# The de Rham Isomorphism and the $L_p$ -Cohomology of non-compact Riemannian Manifolds

Nikolai Nowaczyk <http://math.nikno.de/>

04.04.2011

The complete thesis is available for download under the URL given above.

# 1 Overview and Main Result

**Global Setup:** Let M be a smooth oriented Riemannian m- manifold without boundary. Let K be a simplicial complex in some  $\mathbb{R}^n$  with star-bound N (c.f. 2.12). Let  $h : |K| \to M$  be a smooth triangulation of M, and  $1 \le p \le \infty$ . In the following graph we will add a node for every cohomology theory of interest and an edge, if under certain reasonable assumptions there exists an isomorphism between them.



**1.1 Main Theorem.** If  $h : |K| \to M$  is GKS (c.f. 3.1), then there exists a commutative diagram of isomorphisms



Therefore all  $L_p$ -cohomolgies of M are mutually isomorphic.

# 2 Definition of $L_p$ -spaces

### 2.1 Differential Forms

**2.1 Convention (exterior direct sums).** We will frequently define  $\mathbb{Z}$ -indexed systems of vector spaces  $(V^k)_{k \in \mathbb{Z}}$ . In that case, the space V is understood to be

$$V := \bigoplus_{k \in \mathbb{Z}} V^k.$$

## **2.2 Definition** ( $L_p$ -spaces). Let

$$L^k(M) := \{\omega : M \to \Lambda^k TM \mid \omega \text{ is a measurable section}\} / \sim,$$

where  $\omega \sim \omega'$  if and only if  $\omega$  equals  $\omega'$  outside a set of measure zero. For any  $1 \leq p < \infty$ , define

$$L_{p}^{k}(M) := \{ \omega \in L^{k}(M) \mid \|\omega\|_{L_{p}^{k}(M)}^{p} := \int_{M} |\omega|^{p} d_{g}V < \infty \}$$

the *p*-integrable forms. In case  $p = \infty$  the norm is replaced by

$$\|\omega\|_{L^k_{\infty}(M)} := \operatorname{ess\,sup}_{x \in M} |\omega(x)|.$$

Sometimes it is nice to have the following local version of  $L_p$ -spaces:

$$L^k_{p,\text{loc}}(M) := \{ \omega \in L^k(M) \mid \forall K \subset M \text{ compact } : \omega \in L^k_p(K) \}.$$

The modulus  $|\omega|$  of a differential form is defined below.

**2.3 Definition (modulus).** For any Riemannian metric g on M there exists exactly one fibre metric  $\tilde{g}$  on  $\Lambda^k TM$  such that for any g-ONB  $B = (b_1, \ldots, b_k)$  of any  $T_pM$  the set

$$\Lambda^k B := \{ b_{i_1} \land \ldots \land b_{i_k} \mid 0 \le i_1 < \ldots < i_k \le m \}$$

is a  $\tilde{g}$ -ONB for  $\Lambda^k T_p M$ . Denote by  $|\_|$  the norm generated by  $\tilde{g}$ . Then  $|\omega| : M \to \mathbb{R}$  is the *modulus* of  $\omega$ .

**2.4 Theorem (completeness of**  $L_p$ -spaces). For every  $1 \le p \le \infty$  and every  $0 \le k \le m$  the space  $L_p^k(M)$  is a Banach space.

**2.5 Definition (weak differential).** Let  $\omega \in L^k_{p,\text{loc}}(M)$  and  $\omega' \in L^{k+1}_{p,\text{loc}}(M)$ . Then  $\omega'$  is a *weak differential* of  $\omega$  if

$$\forall \eta \in \Omega^{m-k-1}_c(M) : \int_M \omega' \wedge \eta = (-1)^{k+1} \int_M \omega \wedge d\eta$$

In that case we denote  $d\omega := \omega'$ . The space of all those forms is denoted by  $W_{p,\text{loc}}^k(M)$ .

**2.6 Lemma.** The weak differential of a form  $\omega \in L^k_{p,\text{loc}}(M)$  is uniquely determined (if it exists). If  $\omega$  is smooth, the weak differential equals the exterior differential.

**Proof.** The first claim follows from the Fundamental Lemma of the calculus of variations. For the second, notice that by Stokes' theorem and Leibniz rule

$$\forall \eta \in \Omega_c^{m-k-1}(M) : 0 = \int_{\partial M} \omega \wedge \eta = \int_M d(\omega \wedge \eta) = \int_M d\omega \wedge \eta + (-1)^k \int_M \omega \wedge d\eta.$$

#### 2.7 Definition (exterior Sobolev spaces). Employing the notation

$$\|\omega\|_{W_p^k(M)}^p := \|\omega\|_{L_p^k(M)}^p + \|d\omega\|_{L_p^{k+1}(M)}^p, \qquad \|\omega\|_{W_\infty^k(M)} := \max\{\|\omega\|_{L_\infty^k(M)}, \|\omega\|_{L_\infty^{k+1}(M)}\},$$

we define the *(exterior)* Sobolev spaces

$$W_{p}^{k}(M) := \{ \omega \in W_{p,\text{loc}}^{k}(M) \mid \|\omega\|_{W_{p}^{k}(M)} < \infty \}.$$

**2.8 Lemma (completeness of exterior Sobolev spaces).** For every  $1 \le p \le \infty$  and every  $0 \le k \le m$  the map  $d: W_p^k(M) \to W_p^{k+1}(M)$  is a bounded linear operator between Banach spaces.

**2.9 Theorem (Hölder Inequality and Leibniz rule).** Let  $1 \le p, q \le \infty$ ,  $\omega \in L_p^k(M)$ ,  $\eta \in L_q^l(M)$  and  $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ .

- (i)  $\omega \wedge \eta \in L^{k+l}_r(M)$ ,
- (ii)  $\|\omega \wedge \eta\|_{L_r(M)} \le \|\omega\|_{L_r(M)} \|\eta\|_{L_r(M)}$ ,
- (iii) if  $\omega \in W_p^k(M)$ ,  $\eta \in W_q^l(M)$ , then  $\omega \wedge \eta \in W_r^{k+l}(M)$  and

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta.$$

**2.10 Definition** ( $L_p$ -cohomology). The cohomology of the exterior Sobolev spaces called the  $L_p$ -complex of M. Its cohomology groups

$$H_p^k(M) := \frac{Z_p^k(M)}{B_p^k(M)} := \frac{\ker\left(d^k : W_p^k(M) \to W_p^{k+1}(M)\right)}{\operatorname{im}\left(d^k : W_p^{k-1}(M) \to W_p^k(M)\right)} = H^k((W_p(M), d))$$

are called  $L_p$ -cohomology of M. This is a  $\mathbb{Z}$ -indexed system of vector spaces endowed with the ordinary quotient semi-norm  $\|_{-}\|_{H_n^k}$  induced by  $\|_{-}\|_{W_n^k}$ . The spaces

$$\bar{H}_{p}^{k}(M) := \frac{Z_{p}^{k}(M)}{\overline{B_{p}^{k}(M)}} \cong \frac{H_{p}^{k}(M)}{\{x \in H_{p}^{k}(M) \mid \|x\|_{H_{p}^{k}} = 0\}}$$

are called *reduced*  $L_p$ -cohomology of M. The space

$$T_p^k(M) := \frac{\overline{B_p^k(M)}}{\overline{B_p^k(M)}}$$

is the Torsion of M.

**2.11 Example** ( $L_1$ -cohomology of the half-line). The following example illustrates that  $L_p$ cohomology can be very different from the classical de Rham cohomology. For simplicity let p = 1,
define  $M := ]1, \infty [\subset \mathbb{R}$  and remember that

$$t \mapsto t^{-s} \in L^0_1(M) \Leftrightarrow s > 1.$$

Similarly, for an antiderivative of this function, we obtain

$$t \mapsto \frac{1}{-s+1} t^{-(s-1)} \in L_1^0(M) \Leftrightarrow s > 2.$$

(i) Define

$$f: M \to \mathbb{R}, f(t) := t^{-2}, \omega := f \, dt \in L^1_1(M).$$

Since dim M = 1,  $d\omega = 0$ , thus  $\omega$  is closed and  $\omega \in W_1^1(M)$ . An antiderivative is easily seen to be  $F : M \to \mathbb{R}$ ,  $t \mapsto -t^{-1}$ . So in the classical de Rham cohomology we would conclude that  $\omega = dF$  is exact. Since every smooth function on M has an antiderivative, we obtain  $H^1_{dR}(M) = 0$ . The crucial observation here is that

$$\forall c \in \mathbb{R} : F + c \notin L_1^0(M),$$

i.e. no antiderivative of  $\omega$  is integrable. Thus  $0 \neq [\omega] \in H^1_1(M)$ .

(ii) The sequence

$$g_n := t^{-(2+\frac{1}{n})} \in W_1^1(M), \quad G_n := \frac{-1}{1+\frac{1}{n}} t^{-(1+\frac{1}{n})} \in L_1^0(M), \quad \omega_n := g_n dt = dG_n \in W_1^1(M)$$

satisfies

$$\forall n \in \mathbb{N} : 0 = [\omega_n] \in H^1_1(M), \qquad \omega_n \underset{W_1^1(M)}{\longrightarrow} \omega, \qquad [\omega] \neq 0 \in H^1_1(M)$$

So this is an example of a non-exact  $W_1$ -form  $\omega$ , which is a  $W_1^1$ -limit of exact forms  $\omega_n$ . In particular  $d: W_1^0(M) \to W_1^1(M)$  is not a closed operator.

(iii) It is also remarkable that  $M = ]1, \infty[$  is homotopy equivalent to the one point space  $\{*\}$ . Clearly  $H_1^1(\{*\}) = 0$ , so  $L_p$ -cohomology is not homotopy invariant (and therefore does not satisfy the Eilenberg-Steenrod axioms of a (co-)homology theory). One can show that  $H_1^1(M)$  is not even finitely generated. For each  $0 < \varepsilon < 1$  the form  $\omega_{\varepsilon} := t^{-(1+\varepsilon)}dt \in$  $W_1^1(M)$  is  $L_1$ -closed, but not exact, since its antiderivative  $F_{\varepsilon} := -\frac{1}{\varepsilon}t^{-\varepsilon} \notin L_1^0(M)$ .

#### 2.2 Simplicial L<sub>p</sub>-cohomology

We assume the audience to be familiar with the basic notions about simplices and simplicial complexes. Therefore we will briefly recall some selected definitions of particular importance.

**2.12 Definition (star-bounded).** Let K be a simplicial complex and  $S \subset K$  be an arbitrary subset. The *star* of S in K is the set

$$\operatorname{st}(S) := \operatorname{st}_K(S) := \{ \sigma \in K \mid \exists \tau \in S : \tau \le \sigma \}.$$

A simplicial complex K is *star-bounded* N, if the stars of all the simplices in K contain no more than N simplices, i.e.

$$\exists N \in \mathbb{N} : \forall \sigma \in K : \sharp \operatorname{st}_K(\sigma) \le N.$$

#### **2.13 Definition (simplicial homology).** Let K be a simplicial complex. Define

$$C_k(K) := \mathbb{R} \langle \{ \text{oriented } k \text{-simplices } [\sigma] = [x_0, \dots, x_k] \} \rangle / \sim,$$

where  $[\sigma] \sim -[\sigma]^{-1}$ . In other words: We take all the topological simplices in K, choose both possible orientations, take all these oriented simplices, form the free module and then identify. The module  $C_k(K)$  is the *k*-th simplicial chain group of K.

The map  $d: C_k(K) \to C_{k-1}(K)$  is defined as the linear extension of

$$[\sigma] = [x_{i_0}, \dots, x_{i_k}] \mapsto \sum_{\nu=0}^k (-1)^{\nu} [x_{i_0}, \dots, \hat{x}_{i_{\nu}}, \dots, x_{i_k}].$$

These groups and maps assemble to a chain complex of R-modules  $(C_*, d_*)$ . The homology groups

$$H_*(K) := H_*(C_*(K))$$

are the simplicial homology groups.

#### **2.14 Definition (simplicial cohomology).** Let K be a simplicial complex. We call

$$(C^k(K), d^k) := (\operatorname{Hom}_{\mathbb{R}}(C_k(K), \mathbb{R}), \operatorname{Hom}_{\mathbb{R}}(d_k, \mathbb{R}))$$

the simplicial cochains of K. The cohomology groups

$$H^*(K) := H^*(C^*(K))$$

are the simplicial cohomology groups.

**2.15 Definition (simplicial**  $L_p$ -cohomology). Let K be a simplicial complex. We call

$$\begin{aligned} \forall 1 \le p < \infty : \ C_p^k(K) &:= \left\{ c \in C^k(K) \ \Big| \ \|c\|_{C_p^k(K)} := \Big(\sum_{\sigma \in K^{(k)}} |c([\sigma])|^p \Big)^{\frac{1}{p}} < \infty \right\}, \\ C_\infty^k(K) &:= \Big( c \in C^k(K) \ | \ \|c\|_{C_\infty^k(K)} := \sup_{\sigma \in K^{(k)}} |c([\sigma])| < \infty \Big), \end{aligned}$$

the k-th simplicial  $L_p$ -cochain group of K. Let K be a star-bounded simplicial complex. Then we call

$$\mathcal{H}_p^*(K) := H^*(C_p^*(K), d^*)$$

the simplicial  $L_p$ -cohomology of K. We denote its closed and exact forms by  $\mathcal{Z}_p(K)$  respectively  $\mathcal{B}_p(K)$ . The norm on  $C_p^k(K)$  induces a semi-norm on  $\mathcal{H}_p^k(K)$ . We call

$$\bar{\mathcal{H}}_{p}^{*}(K) := \frac{\mathcal{H}_{p}^{*}(K)}{\left\{x \in H_{p}^{*}(K) \mid \|x\|_{H_{p}^{*}(K)} = 0\right\}}$$

the reduced simplicial  $L_p$ -cohomology.

## 2.3 S-Forms

**2.16 Definition** (S-form). Let K be a star-bounded simplicial complex. For any two simplices  $\tau, \sigma \in K, \tau \leq \sigma$  consider the inclusion map  $j_{\tau,\sigma} : \tau \hookrightarrow \sigma$ . A collection of forms

$$\theta := \{\theta(\sigma) \in W^k_{\infty}(\sigma) \mid \sigma \in K\}$$

such that

$$\forall \tau \le \sigma \in K : j^*_{\tau,\sigma}(\theta(\sigma)) = \theta(\tau),$$

is a simplicial differential form of degree k or just an "S-form". The space of all these S-forms of degree k on K is denoted by  $S^k(K)$ . For any S-form  $\theta := \{\theta(\sigma)\}_{\sigma \in K}$  of degree k, the collection  $d\theta := \{d\theta(\sigma)\}_{\sigma \in K}$  is an S-form of degree k+1. Thus the S-forms assemble to a cochain complex  $(S^*(K), d^*)$ , the cochain complex of S-forms on K.

**2.17 Definition** ( $L_p$ -cohomology of S-forms). Define

$$\forall 1 \le p < \infty : S_p^k(K) := \{ \theta \in S_p^k(K) \mid \|\theta\|_{S_p^k(K)}^p := \sum_{\sigma \in K} \|\theta(\sigma)\|_{W_{\infty}^k(\sigma)}^p < \infty \}$$
$$S_{\infty}^k(K) := \{ \theta \in S_p^k(K) \mid \|\theta\|_{S_{\infty}^k(K)} := \sup_{\sigma \in K} \|\theta(\sigma)\|_{W_{\infty}^k(\sigma)} < \infty \}$$

The spaces

$$\mathscr{H}_p^k(K) := H^k(S_p(K), d)$$

are called  $L_p$ -cohomology of S-forms on K. The corresponding closed and exact forms are denoted by  $\mathscr{Z}_p(K)$  and  $\mathscr{B}_p(K)$ .

**2.18 Lemma.** For every  $1 \le p \le \infty$  the  $S_p^*(K)$  assemble to a cochain complex of Banach spaces.

**2.19 Definition (simplicial Riemannian Metric).** Let K be a simplicial complex. For any  $\sigma \in K$  we think of  $\sigma$  as a smooth manifold with corners. A system of Riemannian metrics

$$g = \{g(\sigma) \in \mathcal{T}^2(\sigma) \mid \sigma \in K\}$$

is a simplicial Riemannian metric or just an "S-metric", if whenever  $\tau \leq \sigma$  and  $j_{\tau,\sigma} : \tau \hookrightarrow \sigma$  is the inclusion, then  $j^*_{\tau,\sigma}g(\sigma) = g(\tau)$ .

**2.20 Lemma (canonical S-metric).** There exists a canonical S-metric  $g_S$  on K such that every k-simplex  $\sigma \in K$  is isometric to the standard simplex  $\Delta_k$ . From now on, we will assume that K is endowed with this S-metric.

## 3 Isomorphism Theorem (Main Result)

**3.1 Definition (GKS condition).** A smooth triangulation  $h : |K| \to M$  satisfies the Gol'dshtein-Kuz'minov-Shvedov condition (or just "is GKS"), if

- (i) The simplicial complex K is star-bounded with star-bound N.
- (ii) There are constants  $C_1, C_2 > 0$  such that for every simplex  $\sigma \in K$  the push-forward of the map  $h: |\sigma| \to M$ , seen as a smooth map between manifolds with corners, satisfies

$$\sup_{x \in \sigma} \|h_*|_x\| \le C_1. \qquad \qquad \sup_{x \in \sigma} \|h_*^{-1}|_{h(x)}\| \le C_2.$$

Here  $\|\_\|$  denotes the operator norm, which is induced by the Riemannian metric on M and the S-metric on K (c.f. 2.20).

A Riemannian manifold M is GKS if there exists a triangulation  $h: |K| \to M$  that is GKS.

Now let us rephrase the Main Theorem from 1.1:

**3.2 Main Theorem.** Assume that

- (i) (M, g) is a smooth oriented Riemannian *m*-manifold without boundary,
- (ii) K is a star-bounded (c.f. 2.12) simplicial complex with S-metric  $g_S$  (c.f. 2.20),
- (iii)  $h: |K| \to M$  is a smooth triangulation that is GKS (c.f. 3.1).

Then there exists a commutative diagram of isomorphisms



Therefore all  $L_p$ -cohomolgies of M are mutually isomorphic.

## 4 Applications and Recent Developments

We give a short overview of more recent results concerning  $L_p$ -spaces and  $L_p$ -cohomology on manifolds.

**4.1 Theorem (Kopylov, 2009, [3, Theorem 3.3, 3.4]).** Suppose that  $1 \le p, q < \infty$ ,  $\frac{1}{q} - \frac{1}{p} < \frac{1}{n+1}$  and let  $M := M_f$  be a surface of revolution as above.

- (i) If f is unbounded, then  $T_{p,q}^{j}(M) \neq 0$  for any  $1 \leq j \leq n+1$ .
- (ii) If  $T_{p,q}^{j}(M) = 0$  for any  $1 \le j \le n+1$ , then

$$\lim_{x \to \infty} f(x) = 0 \qquad \text{and} \qquad \operatorname{vol}(M) < \infty.$$

In particular f is bounded.

**4.2 Definition (Hodge Laplacian).** Let (M, g) be a complete Riemannian manifold with exterior differential d. Denote by  $d^*$  the formal  $L^2$ -adjoint of d. The operator

$$\Delta:=d\circ d^*+d^*\circ d$$

is called *Hodge Laplacian*. In case  $L_2$ -norms are taken with respect to some weight function  $\sigma = e^{-\phi}$ , we denote the corresponding operator by  $\Delta_{\phi}$ . Denote by

$$H_{k,p}(M,\sigma) := \ker \Delta \cap L_p^k(M,\sigma),$$

where  $L_p^k(M, \sigma)$  is the  $L_p$ -space with weight function  $\sigma : M \to \mathbb{R}$ .

4.3 Theorem (Hodge decomposition, Kodaira, 1949, [2]). The  $L_2$ -space over M admits the following orthogonal direct sum decomposition

$$L_2^k(M) = H_{k,2}(M) \oplus \overline{d\Omega_c^k(M)} \oplus \overline{d^*\Omega_c^k(M)}.$$

4.4 Theorem (Hodge decomposition, non-compact case, Li, 2009, [4, Theorem 2.1]). Let (M, g) be a complete Riemannian manifold,  $\phi \in C^2(M)$ ,  $\sigma := e^{-\phi}$ , p > 1,  $q := \frac{p}{p-1}$ . Suppose that the *Riesz transforms*  $d(\Delta_{\phi}^k)^{-\frac{1}{2}}$ ,  $d^*(\Delta_{\phi}^k)^{-\frac{1}{2}}$  are bounded in  $L_p$  and  $L_q$  and the *Riesz potential*  $(\Delta_{\phi}^k)^{-\frac{1}{2}}$  is bounded in  $L_p$ . Then the Strong  $L^p$ -Hodge direct sum decomposition holds:

$$L_p^k(M,\sigma) = H_{k,p}(M,\sigma) \oplus d\mathcal{W}_p^{k-1}(M,\sigma) \oplus d_{\phi}^*\mathcal{W}_p^{k+1}(M,\sigma)$$

(Warning: The definition of  $\mathcal{W}_p^k(M,\sigma)$  is slightly different than  $W_p^k(M)$ .)

**4.5 Theorem (analytic Poincaré duality).** Let M be a smooth compact oriented manifold of dimension m. The bilinear pairing  $\beta : H^k_{dR}(M) \times H^{m-k}_{dR}(M) :\to \mathbb{R}$ ,

$$([\omega],[\eta])\mapsto \int_M\omega\wedge\eta$$

is well-defined and regular. The map  $\Psi: H^k_{dR}(M) \to (H^{m-k}_{dR})^*, \ [\omega] \mapsto ([\eta] \mapsto \beta([\omega], [\eta]))$ , is an isomorphism.

**4.6 Theorem (Poincaré duality, Pansu, 2008, [5, Lemma 13]).** Let M be a complete oriented Riemannian manifold of dimension m. Let p > 1 and let q be Hölder conjugate to p. Let  $\omega \in L_p^k(M)$ . Then the following hold:

(i)  $0 \neq [\omega] \in \overline{H}_p^k(M)$  if and only if there exists  $\eta \in L_q^{m-k}(M)$  such that

$$\int_M \omega \wedge \eta \neq 0$$

(ii)  $0 \neq [\omega] \in H_p^k(M)$  if and only if there exists a sequence  $\eta_j \in L_q^{m-k}(M)$  such that

$$\int_{M} \omega \wedge \eta_j \ge 1 \qquad \text{and} \qquad \|d\eta_j\|_{L_q(M)} \to 0.$$

(iii) As a consequence, we obtain

$$\bar{H}_p^k(M) = 0 \iff \bar{H}_q^{m-k}(M) = 0, \qquad T_p^k(M) = 0 \iff T_q^{m-k}(M) = 0.$$

**4.7 Definition (Hölder pairing).** Assume  $1 \le p, q \le \infty$  are Hölder conjugate. The pairing  $\beta : L_q^{m-k}(M) \times L_p^k(M) \to \mathbb{R}$ ,

$$(\omega,\eta)\mapsto \int_M \omega\wedge\eta$$

is called the Hölder pairing of M.

**4.8 Theorem (Hölder duality for**  $L_p(M)$ ). For any Hölder conjugate  $1 \leq p, q < \infty$  and  $0 \leq k \leq m$ , the Hölder pairing  $\beta : L_q^{m-k}(M) \times L_p^k(M) \to \mathbb{R}$  is regular and the map  $\Psi : L_q^{m-k}(M) \to L_p^k(M)^*, \, \omega \mapsto (\eta \mapsto \beta(\omega, \eta))$ , is an isomorphism.

# References

- Gol'dshtein, Kuz'minov, Shvedov: De Rham Isomorphism of the L<sub>p</sub>-Cohomology of noncompact Riemannian Manifolds, Siberian Math. J. 29 (1988), no. 2, 190–197
- Kodaira: Harmonic fields in Riemannian manifolds (generalized potential theory), Ann. Math. 50 (1949) 587-665
- Kopylov, Yaroslav: L<sub>p,q</sub>-Cohomology of warped cylinders, Annales Mathématiques Vol. 16, n°2 (2009), p. 321-338
- [4] Li, Xiang-Dong: On the Strong L<sup>p</sup>-Hodge decomposition over complete Riemannian manifolds, J. Funct. Anal. 257 (2009), no. 11, 3617-3646
- [5] Pansu, Pierre: Cohomologie L<sup>p</sup> et pincement, Comment. Math. Helv. 83 (2), 2008, p.327-357