈ K : j∗τ,σ(θ(σ)) = θ(τ),

is a simplicial differential form of degree k or just an ”S-form”. The space of all these S-forms of
degree k on K is denoted by Sk(K). For any S-form θ := {θ(σ)}σ∈K of degree k, the collection
dθ := {dθ(σ)}σ∈K is an S-form of degree k+1. Thus the S-forms assemble to a cochain complex
(S∗(K), d∗), the cochain complex of S-forms on K.
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2.17 Definition (Lp-cohomology of S-forms). Define

∀1 ≤ p <∞ : Skp (K) := {θ ∈ Skp (K) | ‖θ‖p
Skp (K)

:=
∑
σ∈K
‖θ(σ)‖p

Wk
∞(σ)

<∞}

Sk∞(K) := {θ ∈ Skp (K) | ‖θ‖Sk∞(K) := sup
σ∈K
‖θ(σ)‖Wk

∞(σ) <∞}.

The spaces
H k
p (K) := Hk(Sp(K), d)

are called Lp-cohomology of S-forms on K. The corresponding closed and exact forms are denoted
by Zp(K) and Bp(K).

2.18 Lemma. For every 1 ≤ p ≤ ∞ the S∗p(K) assemble to a cochain complex of Banach
spaces.

2.19 Definition (simplicial Riemannian Metric). Let K be a simplicial complex. For any
σ ∈ K we think of σ as a smooth manifold with corners. A system of Riemannian metrics

g = {g(σ) ∈ T 2(σ) | σ ∈ K}

is a simplicial Riemannian metric or just an ”S-metric”, if whenever τ ≤ σ and jτ,σ : τ ↪→ σ is
the inclusion, then j∗τ,σg(σ) = g(τ).

2.20 Lemma (canonical S-metric). There exists a canonical S-metric gS on K such that
every k-simplex σ ∈ K is isometric to the standard simplex ∆k. From now on, we will assume
that K is endowed with this S-metric.

3 Isomorphism Theorem (Main Result)

3.1 Definition (GKS condition). A smooth triangulation h : |K| →M satisfies the Gol’dshtein-
Kuz’minov-Shvedov condition (or just ”is GKS ”), if
(i) The simplicial complex K is star-bounded with star-bound N .
(ii) There are constants C1, C2 > 0 such that for every simplex σ ∈ K the push-forward of the

map h : |σ| →M , seen as a smooth map between manifolds with corners, satisfies

sup
x∈σ
‖h∗|x‖ ≤ C1. sup

x∈σ
‖h−1∗ |h(x)‖ ≤ C2.

Here ‖_‖ denotes the operator norm, which is induced by the Riemannian metric on M
and the S-metric on K (c.f. 2.20).

A Riemannian manifold M is GKS if there exists a triangulation h : |K| →M that is GKS.

Now let us rephrase the Main Theorem from 1.1:

3.2 Main Theorem. Assume that
(i) (M, g) is a smooth oriented Riemannian m-manifold without boundary,
(ii) K is a star-bounded (c.f. 2.12) simplicial complex with S-metric gS (c.f. 2.20),
(iii) h : |K| →M is a smooth triangulation that is GKS (c.f. 3.1).
Then there exists a commutative diagram of isomorphisms

Hp(M)

Hp(K)

99

//Hp(K).

ee

Therefore all Lp-cohomolgies of M are mutually isomorphic.
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4 Applications and Recent Developments

We give a short overview of more recent results concerning Lp-spaces and Lp-cohomology on
manifolds.

4.1 Theorem (Kopylov, 2009, [3, Theorem 3.3, 3.4]). Suppose that 1 ≤ p, q <∞, 1
q −

1
p <

1
n+1 and let M := Mf be a surface of revolution as above.

(i) If f is unbounded, then T jp,q(M) 6= 0 for any 1 ≤ j ≤ n+ 1.
(ii) If T jp,q(M) = 0 for any 1 ≤ j ≤ n+ 1, then

lim
x→∞

f(x) = 0 and vol(M) <∞.

In particular f is bounded.

4.2 Definition (Hodge Laplacian). Let (M, g) be a complete Riemannian manifold with ex-
terior differential d. Denote by d∗ the formal L2-adjoint of d. The operator

∆ := d ◦ d∗ + d∗ ◦ d

is called Hodge Laplacian. In case L2-norms are taken with respect to some weight function
σ = e−φ, we denote the corresponding operator by ∆φ. Denote by

Hk,p(M,σ) := ker ∆ ∩ Lkp(M,σ),

where Lkp(M,σ) is the Lp-space with weight function σ : M → R.

4.3 Theorem (Hodge decomposition, Kodaira, 1949, [2]). The L2-space over M admits
the following orthogonal direct sum decomposition

Lk2(M) = Hk,2(M)⊕ dΩk
c (M)⊕ d∗Ωk

c (M).

4.4 Theorem (Hodge decomposition, non-compact case, Li, 2009, [4, Theorem 2.1]).
Let (M, g) be a complete Riemannian manifold, φ ∈ C2(M), σ := e−φ, p > 1, q := p

p−1 . Suppose

that the Riesz transforms d(∆k
φ)−

1
2 , d∗(∆k

φ)−
1
2 are bounded in Lp and Lq and the Riesz potential

(∆k
φ)−

1
2 is bounded in Lp. Then the Strong Lp-Hodge direct sum decomposition holds:

Lkp(M,σ) = Hk,p(M,σ)⊕ dWk−1
p (M,σ)⊕ d∗φWk+1

p (M,σ)

(Warning: The definition of Wk
p (M,σ) is slightly different than W k

p (M).)

4.5 Theorem (analytic Poincaré duality). Let M be a smooth compact oriented manifold
of dimension m. The bilinear pairing β : Hk

dR(M)×Hm−k
dR (M) :→ R,

([ω], [η]) 7→
∫
M
ω ∧ η

is well-defined and regular. The map Ψ : Hk
dR(M) → (Hm−k

dR )∗, [ω] 7→ ([η] 7→ β([ω], [η]), is an
isomorphism.

4.6 Theorem (Poincaré duality, Pansu, 2008, [5, Lemma 13]). Let M be a complete
oriented Riemannian manifold of dimension m. Let p > 1 and let q be Hölder conjugate to p.
Let ω ∈ Lkp(M). Then the following hold:
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(i) 0 6= [ω] ∈ H̄k
p (M) if and only if there exists η ∈ Lm−kq (M) such that∫

M
ω ∧ η 6= 0.

(ii) 0 6= [ω] ∈ Hk
p (M) if and only if there exists a sequence ηj ∈ Lm−kq (M) such that∫

M
ω ∧ ηj ≥ 1 and ‖dηj‖Lq(M) → 0.

(iii) As a consequence, we obtain

H̄k
p (M) = 0⇐⇒ H̄m−k

q (M) = 0, T kp (M) = 0⇐⇒ Tm−kq (M) = 0.

4.7 Definition (Hölder pairing). Assume 1 ≤ p, q ≤ ∞ are Hölder conjugate. The pairing
β : Lm−kq (M)× Lkp(M)→ R,

(ω, η) 7→
∫
M
ω ∧ η

is called the Hölder pairing of M .

4.8 Theorem (Hölder duality for Lp(M)). For any Hölder conjugate 1 ≤ p, q < ∞ and
0 ≤ k ≤ m, the Hölder pairing β : Lm−kq (M) × Lkp(M) → R is regular and the map Ψ :

Lm−kq (M)→ Lkp(M)∗, ω 7→ (η 7→ β(ω, η)), is an isomorphism.
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