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Einleitung

Die vorliegende Arbeit behandelt die L,-Kohomologie nicht-kompakter Riemannscher Man-
nigfaltigkeiten. Wir wollen die drei verschiedenen Ansitze L,-Kohomologie zu definieren
ausfiihrlich behandeln und dann zeigen, dass alle drei isomorph sind. Bevor wir damit be-
ginnen, ist es hilfreich, sich zunéchst einen Uberblick iiber alle relevanten Kohomologiethe-
orien zu verschaffen. Es sei M eine glatte orientierte Riemannsche Mannigfaltigkeit ohne
Rand der Dimension m, K ein Simplizialkomplex in einem R™ (siehe 2.2.6), h : |K| — M
eine glatte Triangulierung und 1 < p < oco. Wir fiigen in den folgenden Graphen einen
Knoten fiir jede Kohomologietheorie ein und einen Pfeil zwischen zwei Knoten, falls es
(unter gewissen sinnvollen technischen Voraussetzungen) einen Isomorphismus zwischen
ihnen gibt.

Har(M) (6) Hy, (M)

de Rham complex W), complex

(1)

Hiing (M)

singular simplices

(2)

H(K) Hp(K)

simplicial cochains simplicial-p-cochains

(3) (4)

H(K) Hp(K)

S-forms L,-S-forms

Wir gehen davon aus, dass der Leser mit den klassischen Kohomologietheorien auf der
linken Seite vertraut ist, insbesondere mit der de Rham Kohomologie glatter Mannig-
faltigkeiten Hgqr(M) (siehe [16, 15]), der singuldren Kohomologie topologischer Réume
Hiing (M) (siehe [25, 5.4]) und der simplizialen Homologie ([15, 13]) und Kohomologie von
Simplizialkomplexen H (K') (siehe Definition 2.2.22). Die Kohomologie von S-Formen und
die L,-Kohomologietheorien auf der rechten Seite werden in Kapitel 2 eingefiihrt.

Pfeil (1) ist der klassische de Rham Isomorphismus, welche von de Rham im Jahre 1931
konstruiert wurde. Er ist Gegenstand des Satzes von de Rham, der entweder mit Methoden
der Garbentheorie (wie zum Beispiel in [29, 5]) oder mit etwas elementareren Methoden
(siche |16, 16]) bewiesen werden kann. Wir fiihren eine modifizierte Version des de Rham
Isomorphismus in Kapitel 3.1 ein, welche fiir Anwendungen auf die L,-Kohomologie beson-
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ders geeignet ist.

Pfeil (2) ist ein klassischer Satz der algebraischen Topologie. Ein Beweis findet sich zum
Beispiel in [15, 13].

Pfeil (3) ist Gegenstand eines sehr viel unbekannteren Satzes, welcher in [26] diskutiert
wird. Wir notieren den Pfeil hier nur aus Griinden der Vollstandigkeit.

Unser Hauptinteresse liegt auf Pfeilen (4) und (5). In Kapitel 2 werden wir alle nétigen
Begriffe behandeln, die notwendig sind, um die L,-Kohomologien H,(M), H,(K), 7,(K)
einzufiihren und bereits einige ihrer grundlegenden Eigenschaften studieren. Hauptziel ist
es zu zeigen, dass (unter einigen technischen Voraussetzungen) die Pfeile (4) und (5) ex-
istieren und Isomorphismen sind. Letztendlich erhalten wir das kommutative Diagramm

und der gestrichelte Pfeil liefert einen Isomorphismus, den man als Verallgemeinerung des
klassischen de Rham Isomorphismus fiir die L,-Kohomologie ansehen kann. Seine Existenz
ist das Hauptresultat dieser Arbeit, dessen Beweis folglich in zwei Schritten besteht, der
Existenz von Pfeil (4) und (5).

Um die Existenz des Isomorphismus (4) zu beweisen, werden wir eine Ko-Kettenabbildung
w einfithren, die Whitney- Transformation. Eine detaillierte Untersuchung dieser Abbildung
in Abschnitt 3.2 wird ergeben, dass eine Modifikation des klassischen de Rham Isomorphis-
mus ein Inverses zu (4) liefert. Die Details sind recht technisch, das Resultat ist Gegenstand
von Haupsatz 3.2.8:

Sei K ein sternbeschrankter Simplizialkomplex und L C K ein Unterkomplez.
Fiir jedes 1 < p < oo existieren wohldefinierte Ko-Kettenabbildungen

w: (K, L) = S5(K, L) : I,

die zueinander inverse topologische Isomorphismen in der Kohomologie in-
duzieren.

Um den Isomorphismus (5) herleiten zu kénnen, bendtigen wir Regularisierungsoperatoren
auf Mannigfaltigkeiten, die in Kapitel 5 detailliert behandelt werden. Einige Resultate
lassen sich besonders klar mit Hilfe von Strémen formulieren. Daher werden wir in Kapitel
4 zunichst eine kurze Einfiihrung in die Theorie der Strome geben. Die beiden Kapitel 4
und 5 sind als Vorbereitung gedacht. Ihr Inhalt ist mehr oder weniger unabhingig vom
Rest der Arbeit und die darin genannten Resultate sind auch fiir sich genommen niitzlich.
Wir werden die Regularisierungsoperatoren hauptséchlich anwenden, um Haupsatz 6.2.1 in
Kapitel 6 beweisen zu kénnen. Daraus folgt die Existenz von Pfeil (5) als Korollar 6.2.2:

Falls h : |K| — M die GKS-Bedingung (siehe Definition 6.1.2) erfillt, dann
induziert die Komposition

Sp(K) —— Sp(M)—— Wy(M)

einen topologischen Isomorphismus 76,(K) — H,(M).
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Pfeil (6) existiert im Allgemeinen nicht, d.h. es gibt keinen Isomorphismus zwischen den
Kohomologietheorien auf der linken und der rechten Seite des Diagramms (0.1). Falls wir
uns allerdings auf kompakte Mannigfaltigkeiten beschrénken, dann kénnen die in Kapitel
5 entwickelten Regularisierungsoperatoren auch verwendet werden, um zu zeigen, dass in
diesem Falle die L,-Kohomologie mit der klassischen de Rham Kohomologie iibereinstimmt
(siehe 6.1.13).

Die gesamte Arbeit orientiert sich im Wesentlichen am Artikel "De Rham isomorphism of
the L,-cohomology of noncompact Riemannian manifolds” von by Gol’shtein, Kuz'minov
und Shvedov, [5]. Obwohl dieser Artikel nur acht Seiten lang ist, skizziert er viele der
grundlegenden Ideen. Leider fehlen zum einen viele der Voraussetzungen, die nétig sind, um
die ganzen Begriffe und Sétze iiberhaupt formulieren zu kénnen, und zum anderen werden
viele technische Details ausgelassen. Es ist das Anliegen dieser Arbeit, eine moglichst
detaillierte und in sich abgeschlossene Behandlung des Themas zu liefern.

Danksagungen. Ich méchte meinen zahlreichen Unterstiitzern danken, ohne die diese Ar-
beit nicht zustande gekommen wére. Zunéchst einmal Professor Dr. Werner Ballmann,
meinem Diplomvater, der mich auf das Thema erst aufmerksam gemacht hat, sowie auch
seiner gesamten Arbeitsgruppe, insbesondere Dr. Jan Swoboda. Er stand mir wihrend
der ganzen Zeit kompetent zur Seite, beantwortete geduldig meine zahllosen Fragen und
inspirierte mich oft zu neuen Losungswegen, wenn ich mal irgendwo stecken geblieben war.
Danke auch an Professor Dr. Matthias Lesch fir die Zweitkorrektur dieser Arbeit. Ich
wurde wihrend meines ganzen Studiums hier in Bonn finanziell und ideell geférdert von
der Studienstiftung des deutschen Volkes. Sie hat mich insbesondere durch die Sommer-
akademien an entscheidender Stelle intellektuell und menschlich befliigelt. Schon mein
ganzes Leben lang gefordert werde ich von meinen Eltern. Ohne die Gewissheit, dass sie
hinter mir stehen, hitte ich das Mathematikstudium gar nicht erst beginnen kénnen. Last
but not least danke ich Jesko Hiittenhain fiir die tiefe Freundschaft, die sich zwischen uns
wahrend des gemeinsamen Studiums entwickelt hat.

Nikolai Nowaczyk,
Februar 2011



Preface 6

Preface

This thesis discusses the Lj,-cohomology of noncompact Riemannian manifolds, in partic-
ular the three different approaches to define it and establishes isomorphisms between all
of them. Before we start let us have an overview of all the various cohomology theories
involved. Let M be a smooth oriented Riemannian manifold without boundary of dimen-
sion m, K be a simplicial complex in some R" (see 2.2.6), h : |[K| — M be a smooth
triangulation and 1 < p < co. In the following graph we will add a node for every coho-
mology theory of interest and an edge, if under certain reasonable assumptions there exists
an isomorphism between them.

Har(M) (6) Hy(M)

de Rham complex W), complex

(1)

Hsing(M)

singular simplices

(2)

H(K) Hp(K)

simplicial cochains simplicial-p-cochains

(3) (4)

H(K) Hp(K)

S-forms L,-S-forms

We assume the reader to be familiar with the classical cohomology theories on the left
hand side, namely the de Rham cohomology of smooth manifolds Hqgr (M) (c.f. [16, 15]),
the singular cohomology of topological spaces Hging(M) (c.f. |25, 5.4]), and the simplicial
homolology (|15, 13|) and cohomology of simplicial complexes H(K) (c.f. Definition 2.2.22).
The cohomology of S-forms and the L,-cohomology theories on the right hand side will be
introduced in section 2.

Arrow (1) is the de Rham isomorphism and was established de Rham in 1931. It can
be proven using sheaf theory (as done in [29, 5|) or by more elementary means (see for
instance [16, 16]). We will give a self-contained introduction to a modified version the de
Rham homomorphism in subsection 3.1 suited for L,-cohomology theory.

Arrow (2) is a classical theorem from algebraic topology. A proof can be found in [15, 13].
Arrow (3) is a far less popular theorem discussed in [26]. We just enlist it here for reasons
of completion.
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Arrows (4) and (5) will be of our primary interest. Section 2 systematically introduces
all the required definitions for the L,-cohomology theories H, (M), Hy(K), 7,(K). Our
ultimate goal is to prove that (under certain technical assumptions) the arrows (4) (see
section 3) and (5) (see section 6) exist and are isomorphisms. In the end, the following
diagram will commute

and the dotted arrow represents an isomorphism one may consider a generalization of the
classical de Rham isomorphism in the L,-case. Its existence is the main result of this
thesis.

The key idea to prove the existence of isomorphism (4) is to introduce a cochain map w,
called Whitney transformation. A detailed study of this map in section 3.2 will reveal that
the classical de Rham isomorphism may be modified slightly to a map [I], which turns out
to be the inverse of (4). The details are rather technical, the result the content of Main
Theorem 3.2.8.

In order to be able to establish isomorphism (5) we require the notion of regularization
operators on manifolds, which will be discussed in section 5 in detail. It will turn out to
be nice to have the notion of currents available there. Therefore we will give a short intro-
duction to currents in section 4 first. Both sections 4 and 5 are of a preparatory nature,
their content is more or less independent of the rest of the thesis and may be useful for
other purposes as well. We will utilize them to prove the existence of arrow (5) in section
6. The precise application of the regularization operators is the content of Main Theorem
6.2.1, which gives the desired result as an immediate Corollary 6.2.2.

In general arrow (6) does not exist, i.e. there is no isomorphism between the cohomology
theories on the left hand side and on the right hand side of the diagram (0.2). However, if
we restrict our attention to compact manifolds, the tools developed in section 5 may also
be utilized to show that in this case Lj)-cohomology and de Rham cohomology coincide
(see 6.1.13).

The entire thesis is roughly based on the article "De Rham isomorphism of the L,-cohomology
of noncompact Riemannian manifolds” written by Gol’shtein, Kuz’'minov and Shvedov, [5].
This article is only eight pages long, but sketches all the fundamental ideas we are going
to present. Unfortunately many of the prerequisites, which are necessary to formulate all
the notions and theorems are missing there as well as much of the technical details. It is
the aim of this thesis to present a more detailled and self-contained discussion of the topic.

Acknowledgements. 1 would like to thank my many supporters whithout whom this thesis
would not have been possible. First of all Professor Dr.  Werner Ballman, my thesis ad-
viser, who brought this topic to my attention, and his entire staff, in particular Dr. Jan
Swoboda. He was at hand with competent help and advice, patiently answered my many
questions and often inspired me to new ideas when I was stuck somewhere. Thanks to Pro-
fessor Dr. Matthias Lesch too for co-correcting this thesis. During my entire studies here
in Bonn I was financially and ideationally supported by the Studienstiftung des deutschen
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Volkes. It inspired me in particular through its summer academies. During my entire life
I was supported by my parents in countless ways. Without the certainty of their backup I
could not have even stared my study of math. Last but least I would like to say thanks to
Jesko Hiittenhain for the deep friendship that developed over our common studies.

Nikolai Nowaczyk,
February 2011
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1 Tensor metrics

In this section we consider a Riemannian m-manifold (M, ¢g) and investigate how to extend
the Riemannian metric g to the various tensor bundles over M. For many theorems it
will suffice to consider an m-dimensional inner product space (V, g) over R and then apply
the result to all the (T,M,g), p € M. The theory for V is basically a nasty exercise in
multi-linear algebra.

First, we fix some notation, since there are many slightly different conventions common in
the literature. We will adopt most of these conventions from [17].

1.0.1 Definition. A (k,l)-tensor F on V is a (k + [)-fold multilinear map
(V< VF 5 R

We say F is k-fold covariant and I-fold contravariant. The space of all tensors of type (k, 1)
on V is denoted by

V.
If M is a manifold, the set T/“M , defined by

7'M = [[ T/ T, M,
peEM

is the tensor bundle over M. It has a canonical topology and smooth structure such that
T/‘“M is a smooth vector bundle over M. Its smooth sections are denoted by

T (M)

and are called tensor fields on M. In particular T (M) := T°(M) are the vector fields and
T*(M) := T,H(M) are the covector fields on M.
We denote by A¥(V) the set of all alternating tensors F' € T§#(V). The corresponding
bundle is denoted by
oM = [] AT, M
peEM

and its smooth sections are called differential forms of degree k. The space of sections
respectively compactly supported sections is denoted by

OF (M), QF(M).
The spaces

A(V) = P ARV, QM) = P k)

keN keN

are the exterior algebra of V' respectively M.
Warning: Some authours consider our A*(V) as A*(V*).
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1.1 Reminder of musicial operations

The metric can be extended very easily to the dual space V* (sometimes we also denote
the dual space by V') using musical operations (see also [17, 3]).

1.1.1 Definition (flat operator). The operator b : TM — T*M, given pointwise by
TyM — Ty M, X X’ where X : T,M =R, Y — g(X,Y) is called flat operator.

1.1.2 Lemma (properties of b). Let ¢ be any chart for M. Denote by g;; the coordinate
matrix of g with respect to p; and by g% its inverse. The flat operator has the following
properties:

(i) Locally, for any X = X'd¢; € T(M), the flat operator may be calculated by
X" = g;; X'dp? =: X;dy’.

(ii) The coordinate matrix of b with respect to (91, ...,0¢m) and (dp!,...de") is the
matrix g;; itself.

(iii) The flat operator is a diffeomorphism and its inverse § : T*M — T'M, the sharp
operator, has local coordinate matrix g% .

(iv) Locally, for any w = w;dy"
w* = g"w;0p;.

Proof.

(i) Take any Y = Y79y; and calculate

X(Y) = g(X,Y) = g;; X'Y7 = g;; X'dg? (V).
1 = L, then ' = §% and thus
i) If X = Oy, then X? = 6 and th
(Opr)” = gijoMdp? = grjde’ = gjrd’.

111 y hypothesis, the matrix g;; 1s invertible.

i) By L hesis. th ix gi; is i bl

(iv) We obtain

(9" 0pr)” = g™ (00r)" = g grjde’ = Si5die? = d'

and thus A ‘ A
w* = wi(dp')t = wig®dpr, = gFlwidpy. 0

1.2 Main results

1.2.1 Theorem (tensor metric). Let (V,g) be an m-dimensional vector space over R
and g be a inner product on V. There is a unique inner product (_, ) on each tensor
bundle le(V) with the property that whenever E = (FEy,..., Fy,) is an orthonormal basis
for V and E* = (E',..., E™) is the corresponding dual basis, then

T'E:={E;, ®..@F;,@FE"®...@ E" |[V1<v<1:V1<pu<k:j,i,€{l,...m}}

is an orthonormal basis for le(V) Furthermore, this inner product satisfies the following
properties:
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(i) With respect to any other basis (B, ... B,,) this inner product is given by

VE,G e TF(V) : (F,G) = g™ ... g™ giio ... gjs, FI T GE181

1.0, — T1.--Tk?
but is itself independent of the choice of basis.
(ii) If F,G € TF(V), F',G' € T} (V), there is a factorization

(FRF' ,G®G)=(F,G\{F, G).

(iii) The sharp operator f : T*M — TM is an isometry.
Furthermore this induces a inner product on P, ;o le(V) by declaring the summands to
be mutually orthogonal.
Analogously, if (M, g) is a Riemannian manifold, this defines a fibre metric on all the leM
with analogous properties.

Proof. Let us call the defining property of (_, ) the (ONB)-property. Throughout the
proof we will denote coordinates with respect to B without tildes and coordinates with
respect to E with tildes.

STEP 1 (uniqueness): First we will show that (ONB) implies all the other properties. In
particular it will follow from (i) that such a inner product is unique. We will then use (i)
to define it.

STEP 1.1 (f is an isometry): Notice that by 1.1.2
(E")! = §(EX);B; = 696K E; = By
This immediately implies for every covariant 1-tensors w,n

(W 1) = (B, (0 7)) = o ((B')F, (BY)F)

s S (1.1)
= winj(Es, Ej) = win;0” = wm;(E', E’) = (w,n).

STEP 1.2 (factorization property and coordinate representation): First we calculate for any
l<v,u<m

(B”, B") "L (B, (BM) 'L2 (g1, By, 92726, Biy) = 191 6,5,0%28,05, (Biy , By
11V 12 viy

=9 97 Giyis = gi2'u(g gi1i2) = gizuéwé = gyu'

Thus (g“*) is the coordinate matrix of ( , ) wa.t. (B,...,B™) on V*. Furthermore
there are constants a¥, by, such that

B = drEv, B*(E)) = af, B, =bE,, Bi(E") = bl
Having this in mind, we calculate on the one hand

(Bjy®...®B;, ® B"®...B* By, ®...@ B, ® B"" @ ... B"™)
= ('E, ® ...V E, ®dl EM ®...®af EM* WIE, ®.. @b E, ®alE" ... akE™)
(ONB)

1z v i1 i B My T Tk A1m ANk
bil .. bjay .oal bl b ag agt Oy 0y 07T L6

_ V1 v i1 i 1 Vi Tl Tk
= E by ---bjay, -..ay U . bgay . a)t
U1y VAL A
o V1701 vipy i1 T1 ik Tk
= E bj bgy - by bgay ay ... ay a)’
U1y VAL A
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and on the other hand
(Bjy. By} ... (B, By)(B", B") ... (B* B™")
=V By, Vi Eyy) - (U By, B By ) (al BN apt E™) . (a BN ark E™)

vy Vs vy Vs ’ 771
=B bl apt L al apt (B, By, (B B ) (BN ET) (BN ET)
(ONB)

V17401 RN} A1m AkMk
DB LB Al @ alk a6y Gy - Gy SO

— V1p1 Vipvi Zl Tk
= g b bgy .- by by /\1a)\1'”a>\ka)\k.

V1~~Vl7/\17~~~>‘k

These expressions agree and therefore we have proven

(Bj,®...0B;; ® B"®...B* B, ®...® By, ® B @...B")
= (Bj,, Bs,) - .. (Bj,, Bs,)(B",B™) ...(B%, B")
= Gj1sy - - .gjlslg“” .. .gl’m“.

This finally implies that the metric has the desired form and satisfies the factorization
property. Notice that the expression we have derived so far, proves uniqueness, since it no
longer depends on the fibre metric in leM , but only on the initial inner product g and
the basis B

STEP 2 (existence): To show existence, we would like to define the inner product by (i).
The expression is obviously bilinear and symmetric. To see that it is positive definit
assume F' = G € TFB, which implies szll ijl = §IV L §IG e By, for some 1 <
Vlyeooy Uy 1y« -y e < m. This implies

(F,F) = gi1r1 - ‘g’ikT‘kgjlsl B 'gijh Ji 1.t

1.2 = T1,---Tk
=g g TR G s G 0T TS e By 05 S S e O
= g,ulltl s guk“kgulm - Guy, > 07
since the diagonal entries of a positive definit matrix are always positive. Therefore (_, )

is positive definit on a basis, thus on the entire space. In addition if B = E is an ONB
and F,G €T kE such that analogously

J1-+-J1 Jj1v1 TS, . 81...5 s1a sy
le A = 0 511,“...(5%,%, Gr1 g =9 ) 5?"151"‘5%[31@7
we obtain

(F,G) = """ g% G, . G FI G151

1.2, Tl
__ ST TkTk . . Jivi JIvi S, . s11 s
L TR PO L 5““1...5%%5 L F R

— gmbr .5/%51%5”10{1 )

- Ouyay s

which is precisely the (ONB)-property in coordinates.

In case of a vector space V' we are done. A manifold may be covered by coordinate domains,
on which we may use (i) to define the metric. By uniqueness they must agree wherever the
domains overlap and the entire construction does not depend on the choice of charts. [

This rather complicated product has a simpler form when applied to alternating tensors
and wedge products. Since there are different conventions regarding the wedge product
in the literature, we introduce it here for later reference. Our conventions agree with [16,
12).
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1.2.2 Definition (alternator, wedge product).  The map Alt : TF(V) — Tk(V)

defined by
Al(T) : =1 Z sgn (7

is the alternator. Here &} denotes the symmetric group of k-permutations and the tensor
™' is given by its action on vectors by "I'(X1, ..., Xg) := T(Xq), .- Xr(x))- The image
im Alt (T*(V))) = A¥(V') is precisely the set of alternating tensors on V.

The map A : TF(V) x THV) — AF(V)

(w,) (kkTul)! Alt(w @ n)

is the wedge product.

1.2.3 Corollary (metric of alternating tensors). The metric ( , ) from Theorem
1.2.1 satisfies
WA AR Wt AL A WP = K det((vi, w;))

on arbitrary decomposable alternating tensors v! A... AvF, wy A ... Awy € AF(V).

Proof. Let by...,b, € V be an ONB. Then by 1.2.1 b',...,b" € V* is an ONB for V*.
Consider two tensors of the form bt A ... Abk WAL AD* € AR(V), where the iy, ..., iy
are all mutally distinct as well as the ji,...,jx. Define I := {iy,... i}, J:={j1,...,Jk}
and distinguish two cases.

CASE 1 (I # J): This means that there exists at least one index i, ¢ J and at least
one j, ¢ I. Using the determinant property of the wedge product (c.f. [17, 12.8¢)|),
multlinearity and the factorization property from 1.2.1, we obtain

(DA LABR WA LA DY)

= < > sgn(@)p M@ @b, N sen(r) W @@ br(jk)>

geGy TEGK

= Z Z sgn(7) sgn(o <ba(z1) bT(J1)> <ba(ik),b7(jk)> —0.

c€G TES

The last equality holds since there is at least the factor (57() b70r)) = 0. On the other
hand det({b",5’*)) = 0 as well, since row v is identically zero. Thus in this case, the
statement is true.

CASE 2 (I = J): In that case there exists a permutation m € &y, such that (7 (1), ..., 7(ix)) =
(j1,---,Jk). This implies

<bi1A...Abik,bflA...Ab”v):<bi1/\...Abik,b’f(“)A...Ab”("k>>

- <7r><bi1 NB B AL B
n(m Z Z sgn(7) sgn(o <b"(i1)’bf(i1)> o <b‘7(ik)’b7(ik)>
c€G, TES,

=0 ,unless 0 = 7

= Sgn(ﬂ') Z <ba(i1)’ bcf(h)) . <bcr(z'k)’ ba(ik)>
ceGy
= sgn(m)k!.

On the other hand, the determinant on the right hand side also equals sgn().
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Thus in both cases the statement is valid for a basis of A¥(V') and thus on all of A¥(V) by
multilinearity. O

There is an alternative way of extending the inner product directly to the space of alter-
nating tensors.

1.2.4 Theorem (extension to exterior algebra). Let (V,( , }) be areal inner prod-
uct space of dimension m. For any 0 < k < m there exists exactly one inner product
(_, Yar: AR(V) x A¥(V) — R such that for any ONB C = (c1,...,¢y) with respect to
(_, ), the basis

AkC::{cil/\.../\ci’“|1§i1<...<ik§m}

is an ONB with respect to (_, )ax. This scalar prouduct is given as the unique bi-additive
extension of

WAL AOE Wt AL AR e = det (0", w’))

where v!, ..., vF wl, ... wF e V¥

Proof.

STEP 1 (existence): First of all, we discuss the case k = 1: Define ( , ) on V* by declar-
ing the sharp operator § : V* — V to be an isometry, i.e.

Ve, € Vi (w,m) = (wh,nf).
For any ONB ¢y, ..., ¢, of V, the corresponding dual basis ¢!, ..., c™ of V* satisfies
d=(_,¢) = ()"

Therefore ¢!, ..., c™ is an ONB as well.
Now we discuss the general case: Certainly there exists an ONB B of V. Since A*B is a
basis of A¥(V), it suffices to define

(O A AL AL ABR) k= det (7, B0))
and extend this bilinearly onto A¥(V). Since
(B A LA AL ADR) e = det (B, %)) = det (8;,,,) =1 >0,

(_, ) is positive definit, thus a inner product for which A*B is an ONB. If C' =
(c1,...,cp) is any other ONB in of V', then

det (¢, c¥*)) = det (b, 1)),

by the discussion of the case k = 1. Thus A*C is an ONB w.r.t. { , )& as well.

STEP 2 (uniqueness): Let g be any other inner product satisfying the required properties.
If (by,...,b,) be an ONB of V, then A¥B is a (_, )-ONB and a g-ONB. Thus g and
(_, )ar are equal on an ONB of A¥(V) and thus equal on all of A*(V). O



1 Tensor metrics 15

1.2.5 Convention. It is customary to denote both the metrics given in 1.2.1 and 1.2.4
by the same symbol ( , ) as the original metric. This usually should not cause any
confusion, since we have already shown in 1.2.3 that they only differ by a constant k!. But
in case we would like to stress, which metric is meant, we will denote the tensor metric of
a space V obtained from 1.2.1 and the ezterior metric obtain from 1.2.4 above by

(s rrvys respectively , (s ) akqvy-

1.2.6 Corollary. Let (V,{( , )y) be an inner product space and denote by | |y the
induced norm. Then the dual space V' satisfies T1(V) = V/ = AYV) and the norms
satisfy

I Ny = I _llve = Il _llarvys
where || ||y is the usual operator norm on on V’.
Proof. The equality || _[l71) = [|_[la1(v) follows directly from 1.2.3. So let v' € V' be
arbitrary and choose v € V such that v# = v/. Then
*) 1.2.1(ii)
[v'[ly: = max |o'(w)| = max [of(w)|= max [{v,w)] = Jolly =" [Fllpiq).

l[wllvy=1 [[wllvy=1 l[w]ly=1

The equality (*) follows from the Cauchy-Schwarz inequality: One hand
(v, w)| < llvllwllv =[]y

and on the other hand, by considering w := v/||v||y, we obtain |(v,w)| = ||v||v. O

1.2.7 Definition (pullback). Let f: X — Y be a linear map. We call the induced map
f*:TEY) — TF(X), where

Vw e THY) :Vay, ...,z € X fH (W) (@1, .., xn) = w(f(z1), ..., f(zr)),

the pullback of f. In particular, the induced map on the dual spaces f': Y’ — X' is the
dual map.

1.2.8 Theorem (norms of pullbacks). Let f: (X,( , )x)— (Y,( , )y)bealinear
map between inner product spaces. Let m := dim X, n := dim Y and assume

3C>0:Vee X ||f(@)|y < Cle|x. (1.2)

Then for any 1 < k <mn

. n
o € T 5 @)l < (1) ¥ lllleqn

Proof.
STEP 1 (k =1): We calculate

(12)
Vy' e Y Vo e X [f'(y) (@) = v (F@)] < Iy v I f@)ly < Cllyllyllllx

and therefore by
vy e Y W)l < ClHY oy (1.3)

Now 1.2.6 yields the result.
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STEP 2 (for a basis): Notice that the factorization property 1.2.1(ii) implies that
YF @G e TH(X) @ T'(X) : |[F & Glipweigx) = |Flloso Gl
Therefore, we obtain for any v' @ ... ® v* € T*(Y)
17 @ ®... @)l = 1F @) @@ f@)lmr = 17 @Ylx - I @)
(1.3)

< CHtlyr .. ¥y = CHlvt @ .. @ 0P|l pw gy

126

STEP 3 (general case): In particular, we may choose an ONB B of Y. Then T*B is an
ONB of T*(Y). By the previous step, the estimate holds on this basis with constant C*.
Therefore the statement follows from Lemma 1.2.9 below. ]

1.2.9 Lemma. Let f: (X,( , )x)— (Y,(_, )y) be a linear map between finite di-

mensional inner product spaces. Assume that there exists an ONB B = (by,...,by,) of X
such that

AC>0:V1<i<m:|f(b)|ly <C|bi|lx =C. (1.4)
Then

Vo e X ¢ ||f(z)lly <mCl|z|x.

Proof. Let x € X be arbitrary. If we expand x w.r.t. B, we obtain (using the Cauchy-
Schwarz inequality) that

z=> a'b, 2| = (2, bi)| < [lzllx |[bill x = [lz]lx (1.5)
and therefore

IF@llx = | ixf

= le’lllf )x
(1.4) (1.5)

< ZIQJZIC < ch\wllx—mcllfﬂllx- 0

=1

1.2.10 Corollary. Let f be as in Theorem 1.2.8 above. Then the induced map f* :
AR(Y) = AF(X) satisfies
. n
W e Y 1 @l < () el
Proof. This follows directly by combining 1.2.1 with 1.2.8. 0

1.2.11 Corollary. Let f be as in Theorem 1.2.8 above. For any linearly independent
system by, ..., by define

vol(by,...,by) := y/det((bi, b;)x)

to be the k-volume of the parallelepiped spanned by by, ...,b; (for a linearly dependent
system this is zero anyway). We obtain

vol(f(by),..., f(b)) < (?) CFvol(by, ..., by).
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Proof. We would like to apply Corollary 1.2.10. The problem is that f* maps into the
wrong direction and that we want to work on the vector space itself rather than on the
dual space. But this problem can be easily solved by passing to the bi-dual space and
by applying 1.2.10 to f/ : Y’ — X’ instead of f: First of all consider the canonical
isomorphism iy : X = X", x — (¢/ — 2/(z)). Define (_, ): X" x X" - R, («f,25) —
(i (), i (2%)) x. Then iy is an isometry and we obtain the commutative diagram

x- 1y (1.6)
[ s
X/l f” Y//

The simple calculation
V" e X" vy e Y (f) (@) () = 2"(f'(y) = f(a") () (1.7)

shows that (f')* = f” : X” — Y”. Unwinding the definitions and applying 1.2.10 to f’,
we obtain

Vol(F(br). . (b)) = y/det (F(Bi). F(b;))y = \/det {iy (F(b). iy (£ (b))
2 Jdet (£ (e (00), £ (i (b)) v
D Jaet (£ (ix (b)), () (ix (b))
(1)t i e

_ <z>ck\/m: <7Z>Ckvol(b1,...,bk). 0

1.2.12 Theorem. Let f : (X,( , )x) — (Y,( , )y) be an isometry between inner
product spaces. Then f* : (A¥(Y),(_, Yary) = (AF(X),(_, arx) is an isometry as
well.

Proof. By basic linear algebra it suffices to check that f* maps an ONB to an ONB.
Therefore let C = (c1,...,¢y) be an ONB of Y. Since f : X — Y is an isometry,
f' Y = X' is an isometry as well. By construction the ¢/ = ¢ A ... A ¢, where
1 <y <...i;, <m, are an ONB of A*(Y). Consequently

(FX(E A AR, A AR = (F(E) A AR, PN A ()
zdet(<f’(C’”),f'(C ))) = det((f(cs,), f(ci,)))
= det({ci,,ci,)) = 017,

since if I = J, clearly this expression equals 1. If I # J the matrix ({c;,,¢c;,)) has a zero
column and therefore its determinant equals zero. O

1.3 Applications to manifolds

The theorems of the preceding section allow us to control the distortion of volumes under a
diffeomorphism, if we are able to control the operator norm of its push-forward. Before we
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elaborate on this, here is a short reminder on the change of variables formula on Riemannian
manifolds (following notes taken from a lecture by Professor Ballmann). In this subsection
we will assume all manifolds to be oriented and Riemannian.

1.3.1 Definition. Let X1,...,X,, € T,M be a positive basis. We denote by
m
XiN...ANX,, = {thXz ’ t1,...,tm € [0,1]}
i=1

the parallelepiped spanned by X1, ..., Xm.
Let M and N be Riemannian manifolds, F' : M — N be a diffeomorphism and p € M.

Then Jac F': M — R,
VOI(Fy|p(X1) Ao A Fylp(Xin))

vol(X1 AL A X)) ’

is the Jacobian of F.

1.3.2 Lemma. Under this hypothesis,

vol(X1 A ... A Xpn) = y/det((Xi, X))

and Jac(p) does not depend on the choice of basis X = (X1, ..., X,,). Furthermore
¥p € M : Jac(F~)(F(p)) = (Jac(F)(p)) .

1.3.3 Theorem (transformation theorem for Riemannian manifolds). Let M, N
be Riemannian manifolds, ¥ : M — N be a diffeomorphism and let f : N — R be
integrable. Then (f o F) - Jac F' : M — R is integrable and

/M(foF)JacF:/Nf.

1.3.4 Corollary (volume distortion). Let F': (M,g) — (N,h) be a diffeomorphism
between Riemannian m-manifolds and let f: N — R.

(i) If in addition

AC>0:Vpe M :Yv e T,M :

[Exlp(0)lln < Chllollg,

then
/ fdpV < Ci”/ foFdyV.
N M

In particular
volp(N) < CT" voly(M).

(ii) In case
3C >0:Vg € N :Yw € T,N : ||F 1t (w)]ly < Callw|p,

/MfoFgCén/Nf.

volg (M) < C3" volp(N).

then

In particular
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Proof.
(i) First assume that there exists a chart ¢ : M — V C R™ for M. We calculate

VOI(F*|p(8901) ASERYA F* |P(agpm))
vol(Op1 A ... A Opm)

132 V/det(M(F[p(09i), Fulp(9%5))) L1l

Vdet(g(0pi, ;) a

Jac F(p) =

cr

This implies

/N fd, v 2 /M foFJacFd,V < CJ /M foFd,V.

The general case follows from the definition of the integral. Choosing f = 1, we
obtain the statement for the volume.

(ii) Analogously, for any F(p) =q € N
(Jac F(p)) ™" = Jac(F~')(q) < C3",

thus

/foF:/foFJacFoJacF—1<c;"/ foFJacF:c;”/f. O
M M M N

1.3.1 Bounded diffeomorphisms and equivalence of Finsler metrics

As another application we discuss the norms induced by Riemannian metrics and their
extensions to the tensor bundles. We will also study diffeomorphisms with bounded deriva-
tives and their interplay with these norms. This will become important in 6.1.2.

1.3.5 Definition (Finsler metric). A continuous map | | : TM — R is a Finsler
metric, if

(i) | | is smooth (away from the zero section),

(ii) for any pe M, |_|:T,M — R is a norm.

If g is a Riemannian metric on M, the induced norm
Vpe M VX e T,M :|X|;:=1/gp(X, X)

clearly is a Finsler metric.
Let C1,Cy > 0. Two finsler metrics (| _|1,]|_|2) are (C1, C2)-equivalent, if

VX eTM : Cl|X|1 < |X|2 < CQ|X|1

Two Riemannian metrics (g, h) are (C1, Cy)-equivalent, if (| _|4,|_|1) are (C1, Ca)-equivalent.

Notice that the constants uniformly control the two different norms in all tangent spaces.
Such an equivalence is a substantial restriction only if the manifold is noncompact.
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1.3.6 Definition (bounded diffeomorphism). Let F': (M, g) — (N, h) be a smooth
map and let C' > 0. Then F, : TM — TN is C-bounded, if || Fy|| < C, where || || denotes
the operator norm induced by | |, and |_|;. Somewhat more explicitely this means

Vp € M : VX € TyM : hpp(FulpX, FilpX) < C?gp(X, X).

We also say that F'is C-bounded, if F is C-bounded.
Let C1,Co > 0. A diffeomorphism F : (M,g) — (N,h) is (C1,Cq)-bounded, if F is
Ci-bounded and F~! is Cy-bounded.

1.3.7 Theorem (properties of bounded maps). Let F': (M, g) — (N, h) be a diffeo-
morphism.

(i) If F' is an isometry, then F' is (1,1)-bounded.
(ii) If F is (C1, Co)-bounded, then (F*h, g) are (Cy ', Cy)-equivalent.
(iif) If F is (C,Co)-bounded and in addition A is a metric on N such that (h,h) are
(C3, Cy)-equivalent, then (g, F*h) are (Cy 'Cs, CCy)-equivalent.

Proof.
(i) This is clear.
(ii) By hypothesis, for any p € M and any X € T,M we calculate on the one hand

(F*R)|p(X, X) = hp)(Fulp X, FulpX) < Cig,(X, X),
and on the other hand

9p(X, X) = gp-1(p)) (Fx ' [pp) (Felp(X)), B ) (Filp(X)))
< C3hp ) (Fulp(X)), (Fulp(X)) = C3(F*h)[p(X, X).

Consequently
CTY X | pen < Xy < Co| X | o

(iii) Using the second part, we calculate

( ) (X X)—hF (F |pX F|p ) C h (p)(F*|pX7F*|pX)
02( h)P(XvX)§C4clgp(X’X)a

and

9p(X, X) < C3(F*h)|p(X, X) = C3hpg) (FulpX, Fi[pX)
< C3C5 hppy (FulpX, Fu|pX) = C3C5 2 (F*h),(X, X). O

1.3.8 Theorem (Bounded maps and equivalent norms).
(i) Two Riemannian metrics (h,g) on M are (C;*,Cy)-equivalent, if and only if id :
(M,g) = (M, h) is (Cy,Ca)-bounded.
(i) If F: (M,g9) — (N,h) is (C1,Cs)-bounded, then F* : T*M — T*N is (C1,Cs)-
bounded as well, where the cotangent spaces are endowed with the operator norms
induced by g and h.
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(iif) If F\: TM — TN is (C1, Cs)-bounded, then F, : TFM — TFN,

VT e TF(M) Nn',...,n' € T*N :VYy,...,Y, € TN :
F*(T)(n17'"anlaXla"'vXk) :T(F* 17"'7F*77Z7F>k_1)/17'"aF*_lYk)7

is (2FCiCk, 2HCkCL)-bounded, where TFM, TFN are endowed with the metrics
induced by (T}*h, TFg) via 1.2.1.

(iv) Let (h,g) be two Riemannian metrics on M. Again endow 7}*M with the induced
metrics via 1.2.1. If (h,g) are (Cj, C)-equivalent on M (i.e. on TM), then the
induced metrics (T}fg, TFh) are (C1,Ca) := (27FlCLCy ¥, 28+ O CY) - equivalent
on T M.

Proof.
(i) By definition the conditions

lids (X)]n < C1]X ]y, [id; 1 (X)]g < Col X

are equivalent to
Oy X n < X]g < Col X[
(ii) By definition Fi : (T,M,g) — (TN, h) and F* : TpgyN — T,M is the operator
dual to Fy. By a standard theorem || F*|| = || Fy]|.

(iii) It suffices to consider the situation on an arbitrary tangent space V' := T,M. By 1.2.6,
the norms on V* induced by 1.2.1 are identical to the operator norms. Therefore by
combining (i) and (ii), we obtain the conclusion for T} M.

Now we prove the statement for decomposable tensors: Assume

T=T;T =T, ®..0T,9T"®...0 T" € T}(V)
and calculate (using the rules from 1.2.1)

=T, ®...0 FT,®(F)'T"'®...® (F*)*lTik\leh
=[BTy gy, - - [ BT, |Tl’<h‘(F*)flTi1 lzpn - |(F*)71Tik‘leh

L~k i i L~k
S 0102 |T]1 |leg PR |1—j7l |leg|T“ |leg PR |Tzk|leg = 0102 |T’leg

In the same fashion, we obtain |F 1(T)]le g = crclT \le - Now the conclusion
follows from 1.2.9.
1v) Let (g, e 1, Cg)-equivalent. y (1) the map 1d, : ,q) — , 18
iv) L h) be (Cy,C: ival By (i) th id ™M TN,h) i
(C7',Co)-bounded. By (iii) the map id. : (T}M,TFg) — (TFN,TFh) is
(2HeIck 2k ek CL)-bounded. By (i) (TFh, TFg) are (27F-ICLCy*, 2k H ek
- equivalent. O
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2 L,-cohomology theories

In this section we will systematically built up three different approaches to L,-cohomology,
namely the L,-cohomology of differential forms on manifolds, the L,-cohomology of sim-
plicial complexes in R" and the L,-cohomology of so called S-forms - these are beeings in
between. We are not aiming at a full treatment of all these theories, we merely want to
introduce notation, definitions and prove some theorems, which ensure that this all makes
sense.

2.1 Lj,-cohomology of differential forms

The first approach is to establish an L,-theory for differential forms on manifolds anal-
ogous to L,-functions on R™. We will assume that (M, g) is a possibly non-compact
oriented Riemannian manifold without boundary and employ the following definitions and
conventions.

2.1.1 Convention (exterior direct sums). We will frequently define Z-indexed systems
of vector spaces (V*)rez. In that case, the space V is understood to be

V.= @Vk.

keZ

2.1.2 Definition (set of measure zero). A subset A C M has measure zero, if for any
chart (U, @) of M, the set ¢(ANU) has Lebesgue measure zero in R™. (Since this property
is invariant under diffeomorphisms, this notion is well-defined.)

2.1.3 Definition (locally p-integrable). Let w : M — T*M be any section. Then w
is measurable, if in any chart all the component functions of w are Lebesgue-measurable.
We denote by L¥(M) the space of all measurable k-forms on M. For any w € LF(M),
1 < p < 0o and any domain of integration N C M, we denote

1
p
lellgon = ([ lorav )", el (V) = es sup ey [l (@)
Here, |w| is defined pointwise by
Ve e M : |wl(z) = llw@)l|arr, )

using 1.2.4. We say w is locally p-integrable, 1 < p < oo, if for any compact subset K C M
l|lwl| rk(r) < 00. The space of all measurable locally p-integrable differential forms of degree

k on M is denoted by L];JOC(M).

2.1.4 Definition (p-integrable). Let 1 < p < co. Then

Ly(M) := {w € Ly oo(M) | [l sy < o0}

are the p-integrable forms.

2.1.5 Convention. The space Lg(]R”) is the usual LP-space of functions. This space is
usually identified with the space of LP-classes, i.e. equivalence classes of functions modulo
equality up to sets of measure zero. We will employ this convention on L(M) and all its
subspaces as well. Having this in mind, we may generalize a classical theorem.
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2.1.6 Theorem (completeness of L,-spaces). For every 1 < p < oo and every 0 <
k < m the space L’;(M) is a Banach space.

In many ways the calculus for measurable differential forms is analogous to the calculus of
smooth forms. We will discuss some aspects in the following.

2.1.7 Lemma (wedge). Let w € L¥(M), n € L'(M). Then the wedge product w A1 €
LFH(M) defined by
Vp €M :(wAn)p = wp Anp,

is well-defined.

Proof. By definition

1 g
W|p/\77p:m Z sgn(o) (wp ® 1p)7,

U€6k+l

thus it suffices to check that the tensor product of two measurable forms is well-defined.
By choosing local coordinates ¢, we see that

w® N = (wide') @ (njde’) = winy de’ @ dg’. (2.1)
Now let w’ ~ w, i.e. there exists a set E,, C M of measure zero such that

Vpe M\ E,:w,=uw,

and analogously for 1. Then the local representation (2.1) implies
Vpe M\ (E,UE)): (v ®1),=(w®n),.

Since E,, U E;, C M has measure zero as well, this implies that w A 7 is well-defined. It is
measurable since the product of measurable functions is measurable. ]

Because this pointwise defined operation is well-defined, all the standard theorems con-
cerning the wedge product carry over to the measurable case as well.

2.1.8 Theorem. The wedge product A : L(M) x L(M) — L(M) satisfies the following
properties:

(i) A is bilinear,

(ii) associative,

(iii) graded anti-commutative.

These generalized wedge products can be utilized to generalize yet another classical con-
struction from the calculus of smooth forms on manifolds.

2.1.9 Definition (weak differential). Let w € LI;IOC(M) and ' € L];j{olc(M). Then

is a weak differential of w if

vy e QR (M) /

w'/\n—(—l)kH/ w A dn.
M

M
In that case we denote dw := ', c.f. 2.1.14. The space of all those forms is denoted by
Wk (M).

p,loc
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2.1.10 Definition (exterior Sobolev spaces). Employing the notation

ol ary = Nl zgary T 1Al ain 0 Nollws ary = maxllwll g, oy, looll s oy

we define the (exterior) Sobolev spaces

WH(M) = {w € Wyioe(M) | lwllwgar) < o0}

2.1.11 Remark. Sometimes a more asymetric generalization of these spaces is used: If
1 <p,q < oo, define

WE (M) :={w € W},(M) | w e LE(M),dw € LET' (M)},
This space is then endowed with the norm

lwliy, ,ar) = IwllT ary + 1A l1Z, (an

Thus W), ,(M) = Wy,(M) as vector spaces and the norms are equivalent. We will restrict
our study to W,

There is a classical result from functional analysis (see |9, Theorem 1.2.5] for instance),
which is very important for the uniqueness of weak differentials.

2.1.12 Lemma (fundamental lemma of the calculus of variaions for functions).
Let U C R™ be open. An L,-class f € L,(U) is zero if and only if

Vo e C°(U /f

This lemma generalizes to forms.

2.1.13 Lemma (fundamental lemma of the calculus of variaions for forms). Let
w e Lp loc (M) be arbitrary. Then

w=0 a.e. < Ynec Q" kM) :/ wAn=0.
M
Proof. Only the direction "< requires proof. Let ¢ : U — U’ be any positive chart.
Then w can be expressed locally by w = ), wrdy!, where the sum is taken over multi
indices I = (0 < 73 < ... < i < m) of length k. Let J be any such index. Then there
exists a complementary index J' = (j1,...,j,_,) such that

do? Nde? = dp??" = +do' A .. .de™ = :I:det(gij)_%dgV. (2.2)

Let 7 € C°(U’) be arbitrary. Since ¢*(n)dp”? € Q7~*(M), we obtain by hypothesis
0= [t i) = [ (Swme’) nemas”) = Y [ orst el nas’
I I

% 1 (2.2) % _1
=/ijs0 (m)dp” Adp” "= i/me (n) det(gs;) ngV=i/ Pu(w)n.

!

Since this holds for any 7, Lemma 2.1.12 above implies ¢, (ws) = 0 a.e. in U’. By definition
wy = 0 a.e. in U. This procedure can be executed on all the component functions wy; and
we obtain w = 0 a.e. in U. Since M can be covered by countably many of those charts
and the countable union of sets of measure zero is again a set of measure zero, we obtain
that w is zero a.e. O
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2.1.14 Corollary. The weak differential of a form w € L’;,loc (M) is uniquely determined

(if it exists). If w is smooth, the weak differential equals the exterior differential.

Proof. Uniqueness follows from Lemma 2.1.13 above. Any w € QF(M) automaticaly

satisfies w € L];,loc(M)a dw € Ll;jolc(M). Using Stokes’ theorem and the Leibniz rule we

obtain

VnGQT_k_l(M):O:/ w/\n:/d(w/\n):/dw/\n—i—(—l)k/ w A dn.
oM M M M
Thus the statement follows from 2.1.13. OJ

2.1.15 Convention. Due to this corollary we no longer distinguish between weak and

exterior differential. For any form w € L’;JOC(M ) we denote by dw the differential (provided

it exists).

2.1.16 Warning. From the choice of terminology one might believe that a form w on M is
in Wf (M) if and only if all all its coefficient functions locally belong to the classical Sobolev
space.! This is wrong! For example take M := R? and any two functions f,g € LP(RQ),
which are both weakly differentiable and whose derivatives satisfy 9, f, 9,9 ¢ L,(R?), but
instead 0, f = d,g. Then f, g are not in the classical Sobolev space over R?, but the form
w = fdx 4 gdy satisfies

lwllzyre) < [IfdzllLy@e) + llgdylly@e) = 1/, @®2) + 9], ®2) < oo,
dw = (0yf — Org)dx N dy = 0.
Thus w € W) (M).

Somewhat more generally, we can say that every closed weakly differentiable form w €
LI;(M) is automatically in Wlﬂ“(M) and ||WHW1§(M) = ||W||L’;(M)-

Nevertheless the following property still holds in this setup.

2.1.17 Lemma (completeness of exterior Sobolev spaces). For every 1 < p < oo
and every 0 < k < m the map d : ij(M) — W}fH(M) is a bounded linear operator
between Banach spaces.

Proof. See [4, 1.3]. O

2.1.18 Theorem (Holder Inequality). Let 1 < p,q < oo, w € L’;(M), n e LfI(M) and
1_ 1,1
= + 7
(i) wAn e LF(M),
(i) llw Az, an < lwllz,an 7z,
(iil) if w € WF(M), n € WHM), then w Ay € WFT(M) and
d(wAn) =dwAn+ (=1)Fw A dn.

Proof. See [4, 1.4]. O

!These spaces play a central role in the study of pseudodifferential operators on vector bundles and are
discussed in [13, III] for example.
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We will require the last statement only in the following weaker version, whose proof is
straightforward.

2.1.19 Theorem (weak Leibniz rule). Let w € W¥,_ (M), n € Q' (M). Then wAn €

p,loc
WEH (M) and

p,loc
dwAn) =dwAn+(=1)Fw Adny

in the weak sense.

Proof. Choose any u € Q™ *~!=1(M) and notice that the Leibniz rule for smooth forms
implies

/Mw/\d(n/\u):/MwAdnAu+(—l)l/Mw/\77Adu. (2.3)

Notice further that n A u € Q7 *~1(M). Since w is weakly differentiable, this implies

/dw/\n/\u:(—l)kH/ wAd(nAu). (2.4)
M M

Therefore by the definition of the weak differential

(—1)k+l+1/ wAnAdu @9 (—1)k+1/ w/\d(n/\u)+(—1)k/ wAdnAu
M M M

(2:4’/ dw/\n/\u—l—/ ((—1)kw/\d77)/\u=/ (dos A+ (=1)Fw A dn) A u.
M M M

This proves the statement. O

2.1.20 Definition (L,-cohomology). The exterior Sobolev spaces Wf(M ) together
with the weak differential d* : Wlf” (M) — W;‘H(M ) assemble to a cochain complex

(WP(M)a d)
called the L,-complex of M. Its cohomology groups

ker d*

k —
Hy M) = a1

are called Lj,-cohomology of M. This is a Z-indexed system of vector spaces endowed with
the ordinary quotient semi-norm || || mx induced by H_HWZI;. The spaces

kerdt HE(M)
imdk—1  {z € HE(M)|||lg; = 0}

HY (M) = (2.5)

are called reduced L,-cohomology of M. For any 1 < p < oo, we also define

Z;f(M) := ker (dk : W;(M) — W;H(M)) , the closed k-forms,

B;f(M) =1im (dk : Wé‘_l(M) — W;”(M)) , the ezxact k-forms.
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2.1.21 Remark (cochain complex properties). If Bang is the category of real Banach
spaces and continuous linear operators, we may regard (W), d) as an element of Ch(Bang),
the category of cochain complexes over Bang: By Lemma 2.1.17, sz (M) € Bang and it
follows from

Vo € Wy (M) : ldwlfy = max{ || dwl[} o lddwl[7 lde[§

Wk+1 M) Wk+1 Wk+2(M } Wk+1(M)

< maX{HWHWk (M)’ HdeWk-H(M)} = Hw”W[;(M)

that ||d|| < 1. However d(WIf(M )) C W;‘H(M ) is not necessarily closed as we will see in
the example below. Thus although Wf“(M ) is a Banach space, H;)“H(M ) is in general
not even a normed space anymore, but only a semi-normed vector space.

2.1.22 Remark (alternative description of reduced L,-cohomology). The prob-
lem described above is a general functional analytic phenomenon: Let (X, || ||x) be a Ba-
nach space and U C X be a linear subspace. Then we may consider the algebraic quotient
space X/U. Let my : X — X/U be the canonical projection and define || _|[|x/y : X/U — R
by

;= inf — .
)y = inf [l — ulx

Then || || x/v is always a semi-norm (even if X is incomplete), but if U is not closed, the
space

N :=A{my(z) € X/U | ||mv(2)|x/v = 0}

might not be trivial. There are two possible ways to fix that problem: The first one is
to factor out N again and obtain the space (X/U)/N, which is a Banach space again by
construction. The other one is to take the closure of U and consider X/U. These are more
or less the same spaces, see Lemma 2.1.23 below for the details. So we may either use the
completion (X/U)/N or the somewhat simpler space X/U. The isomorphism in (2.5) is
meant in this way.

Factoring out a bit more in order to obtain a Banach space is a two-edged sword: On the
one hand a Banach space is always nice in order to do calculus. On the other hand, this
considerably changes the notion of an exact form: A form is reduced exact, if and only if
it can be written as a limit of exact forms. But the form itself might not be exact.

2.1.23 Lemma (double quotients). Let (X,| | x) be a Banach space and U C X
be a linear subspace. Let ny : X — X/U be the canonical projection onto the algebraic
quotient and define the quotient semi-norm || _||x/ : X/U — R by

) s 2= inf e .
In general, the space

N = {my(z) € X/U | [|mv (@)l x/v = 0}
is not trivial. Denote by nn : X/U — (X/U)/N the canonical projection and endow

(X/U)/N with the quotient semi-norm || _||(x/u)/n as well. Then || _[|(x/)/n is a norm
and (X/U)/N is a Banach space as well.
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Define 7 := my oy : X — (X/U)/N. Then kerm = U and we obtain a Banach space
isomorphism X/U — (X/U)/N, which makes the diagram

X "% X/U "% (X/U)/N (2.6)

o

X/U
commute.

Proof. The first statements follow from general functional analysis.

STEP 1 (U C kern): Let z € U. Then there exists a sequence u; € U such that u; — x
in X. By continuity my(u;) — 7y(x) in X/U. But my(u;) = 0 for every i € N, thus
mu(x) = 0 as well. This implies 0 = 7y (7my(z)) = m(x), which implies € ker 7, thus
U C ker.

STEP 2 (ker7 C U): Conversely, if 2 € ker , we obtain by definition

0=m(z) =rn(mv(z) = 0 = [|7n(mv (@)l (x/0)/Nn = in(il)feN Imv(z) — 7u (V)| x/0-

Consequently, there exists a sequence my7(vj) € N such that

70 (v;) 2 () © (2.7)

By definition of N
¥ € N0 = lmu(w3)lLxw = inf llog — ullx.

Consequently, for any j € N, there exists a sequence (u;j)ieny € U such that

uij 4)X Uj 5

which implies v; € U. Now let k € N be arbitrary. By (2.7) there exists a jx € N such that

1

ggg\lvjk —z —ullx = llmu (v, — 2)llxw < o -

By definition of the infimum, there exists uy € U such that

1
llvj, — 2 —ugllx < T

Consequently @y := vj, — uy is a sequence in U such that

_ k>
Up —— T .
X
This implies z € U.

STEP 3: We have constructed a surjective continuous map m# =y ony : X — (X/U)/N,
which induces an isomorphism X/ kerm — (X/U)/N as in (2.6) by the fundamental theo-
rem on homomorphisms. By the open map theorem it is a Banach space isomorphism. [
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2.1.24 Example (L;-cohomology of the half-line). The following example illustrates
that the phenomenon described in the Remark 2.1.22 above really occurs and that L,-
cohomology can be very different from the classical de Rham cohomology. For simplicity
let p =1, define M :=]1,00[C R and remember that

tst e LY(M) & s> 1. (2.8)

Similiarly, for an antiderivative of this function, we obtain

t—

— 17:—(8—1) e LY(M) & s> 2. (2.9)

(i) Define f : M — R by f(t) == t72 and w := fdt € L1(M). Since dimM = 1,
dw = 0, thus w is closed and w € W{(M). An antiderivative is easily seen to be
F:M — R, t~— —t~!. So in the classical de Rham cohomology we would conclude
that w = dF is exact. Since every smooth function on M has an antiderivative, we
obtain H}g (M) = 0. The crucial observation here is that

VeeR: F+cd¢ LA(M),

i.e. no antiderivative of w is integrable. Thus 0 # [w] € H} (M).

(ii) Now consider the sequence g, := 20 and G, = 1—7175—(1+%). We notice that for

T
alln e N
1 0 1 0
2+E>1:>gn€L1(M), 1+E>1:>Gn€L1(M).

Thus for all n € N, w,, := g,dt = dG,, € W{(M) and G,, € W (M). Consequently
0 = [wy] € Hi(M). We calculate

oo o0 B B l
o — wnllwian = 1 = gallyan = / () = ga()ldt = / 2 - ey

00 . 1 n 1 n
= lim —— +

n 1
=t 14— ¢+ — 41— =
+ 1  R—ooo R n+1R1+%+ n+1 n+1

— 0.
n+1

This shows w, — w in W{{(M). So altogether, we have found a non-exact W;-form
w, which is a Wi -limit of exact forms w,. In particular d : W (M) — Wi (M) is not
a closed operator.

(iii) It is also remarkable that M =|1, oo[ is homotopy equivalent to the one point space
{x}. Clearly H{({*}) =0, so L,-cohomology is not homotopy invariant (and there-
fore does not satisfy the Eilenberg-Steenrod axioms of a (co-)homology theory, c.f.
25, 4.8]). But de Rham cohomology is homotopy invariant, thus HJjz (M) = 0, but
Hi(M) # 0. To make things worse, we will illustrate how to employ equations (2.8)
and (2.9) to show that H{ (M) is not even finitely generated. These equations directly
show that for each 0 < ¢ < 1 the form w, := t~(+9)dt € W} (M) is Li-closed, but
not exact, since its antiderivative F. := —1¢=¢ ¢ LI(M). Clearly {w. | 0 < e < 1}
is linearly independent. We claim that they all represent different Li-cohomology
classes. Therefore consider 0 < § < & < 1. Clearly

lim S50 =

oo,
t—o00
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thus there exists ¢ty > 1 such that

1
— 79,

1
V>t : %t'f—‘s > 26 et > 2010 & 1 < -
g

1 1 _
e > —
20 € -

This implies

1. 1, 1. s 1 s 1.
>ty ¢ |[F(t) = Fy(t)] = Fo(t) = Fa(t) = ——t7° + 51 I > — 55! 5+5t § = 25! 9

which is clearly not in L{([tg,o0[) by (2.8). Since F. — Fj is an anti-derivative of
we: — ws and any other anti-derivative differs from F. — Fj only by a constant, no
anti-derivative of w. — ws is in LY(M). Consequently [w.] # [ws] € H(M).

2.1.1 Morphisms

2.1.25 Remark. In category theory, a functor is defined on objects and morphisms of
a certain category and one usually wants that a cohomology theory is functorial. In our
present case, this is not so easy, since we have not yet defined a suitable class of morphisms.
If F: M — N is a smooth map, then it functorially induces a pull-back F* : Q(N) —
Q(M). In general F* : L(N) — L(M) is not even well-defined: Assume that F =+ : M —
N is an inclusion of a submanifold with M with dimension m < n. Then M is a set of
measure zero in N. But forms w € L(N) may be changed arbitrarily on a set of measure
zero. So there is no chance of defining t*w = w|s directly.

2.1.26 Definition (zero-preserving). A map F : M — N is zero-preserving if for any
set of measure zero E C N, the set F~1(E) C M is a set of measure zero as well.

2.1.27 Definition. Let F' : (M,h) — (N,h) be zero-preserving and smooth. Let w €
L¥(N) be any differential form. Then F*w € L¥(M) defined by

Vpe M :VXy,..., X € T(M) : (F*w)p(Xl, e ,Xk) = wF(p)(F*Xl, ceey F*Xk)
is the pull-back of w along F'. Notice that this gives a well-defined map F* : L(N) — L(M).

2.1.28 Theorem. Let F': (M,g) — (N, h).

(i) If F is Cy-bounded (c.f. 1.3.6) and zero-preserving, then F* : Loo(N) — Loo(M) is
bounded.

(ii) If Fis a (C1, Cq)-bounded diffeomorphism, then F* : L,(N) — L,(M), is a Banach
space isomorphism for all 1 < p < oo.

(iii) If F is an isometry, then F™* : L,(N) — L,(M) is an isometry for all 1 < p < oo.
Proof.
(i) We calculate

. . 1.2.10 /n k
[ F* (W) || Lo (ar) = es8 sup| F*(w)|(z) < C7 ess sup(|w| o F)(x)
zeM xeM

n n
_ ( )cf ess suplu](y) < ( )cf ol .
k yeEF(M) k
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(ii) In this case F' is zero-preserving by 1.3.4. For any w € Ll; (N) we calculate

1.2.10 p 1.3.4 p
/ |F*(w)[Pd,V < <Z> chr / wlP 0 Fd,V < <Z> chrem / w|PdVp.
M M N

Since F~! is a (C2, C1)-bounded diffeomorphism, the result follows.

(iii) In this case, we have to sharpen the inequalities derived so far: For any p € M

131 VOU(Fup(X1) A+ A Fylyp(Xm))

Jac F
ac F(p) Vol(X1 A ... Xm) 210
132 Vet ((Fulp(X3), Fulp(X;)) 1.2.2 . '
det((X;, X;)) ’
since F' is an isometry. Therefore in case 1 < p < oo
¥ X 1.2.12
I @0 = [ F@PdY 22 [ ol o Fa,v
M M
(2.10) 1.3.3
= [ el PaacPa,v 2 [ upav = el
and in case p = 0o
% X 1.2.12
[E™ (@)l Lo (ar) = €s8 sup|F™(w)|(z) =" ess sup(|w| o F)(x)
zeM zeM
= ess sup|w|(y) = [[wll L (v)- O
yeN

2.1.29 Theorem. Let F': (M, g) — (N,h) be a diffeomorphism.

(i) For any w € Wzﬁloc(N ), the form F*w is weakly differentiable and satisfies
(do F*)(w) = (F" o d)(w).

In particular F* : Wy, 16c(N) = Wp1oc(M).

(i) If in addition F' is (C4, C2)-bounded, then F* : W,(N) — W),(M) is a Banach space
isomorphism.

(iii) If F is an isometry, then F* : W,(N) — W,(M) is an isometry.

Proof.

(i) By definition of the weak differential and the diffeomorphism invariance of the inte-
gral, any n € Q7 F~1(M) satisfies

[ R A= 0RO B )
_ (_1\k W —1* = w -1
_(1)+1/Nid AF~ () i/N AdF~ (n)
_ w —1* = *(w -
_i/N A F~Y(dn) /MF( ANF~" (dn))
_/ F*(w) Adn,
M

thus dF*(w) = F*(dw) in the weak sense. In particular F*(w) € W;lOC(M).
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(ii) This follows by combining (i) with 2.1.28.

(iii) By Theorem 2.1.28 F* : L,(N) — L,(M) is an isometry and by (ii) it restricts
to a map F* : W,(N) — W,(M), which commutes with d. Consequently for any
1<p<

1P @y ary = I @I, a0y + 14F* @I

= wliy, ) + IE (@D, ar) = @iy, ()

and for p = oo

IE* (@)llw (ary = max{ || F™ (@) | Lo (a) s [AF™ (@) [ oo (a) }

= max{||wl| . ar)s IF* (@) oo (i)} = lwllwe (v)- 0

2.1.30 Theorem (isometry Invariance). Assume F': (M, g) — (N,h) is an isometry
between Riemannian manifolds. Then F' induces an isometry [F] : H,(N) — H,(M) of
semi-normed spaces.

Proof. By Theorem 2.1.29, F' induces isometries on the cochain level W,(N) — W, (M).
Now consider any cohomology class [w] € H]f(N ) and calculate

IFNEDlson = N @Magan = f, | CIF ) = dillwgn
= newii“rifl(M) I1F*(w) = F*(dF = m)llwg )
- neW}n—fl(M) lw = A= () llwg vy
= i e = g = el g -

2.2 L,-cohomology of simplicial complexes

In this subsection we will introduce the L,-cohomology of simplicial complexes. First, we
unfortunately will have to establish lots of notation concerning simplices and simplicial
complexes in R”. We will assume the reader to be familiar with these constructions and
try to keep this as brief as possible. Second, we have to pass from the classical simplicial
homology to cohomology. This is done by dualization and has conceptual reasons: It
would be strange to compare a homology theory with cohomology theories. Third, we will
introduce Lp-norms on cochains and obtain our desired L,-cohomology theory.

2.2.1 Simplicial Complexes

2.2.1 Definition (simplex). The k+ 1 points zy, ...,z € R™ are in general position, if
the set {x1 —x0,..., 2 —x0} C R™ is linearly independent. In that case their convex hull

k
0= <$07 .- 'axk> = {Z Biz;
1=0

k
V0 <i<k:pBel0,1] and Zﬁizl}CR”
1=0
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is a simpler in R™ spanned by the vertices xg,...,xr. The integer k is the dimension
of o and we also say that o is a k-simplex. The tupel (B, ..., k) associated to a point
x = Z?:o Brxp € o are the barycentric coordinates of x. Since xg, ...,z are in general
position, the barycentric coordinates of x are well-defined.

Any simplex o can be seen as a topological space |o| by endowing it with the subspace
topology inherited from R™. The vertices of o are characterized as all the points of |o|,
which are not the midpoint of a line in |o| that is not itself a point. Therefore the tuple of
vertices of o may be recovered from |o| up to its order. Notice that for any permutation

7 € Gky1 and any k-simplex o = (xg,...,zk), we always have

o = <:E7r(0)7 s 7':U7T(k)> = <:L‘07 cee ,CL'k->
as an equality of sets. But the barycentric coordinate functions m(5)g,...,7(8); of mo
satisfy

(Br)s - -+ Bay) = (m(B)os - - ., (B))

as an equality of tuples. We say o is a topological simplex, if we want to stress the fact
that we regard it only as a topological space with no canonical order of the vertices.

A simplex 7 spanned by any subset of {zg,...,x} is a face of o, which we denote by
7 < o. If 7 # o, we call 7 a proper face of o and denote 7 < o. The (k — 1)-
dimensional faces of o are the boundary faces. In particular 9o = (zq, ..., &;,...23) :=
(X0y vy Tim1, Tig1, - - ., Tk is the i-th boundary face of o .

2.2.2 Definition (oriented simplex). Denote by &1 the group of permutations on
{0,...,k}. Then sgn : &1 — {+1,—1} is a group homomorphism and its kernel 21,
the alternating group, is a normal subgroup of index two. Consequently, the quotient
Okt1 1= Sp41/Ax41 is a group consisting of the two equivalance classes [+1x41], [~ L1k+1]-
These are called orientations. Denote by ki1 : Orr1 — Opy1 the uniquely determined
nontrivial group homomorphism, by 6}‘; 41 its @-th power, and by Ok11 @ Ogp1 — Ok,
[+ 1kq1] = [£1x). For any 0 <i < k+1, the map 0" := ;| := 6, 0 Opy1 : Opy1 — Oy is
the i-th boundary map.

Let xg, ...,z € R™ be in general position. An oriented simplez is a tuple (o, [r]) consisting
of a simplex o = (zo, ..., xx) and an orientation [7] € Of1. For any 0 <i < k, we call

9% (o, [1]) == (8'c, d'[7])

the i-th boundary of (o, [r]) with induced orientation. This inductively induces an orienta-
tion on all the faces of the simplex.

For any m € &4, we call (zq(g),---,Trk)) an ordering of the vertices. Two order-
ings (Zr(0)s-- s Ta(k))s (Tw(0)s-- s Ta/()) are equivalent, if [7] = [7'] € Opy1. Define
[Z‘W(O)’ ce 7x7r(k:)] = (<CL‘0, cee ,:Ek>, [ﬂ-]) and [Z‘W(O)’ s 7'T7r(k:)]_1 = (<I0, <o vxk>v 6k+1([77]))
If i == (yo,..-,Yk—1) :== (®o, ..., T4, ..., x) is the i-th boundary face, the induced orien-
tation may be written with this notation by

o, .- k) = [0, &is 2] OV = (70, 5L ([+14])).
2.2.3 Definition (incidence coefficient). For any oriented (k+ 1)-simplex [o] and any

oriented k-simplex [7] the integer

+1, 7 <o and [7] has the orientation induced by [o],
lo:7]:=<¢ =1, 7 <0 and [7] has the orientation opposite to the one induced by [o] ,

0, otherwise,
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is the incidence coefficient of [T] and [o]. In case T and o are not oriented, this number is
just supposed to be +1 if 7 < ¢ and 0 otherwise.

2.2.4 Definition (standard simplex). Let k € N, define ¢y := 0 € R¥ and let ¢; :=
(0,...,1,...,0) € R¥, 1 <i <k, be the canonical basis of R¥. The set

Ay = <60,...,6k> C]Rk

is the k-dimensional standard simplex. If we require it to be oriented, we assume that
(Ag, [idg+1]) is the chosen orientation. We also consider it as a subset of all R” with
n > k. Besides beeing a subset of R¥, we consider A}, as a smooth manifold with corners.

2.2.5 Definition (standard atlas). Let o := (zg,...,zx) be a k-simplex. For any
fixed 0 < i < k the map B®: |o| — Ay,

k
Bl(x) — Bi<25j$j> = (ﬂo,,@,ﬂk) c RF
=0

is a standard chart on o. These assemble to a smooth atlas.

2.2.6 Definition (simplicial complex). A countable set K of topological simplices in
some R™ is a simplicial complex, if the following conditions are satisfied:

(i) Foranyo e K: 1<o=171€ K.
(ii) Forany o,7€ K: cNT# 0= 0oN71<o0.

For any integer k we define the k-skeleton K* to be the set of all simplices in K with
dimension less or equal to k, and K®) to be the set of all simplices in K with dimension
precisely k. Since K* = 0, if k > n, there is a well-defined number

dim K := max{k € N | K*! = K*},

the dimension of K.

A subset L C K is a subcomplex if L is itself a simplicial complex. In that case, we call
(K, L) a pair of complexes.

Notice that the 0-simplices of a complex K are precisely the vertices of all the simplices in
K. We will assume that the vertices of K are labeled {x;};en.

2.2.7 Definition (closure / star / link). Let K be a simplicial complex and S C K
be an arbitrary subset.

(i) The closure of S is the smallest simplicial complex cl(S) such that S C cl(.5).
(ii) The star of S in K is the set

st(S) :=stg(S):={c e K|ITreS:7<0}.

See figure 2.2.1 for a visualization.
(iii) The link of S in K is

1k(S) :=lkg(S) :=cl(stx(S9)) \ stx(S5).
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-
7 X

Figure 2.1: Forming stars

2.2.8 Definition (star-bounded). A simplicial complex K is star-bounded with star
bound N, if the stars of all the simplices in K contain no more than N simplices, i.e.

dN € N:Vo € K : §stg(o) < N.

2.2.9 Definition (geometric realization). Let K be a simplicial complex in R™. The
set
K| = | |o| cR"
oceK

is the geometric realization of K.
A subset P C R"™ is a polyhedron, if there exists a simplicial complex K such that P = |K]|.

2.2.10 Definition (triangulation). A topological space X is triangulable, if there exists
a simplicial complex K and a homeomorphism h : |K| — X. The homeomorphism h is a
triangulation.

If M is a smooth manifold, we say M is smoothly triangulable, if there exists a triangulation
h : |K| — M such that for any o € K, h restricts to a smooth map |o| — M between
manifolds with corners. We call h a smooth triangulation.

2.2.11 Definition (barycentric coordinate functions). Let K be a simplicial com-
plex and {(z;);en} be its vertices. On every single simplex o = (zj,,...,2;,) € K the
baricentric coordinates define functions f;,..., 5, : |o| — [0,1]. The collection of all
these functions f; : |K| — [0, 1] are the barycentric coordinate functions of K, where we
set Bi(x) =0, if z € |K| \ st(x;).

2.2.12 Lemma (properties of barycentric coordinate functions). The barycentric
coordinate functions defined above satisfy

supp f; C st(z;), > Bi=1, > dsi =0,

i€EN i€EN

where all the sums are locally finite.
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2.2.13 Definition (barycentric subdivision). Let 0 = (xg,...,2x) C R" be a k-
simplex. Then

k
1
bo : Zwielnta

k+1 P
is the barycenter of o.
For any other point x € R™ we define
xx0:=(x,x0,...,Tk)
to be the cone on o from x (provided {z, o, ..., 2y} are in general position as well).

For any simplicial complex K we the define the complex B(K), called the barycentric
subdivision of K, inductively as follows: If dim K = 0, then B(K) := K. Now assume
B(K) has been defined for all simplicial complexes of dimension < k. Define

B(K):=B(K"u |  bexrT,

ceK(k+1) r<q

where K is a simplicial complex of dimension k& + 1. We sometimes say B(K) is the
first barycentric subdivision of K and BY(K) := B(B(...B(K))) is the I-th barycentric
subdivision of K.

2.2.2 Simplicial maps

We would like to construct a category of simplicial complexes. Therefore we have to define
an appropriate class of morphisms. In this we will roughly follow some exercises in [15,
5.4,5.2].

2.2.14 Definition (affine). A map F : X — Y between vector spaces is affine, if
there exist a linear map A : X — Y and b € Y such that F' = A+ b. We say F is an
affine isomorphism if F is affine and A is an isomorphism (we will see below that the
decomposition F' = A + b is unique and therefore this is well-defined.)

2.2.15 Lemma. Let F': X — Y be affine.

(i) The representation F' = A + b is unique and may be recovered from F' by
b= F(0) A=F—-b=F —F(0).

(ii) Any linear map is affine.
(iii) A composition of affine maps is affine. f F=A+b: X =Y, G=B+c:Y - Z
are affine, the composition Go F' : X — Y is given by

GoF=BoA+ B(b) +ec.

(iv) If F' is an affine isomorphism, it is bijective and the inverse G : Y — X is an affine
isomorphism as well, which has the representation

G=A"1— A1)

Proof.
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(i) Since A is linear, b = A(0) + b = F(0), thus by definition A = F —b = F — F(0).
(ii) Just choose b = 0.
(iii) We calculate for any x € X

(G o F)(x) = G(A(x) +b) = B(A(x)) + B(b) + .
(iv) Let x € X and y := F(x). This implies
y=F(x)=Alx) +besy—b=Alx) e x=A"1(y) — A7(D). O

2.2.16 Definition (simplicial map). A map f: o0 — 7, where 0,7 C R" are a k- and
an [-simplex, is simplicial, if there exists an affine map F' : R” — R™ such that F|, = f
and F(cl(a)©) c el(7)© (i.e. F maps the vertices of o to vertices of 7).

2.2.17 Lemma (properties of simplicial maps). Let 0,7 C R” be a k- and an -
simplex.

(i) For any map f(© : cl(6)©@ — cl(7)(© there exists a unique simplicial map f : o — 7
such that f|c1(o)(0) = [0,

(ii) In case k = there exists a simplicial homeomorphism f: 0 — 7.

Proof. Let o = (00,...,0%), T = (T0,...,77).

(i) We may identify the map f© : {oq,...,01} — {70,...,7} with the corresponding
map fo:{0,...,k} = {0,...,1} defined by the relation f(0;) = 74,;), 1 <i < k.
STEP 1 (uniqueness): Assume f = F|, is simplicial and FF = A+ b : R" — R" is
affine such that F| d(o)o = [ ©), Let z = Zf:o Bio; € o be arbitrary. We calculate

k k k
)= F(>fioi) = A(DBios) +b =" BiA(o) + b
i=0 i=0 i=0
k k k k
= Bi(Alei) +b) =Y Bib+b=> BiF(oi)=> Bif V(o) e
i=0 i=0 i=0 i=0
STEP 2 (existence): We will construct the desired map F' step by step.
F
o > T
],

A 125 A

Let A, : R¥ — R" be the map e; — 0; — 0g. This map is an isomorphism onto its
image V. Let 7 : R® — V be the canonical projection and define G, : R — RF by

Go(x) == A7 (n(x — 00)) = A7 (n(2)) — A7} (7(00))

Then G, is an affine map, satisfying G,(0;) = e;. By uniqueness, this implies that
it sends o to A, C R*. Define F, = A, + b, : Rt — R” by setting A (ej) == 15 — 70,
1 <j <, by :=19. Then Fr|a, : A; — 7 is a simplicial homeomorphism. Define the
linear map Fa : RF — R! by setting Fa(e;) := €fo(i), 1 < i < k. The composition
F:=F,0Fa oG, : R" — R" is affine and satisfies

F(0;) = Fr(Fa(Go(01))) = Fr(Fa(e:) = Fr(ego) = Tpoiy — 70 + 10 = O (02).

By uniqueness f := F|, : 0 — 7 is the simplicial map we are looking for.
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(i) We just define fO : cl(6)@ — cl(7)©), o; — 7, 1 < i < k = I. This map is
obviously bijective. Denote its inverse by ¢0. Both maps induce a unique simplicial
map f: 0 — 7,9 : 7 = 0. Clearly go f : ¢ — o is a simplicial map such
that (go £)© :=id: cl(6)©® — cl(0)©. Now id : R* — R™ is clearly affine and its
restriction to cl(¢)(?) is (go f)(9). By the uniqueness, this implies gof = id : |o| — |o]|.
The same holds for f o g and therefore the statement is proven. O

2.2.18 Definition (simplicial map). Let K, L be simplicial complexes. A continous
map f : |K| — |L| whith the property that for every ¢ € K there exists 7 € L such
that f|, : 0 — 7 is a simplicial map in the sense of 2.2.16, is a simplicial map (between
complezes). In that case we say the induced map FO - KO — £O) ig the vertex map of f.
We say K and L are (simplicially) isomorphic, if there exists a simplicial homeomorphism
f K| — |L].

2.2.19 Lemma (properties of simplicial maps). Let K, L be simplicial complexes.

(i) Let fo: K© — L be any map with the property that whenever {z;,, ... , Ty, } are
the vertices of a simplex in K, {fo(zi,), ..., fo(xi,)} are the vertices of a simplex in
L (possibly with repetitions). Then there exists a unique simplicial map f: K — L
such that f(© = f,.

(ii) Let fo be as above with the additional property that fo is bijective and {z;, ..., z;, }
are vertices of a simplex in K if and only if {fo(z4,), ..., fo(xi,)} are vertices of a
simplex in L. Then K and L are isomorphic.

Proof.

(i) The hypothesis ensures that for any o € K, there exists 7 € L such that fo(cl(c(?)) ¢
cl(T)(O). Thus by Lemma 2.2.17 there exists a unique simplicial map f, : ¢ — 7 such
that f* = folao). Define f: |K[ — |L| by setting f(z) := f,(z) if z € Into.
Since | K| is the disjoint union of the interior of its simplices (if dim o = 0, then Int 0 =
o), this is well-defined. By construction this map is simplicial. It is continuous, since
whenever we consider interior points of a simplex, f is the restriction of an affine,
hence continuous, map. If two simplices meet at a common face p € o N 7, then
folp = fo = fr|p- Thus f is globally continuous.

(ii) This follows directly from the hypothesis, part (i) and Lemma 2.2.17(ii). O

2.2.20 Corollary. On a star bounded simplicial complex there exists only a finite number
of isomorphism classes of stars of simplices.

Proof. Let K be a star-bounded simplicial complex of dimension n with star bound N
and consider a simplex o € K. The complex cl(stx(c)) is finite as well and contains by
definition less than IV simplices of dimension less or equal to n. Consider all simplicial
complexes built out of less than NV standard simplices of dimension less or equal n. These
are only finitely many and any cl(stx (o)) has to be isomorphic to at least one of them by
successive application of Lemma 2.2.17,(ii). O

2.2.21 Definition (galactic cover). Let {z;}ien be a fixed counting of the vertices of
the star-bounded simplicial complex K. A simplicial isomorphism class [stx(z;)] of a star
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of a vertex z; € K is a galazy. If sti(z;) € [stx(x;)], we say that z; and x; (or even that
i and j) belong to the same galaxy.

Let K be a star-bounded simplicial complex with star bound N. As we just pointed
out in 2.2.20 the set {[stx(x)]},cx© of galaxies is finite. Therefore there exists a finite
representation system, i.e. some number G = G(N) and vertices z1,...,zg € KO such
that all the galaxies of K are given by [stx(x1)],..., [stx(zg)]. Since

G
K = [stre ()]

v=1

we call the later one a galactic cover of K.

2.2.3 Simplicial cohomology

2.2.22 Definition (simplicial homology). Let K be a simplicial complex and R be
a commutative ring with unit. For any set S let R(S) be the free module generated by S
over R. Define

Cr(K, R) := R({(0, [£14]) | 0 € KW})/~,

where (o, [+1x]) ~ —(0,[—1k]). In other words: We take all the topological simplices in K,
choose both possible orientations, take all these oriented simplices, form the free module
and then identify. The module Ci(K, R) is the k-th simplicial chain group of K with
coefficients in R.

For any o = (x4, ..., i) € K, we denote by [0] the oriented simplex obtained by defining
[o] := (o, [+1]),ifip < ... < ig. We will make no notational distinction between an oriented
simplex [o] and the equivalence class [0] € Ck(K, R), i.e. we will write [071] = —[o].

The map dj, : Cx(K, R) — Cix_1(K, R) is defined as the linear extension of

k
0] = [Tigs - s @iy = D (1) [@igs o Fiy 5 T4, .

v=0

These groups and maps assemble to a chain complex of R-modules (Cy, d,). The homology
groups
H.(K,R):= H.(C«(K,R))

are the simplicial homology groups with coefficients in R. We will write C\(K) := Cy (K, R).

2.2.23 Definition (simplicial cohomology). Let K be a simplicial complex and R be
a commutative ring with unit. We call

C*(K,R) := Homg(Cy(K, R), R)

the k-th simplicial cochain group of K with coefficients in R . The map d* : C*(K, R) —
C*1(K, R) is defined by

d* (") ([o+1]) = ex(di([on+1]).

These groups and maps assemble to a cochain complex of R-modules (C*,d*). The coho-
mology groups
H*(K,R) := H*(C*(K,R))
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are the simplicial cohomology groups with coefficients in R. We will always write C*(K) :=
C*(K,R). For any subcomplex L C K we call

CH*(K,L) :={c* € C*(K) | Vo € L : ([0]) = 0}

the simplicial cochains relative L. These assemble to a cochain complex C*(K, L) as well
and its cohomology
H*(K,L):= H(C*(K,L))

is the simplicial cohomology relative L.

2.2.24 Convention (dualized bases). We would like to identify elements in the chain
groups with elements in the cochain groups. In our standard situation K will represent
a triangulation of a noncompact manifold, which implies that it is not finite. So caution
should be exercised.

Let V be a possibly infinite dimensional R-vector space. Zorn’s Lemma still provides us
with a basis B = (b;)jer of V. We define the dualized basis B* := (b');cs, where b* € V*
is the unique linear extension, defined by bi(bj) = 5; It is a well know fact from linear
algebra that if I is finite, B* is in fact a basis for V*, usually called the dual basis. In that
case, any element ¢ € V* has a unique representation

o= @bl
el

It is also a well-known fact that this is wrong if I is not finite. Consider for example the
element ¢ € V*, defined by the linear extension of ¢(b;) := 1, i € I. In that case, the sum
above is not finite and the equation makes no sense in V*. However the dualized basis B*
still exists even if it is not a basis for V* anymore. Since B is a basis of V, any v € V has

v = Zvjbj :ij(v)bj,

jel jel

a unique representation

where all, but finitely many v/ are zero. Denote by I(v) C I the finite subset of all indices,
where v/ # 0. This implies that for any i € I

bi(v) = bi(Zvjbj) =S W) = Y Wis.
jer JeI JEI(v)

Therefore i ¢ I(v) = b'(v) = 0. Thus b°(v) = 0 for all but finitely many i € I. This gives
rise to the following construction: For any system ()\; € R);cr, we define ), ; A\;b' to be
the map V' — R, given by

v (Z )\,-bi> (0) =3 A ) = 3 A (v).
icl i€l icl(v)

We have just shown that the sum on the right-hand side is always finite and thus well-
defined. It is clear from this definition that ), ; M\;b' € V*. For any ¢ € V*, the equation

p=> i) : VR (2.11)
el
is valid in the sense that
YweV: (Zgo(b,»)bi) (0) = D )i (v) = > i)’ = SO( > vibi> = ¢(v).
iel i€I(v) i€l(v) 1€l(v)

If [0] € Cr(K) is a generator, we denote by [0]* € C*(K) its corresponding dual.



2.2 L,-cohomology of simplicial complexes 42

2.2.25 Lemma (coboundary formula). Let K be a simplicial complex in R"™ with
vertices (z;)ien. Let [o] = [z4,...,24,] € Cp(K), [T] = [zjg,...,2j,,,] € Crq1(K) and
I' =1 \ {io, . ,lk} Then
* (_1)T , if {10777’/6} - {j07"->jk+1}
d([o]*)([7]) = { : (2.12)

0 , otherwise

where 0 < r < k41 such that (i, ..., i) = (Jo,.-- ,jAr, ooy Jk+1). With Convention 2.2.24
in power, we may expand

d[O’]* = Z [ZL‘Z', IEiO, . ,l’ik]*.

iel’

Proof. Consider

k+1
d([o])([7]) = o] ([@d([7]) = D (=1 [@igs - i) ([Tgor -2 T 5 1))
v=0
This expression is zero by definition, unless {i,...,i} C {jo,...,jk+1}. Otherwise there
exists 0 < r < k + 1 such that
[l’io,...,l‘ik] = [l‘jo""vfj\r""vl"jwﬂ]?

in which case
d([o]")([7]) = (=1)".

For such an index J = (jo, - .., jk+1) we write this r as r = r(J). Having this in mind and
using (2.11) we calculate

do]*=" Y () ()] = Yo d(ol) (o i D) ([@os s 25T

reK (k+1) J=(j0<...<Jk+1)
(2.12) r(J * *
= Z (—1) ( )[‘rjm'"7xjr(1)7"'xjk+1] :Z[xi,:cio,...,mik] B L]
J={jo<...<jk+1} el
D{’LO,,’Lk}

2.2.26 Definition (simplicial L,-cochains). Let K be a simplicial complex. We call

V1< p<oo: CHEK) = { e CHE) | ellepaey = (D0 le(loll?)” < oo},

ceK (k)

Ch(K) = (e € CH(K) | Nellow () == sup_e((o])] < o).
o'eK(k)

the k-th simplicial Ly-cochain group of K.
If L C K is a subcomplex, we call

CHK, L) :={ce CE(K) | Yo € LW : ¢([o]) = 0}

the k-th simplicial Ly-cochain group of K relative L.
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2.2.27 Lemma. Let K be a star-bounded simplicial complex with star bound N and
k € N be arbitrary. Then for any 1 < p < oo and any c € C;f(K)

ldelloger ey < (& +2)¥Nelleg o,

For any ¢ € Ck (K)
[dell i (K) < (k4 2)llellok, () -

In particular, for any 1 < p < oo, the coboundary d* is a bounded linear operator C]’: (K) —
CII,“H(K ) and (C,(K),d") is a well-defined cochain complex.

Proof. In case p < oo, we calculate:

delZpin ey = D l@0DP = > letdloP = 3" | 3 lo:rleli))|

e K (k+1) ceK (k+1) ceK(k+1) rck(k)
< Y k427 ) o Tle(n)P
UGK(k"rl) TEK(k)
=(k+2P > el D o7
reK (k) ocK(k+1)
< (k+2) Z;k) le([TDIP(dsti (7)) < (k+ 2)pNHCH€‘§(K)'
TeK

In case p = oo, we calculate similarly:

ldellgzrige = swp (o)l = sup le(dol)l = sup | 3" fo: rellr])
oC K (k+1) ceK (k+1) ce K (k+1) )

< sup Y lo:Tlle((T)I < (k+2) sup  sup [0z 7][e([7])]
oce K (k+1) re k) ceK(k+1) re K (k)

= (k+2) sup [e([7])] < (k+2)llcller x)- O
reK k)

2.2.28 Definition (simplicial L,-cohomology). Let K be a star-bounded simplicial
complex. Then we call
Hy(K) := H*(Cy(K),d)

the simplicial L,-cohomology of K. We denote its closed and exact forms by Z,(K) re-
spectively B,(K). The norm on C;f(K ) induces a semi-norm on ’ng (K). We call

. HE(K)

(5 1= )| —0

{z € Hy(K) | x| x) = 0}

the reduced simplicial Ly-cohomology.

For any subcomplex L C K, we call
H,(K, L) = H*(C,(K, L))
the simplicial Ly,-cohomology relative L.
2.2.29 Lemma (long exact sequence). The short sequence
0—— Cp(K,L) —— Cp(K) —— Cp(L) —— 0
is exact and induces a long exaxt sequence in cohomology.

Proof. This is clear from the definition of Cp (K, L). O
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2.3 L,-cohomology of S-forms

Finally we introduce the cohomology of S-forms. This cohomology theory is developed for
technical reasons and should be thought of as a theory between the other two.

2.3.1 Simplicial metrics

Before we can define S-forms, there is one technical obstacle to overcome that will turn
out to be of vital importance later. At the moment K is a simplicial complex in some R",
ie. |K| C R" as a set. We would like to define a "Riemannian metric” on |K|, which is
different from the Euclidean one.

2.3.1 Definition (simplicial Riemannian Metric). Let K be a simplicial complex.
For any ¢ € K we think of ¢ as a smooth manifold with corners. A system of Riemannian
metrics

9={9(0) € T*(0) | 0 € K}

is a simplicial Riemannian metric or just an ”S-metric”, if whenever 7 < o and j; 5 : 7= o
is the inclusion, then j;  g(o) = g(7).

2.3.2 Remark. So, an S-metric attatches Riemannian metrics to every simplex in the
complex in a compatible way. We would like to have an S-metric g on K such that for
every s-simplex o € K any simplicial isomorphism ¢ — Ay onto the standard simplex
is an isometry. This will have the convenient effect that the gg-volume of o equals the
Euclidean volume of the standard simplex A;. Notice that it is very easy to construct such
a metric for the complex cl(¢): Just choose any standard chart B : |o| — Ag; C R™ as in
2.2.5, denote by g the Euclidean metric in R and define gg := B*g. Now we could try to
inductively construct an S-metric on an arbitrary complex, but this would be rather nasty
to carry out in detail.

2.3.3 Remark (modified standard simplex). In the following it will be convenient to
slightly change the definition of the standard simplex: Renumber the coordinates of a point
in R"*! to x = (x,...,7,), and denote by {& | 0 < i < n} the canonical basis of R"*1.
Define

k k
Ap = {Zﬁiei IVO<i<k:B el01] and Zﬂi:l} C RFH.
=0 1=0

This definition has the advantage that all boundary faces of Aj have the same volume
and are isometric to Ax_;. Notice that this is not true for Aj: For example Ao has two
faces of length 1, namely (0,e1) and (0,e2). But (e1,e2) has length v/2 and Ay = (0, e;)
has length 1. For matters of geometry, this is very inconvenient. Of course this definition
has the disadvantage that A, C R¥t1 ie. we are troubled with a seemingly superflous
additional dimension.

2.3.4 Definition (Hilbert space [?). Let [? be the space of all real square summable
sequences, 1i.e.

o
R =12 = {y e RV | [yl =D 47 < oo}
=0
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For any n € N, we may identify R™ as a subspace of [2, by identifying the vector (zq, ..., Zn_1)
with the sequence (xg,...,Z,_1,0,0,...). For any i € N define é; € [ to be the sequence
(¢;); = d;j. Notice that [? is a Hilbert space with the inner product

o0
Vy,y' €12 g(y.y) =D vl
i=0

For technical reasons it might be useful to temporarily think of [? as a smooth Riemannian
Hilbert manifold?.
We think of

A = {i&émemﬁi zo,iﬁizl} CR®
=0 1=0

as the infinite dimensional standard simplex. For any N € N

AJOVO ::{zn:ﬂiéiEAoo|n§N}
=0

may be thought of as Ay ¢ RN+,

2.3.5 Theorem (S-metric). Let K be a simplicial complex and let {z;}ieny be an arbi-
trary but fixed counting of its vertices. Define

KN = {<.Z‘Z‘0,...,(L'Z‘k> €K|Zo,,ZkSN,k§dlmK}

and let fy : Ky — A]OVO be the unique simplicial map determined by z; — €;, 0 < i < N.
(c.f. 2.2.19(1)). This defines a map f : |[K| = Ay by = — fy(z), if z € Ky. This is
a well-defined embedding and gg := f*g is an S-metric on K. This metric satisfies the
following properties.

(i) For any k-simplex o € K, volg(c) := volyg () = vol(Ay) = 1/k! =: v

(ii) Let 7,7 € N and assume that stx (z;) and stx (x;) are simplicially isomorphic. Then
any simplicial isomorphism ;; : stx(z;) — stx(z;) is a Riemannian isometry with
respect to gg.

Proof.

(i) Let o = (i, ..., z;,) and assume i, ...,i, < N. By construction f is a Riemannian
isometry onto its image. Therefore vol(c) = vol(f(c)). Now

f(o) = eig, .- ei) C RN

which is the standard simplex up to a permutation of the vertices. But such a
permutation is clearly realized by an isometry. Thus vol(f (o)) = vol(Ay).

(ii) Certainly there exists N € N such that ¢, 7 < N. Therefore we consider fy : Ky —
AN < RN*L. Since stx(x;) and sty (z;) are simplicially isomorphic, there exists
©) = {xioy s 7xir}7 Cl(StK(x]))(O) =

2 A seperable Hausdorff space M in which every point has an open neighborhood that is homeomorphic to

some number r, and indices such that cl(stx (z;))

an open set of some Hilbert space H is a Hilbert manifold. Analogously to the finite dimensional case,
we say M is a smooth Hilbert manifold, if it is endowed with a maximal atlas such that all transition
functions are smooth.
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{zjy,. ..,z }. The simplicial isomorphism ;; is uniquely determined by some per-
mutation 7 € S,41, w(iy) = ju, 0 < v <7, (c.f. 2.2.19(i)). This corresponds to an
isometry II;; : AN — AN

everywhere else. Define f; := fn|stx(x;) and f; := fn|stx(z;). We obtain the
commutative diagram

which maps e;, — e;,, 0 < v < r, and is the identity

st (z;) fz—) A]OVO

Jf/)i j J{Hij

StK($]’) L) A]OVO

Since f; and f; are Riemannian isometries onto their images, 1;; is an isometry as

well. O

2.3.6 Convention. If not explicitely stated otherwise, we will always assume that K is
endowed with the standard S-metric described above.

2.3.2 S-Forms

2.3.7 Remark (restriction Operators). The aim of this section is to introduce the
notion of S-Forms, so we would like to start with their definition in 2.3.9 right away. The
problem is that we cannot write down condition (2.14) at this point.

In subsection 2.1.1, we already noticed that a map F': M — N does not necessarily induce
a well-defined map F* : W,(N) — W,(M) and therefore restricted our attention to zero-
preserving maps. These maps turned out to form an appropriate class of morphisms. Let
o C R" be a k-simplex and 7 < o be one of its boundary faces. Consider the inclusion
j = jro:T <> 0. Then 7 C o is a set of measure zero in o, but j7(7) = 7 is certainly
not a set of measure zero in 7. Therefore we cannot apply the theory developed in 2.1.1
directly to j.

Discussing the entire theory necessary to define j* would take us too far afield. Nevertheless
we will elaborate the very short sketch given in [5, p. 191] at least a bit further: Our
ultimate goal is to define a bounded linear operator j , : Weo(0) — Woo(7). The idea is
to factor this operator into

Woao(0) 2% Wao (7) (2.13)
’YU,UJV e
JT,U

Woo(U)

Here U is an open set in the affine hull of 0. For the definition of v, and j7 ;; article [5]
refers to [6]. This article is in Russian®, but the important part roughly translates to:

Lemma 4: Let E be an n-dimensional Riemannian manifold without bound-
ary, D C E be a smooth submanifold of dimension n. Then there exists an
open set U C E, D C U and bounded linear operators A : Ll;(D) — L’;(U),
A(Wzﬁq(D)) C Wzﬁq(U), 1 <p,q < oo such that A(w)|p = w.

3Thanks to Wassilij Gnedin and Valentin Krasontovich for helping with the translation.
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Thus one may define v by a formal application of this Lemma, i.e. define v, 7 := A. In the
situation we consider here, E is the affine hull of o, U corresponds to U, D corresponds to
Into and p = ¢ = oo (remember 2.1.11 for the definition of W), ).

Alternatively it is not hard to obtain this result directly: By definition of the S-metric o
is isometric to a standard simplex, i.e. a very simple submanifold. It is certainly possible
to extend a form w € Woo(Ak) to a form @ on some small open neighbourhood U D Ay, in
the affine hull of A, such that even

ess sup|w(z)| = ess sup|w(z)],
zelU IEAk

Le. w € W (U).

The much more critical part is the construction of Jr.u+ Notice that although j is not zero-
preserving, j is certainly Lipschitz continuous. For a Lipschitz continuous map f: X — Y
and in case p = oo, it is possible to define an operator f*: Wk (V') — Wk (X) by setting
f*w :=mn, where 7 is the unique form satisfying

fe= L
f|p P

for any smooth simplex p C X. This equation from |6, p. 56| is an integral representation.
Integral representations are studied extensively in [6]. The existence and uniqueness of
this form is based on Whitney’s work, in particular [31, X.8.A|. Combining these results
one may obtain the following theorem from [6]:

Let E be an open Riemannian manifold and let D C Int E be a compact sub-
manifold. Let j : D — E be the identity embedding. Then there exists a bounded
linear operator j* : Woo (E) = Weo(D).

In general this is not possible for any 1 < p < co.

Using these theorems, we define j7 ; by (2.13) and remark that it does not depend on the

chosen extension operator.

Summing up, we obtain the following lemma.

2.3.8 Lemma. For any simplex ¢ and any face 7 < o there exists a bounded linear
restriction operator j7 , : Woo(0) = Weo(T).

2.3.9 Definition (S-form). Let K be a simplicial complex. For any two simplices
7,0 € K, 7 < o consider the inclusion map j,, : 7 < 0. A collection of forms

0:={0(c) e WE (o) |0 € K}
such that
Vr<oeK:j,(0(0)) =0(7), (2.14)

is a simplicial differential form of degree k or just an ”S-form”. The space of all these
S-forms of degree k on K is denoted by S*(K). For any S-form 6 := {#(0)}sex of degree
k, the collection df := {df(0) }sck is an S-form of degree k+1. Thus the S-forms assemble
to a cochain complex (S*(K),d*), the cochain complex of S-forms on K.
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2.3.10 Definition (p-summable S-forms). Let § € S¥(K) and 1 < p < co. We say 6
is p-summoapble, if

1015 ) = > 6o Mwe ) respectively  [|0]|sx (x) == SEEHG(O-)HW&(U) < oo0.
ceK e

The set of all p-summable S-forms is denoted by S;(K). (Notice that K has only countably
many simplices and since [|0(c)|lwx ) = 0, the norm does not depend on the order of
summation.)

2.3.11 Lemma. For every 1 < p < oo the S;(K) assemble to a cochain complex of
Banach spaces.

Proof. The fact that S]’j(K ) is a vector space follows from the fact that [P, the space of
p-summable sequences is a vector space. The following proof that S;,f (K) is complete is
also very similiar to the one that [P is complete.

STEP 1 (completeness): Take an enumeration {o;};en of all the simplices in K. Let (6,) €
S;f(K) be a Cauchy-Sequence and let € > 0. Then there exists Ny € N such that

Vn,m > No : |6, — 0m||sk <e. (2.15)
This implies in particular that
Vi € N : [|0n(0i) = Om (o) llwr (o) < 100 = Omllsae) < e

Thus, for any i € N, (6,,(0;))nen is a Cauchy sequence in WX (o;). Since WE (0;) is a
Banach space (c.f. 2.1.17),

30(0;) € WE (03) = 6, (UZ)M%H(UZ) . (2.16)
Since for any 7 < o the restriction jr , : Weo(0) — W (7) is continuous, these forms
assemble to an S-form {6(0)},cx of degree k.
For any fixed [ € N, we obtain

1/p (2.15)
Vn,m2N0:<ZH9 (03) = O (o) |7, )) <Nl — Onllsprey < e

By (2.16) and the fact that the sum is finite, we may take the limit m — oo here in order
to obtain

VnzNO:(ZHG o) — 00|, U))l/pgg.

Since [ was arbitrary, this implies
Vn > NO . ||0n - (9”55(1() <e

From this we obtain on the one hand that = (0 — fy,) + Oy, € SS(K) and on the other
hand

0, 2220 .
SE(K)
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STEP 2 (continuity of d): First of all notice that for any simplex o € K®) the k-form
w = 6(0o) satisfies

g5y = ma{ldell s oy 1ddl 2} = Il

< max{[wllz . 1] oy} = Il o

Thus the operator norm of d : Wk (o) — Wk (o) is less or equal to one.
Now if p < 0o, we calculate

14610 = S 140 I < S 16y = 61

ceK ceK

If p = 00, we have

P _ g|IP
1861l gyr = s 140(0) i gy < S [10()lIwa (o) = 16l -

2.3.12 Definition (S-form cohomology). We denote by

HH(K) = H(S)(K).d)

the Ly,-cohomology of S-forms on K. The corresponding closed and exact forms are denoted

by Z,(K) and %,(K).

2.3.13 Lemma. Let h: |K| — M be a smooth triangulation and w € W¥ Joc(M). For
any simplex o € K, define 0(c) := (h|s)*(w). Then ¢ (w) :={6(c)|c € K} is an S-form

on K and the map ¢ := ¢y, : Wk ) — S¥(K) is an isomorphism of vector spaces and

e loc(
bt Woeoloc(M) = S(K) is an 1somorphlsm of cochain complexes.

Proof. We assume K is a simplicial complex in R™. Since dim M = m and h is a diffeo-
morphism, this implies dim K = m.

STEP 1 (¢p(w) is an S-form): Let 7 < ¢ € K. Since the triangulation h is smooth, there
exists a smooth continuation hy : U — M of h|, to some open neighbourhood U of the
simplex o in its affine hull. Consequently

0(7) = (hlr)"w = jru((ho)"(w)) = (hvojru)'w = (hloojre) w = J7 5 (hl5(w)) = j7 5 (0(0))-

STEP 2 (injectivity): Let 6 := ¢(w) = 0. Then for any open subset U = Into, where
o is an m-dimensional simplex, 0 = h|j;(w). Since h is a diffeomorphism, this implies
w[h(U) = 0, which implies altogether w =0 a.e.

STEP 3 (surjectivity / cochain map): Let § € S¥(K) be an arbitrary S-form. For any
m-simplex o € K, we define wljnty) = (h_1|h(1ntg))*(0(0)). Now since o is com-
pact, h™! restricts to a diffeomorphism 7™, e) : WE (h(Int o)) — WE (Int o) with
bounded operator norms. Therefore Theorem 2.1.29 implies w|j (it o) € Woo(h(Int o)) and
dwlp(nt ey = (™ 1 h(int o)) (d0(0)). By patching together these forms, we obtain a globally
defined form w € W TJoe(M), since M\ U, ¢
shows that d commutes with ¢y, O

h(Int o) is a set of measure zero. This also

2.3.14 Lemma. Let K be a star-bounded simplicial complex and L C K be a subcom-
plex. The map j* := jf x SE(K) — SE(L), {0(0)}oex — {0(7)}reL, is an epimorphism.
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Proof.

STEP 1: We will show that there exists a bounded linear operator v : S,(do) = W (0)
such that for every 7 < o: jr ;v(0) = 0(7). To see this notice that S,(90) = W 10c(00) =
Woo(0a) by Lemma 2.3.13. Furthermore (o,90) = (B", 8" 1), where B" C R" is the
closed unit ball and S™~! is the unit sphere. The commutative diagram

Sp(00) —— Weo(0) +—— Woo(B™)
+ 4
\ | 1Y
\ \
Weo(00) +—— W (S™71)
reveals that it suffices to construct the operator v : Wa(S" 1) — W, (B") such that
Jen-1 gn 0y = id. (The j* is analogous to 2.3.8.) To that end define U := B" \ B 4(0).
Notice that r : U — S" 1 x> H%H’ is a smooth retraction. Thus we obtain a bounded
linear operator r* : W (S™ 1) — W (U) such that for any w € Wuo(S™1), we obtain
Jen-1 gn(r*(w)) = w. By multiplying r*(w) with a smooth bump function ) € C*(B")
such that
w‘Bn\Buz =1, zp|B1/4 =0,
we obtain our desired operator +.

STEP 2: Let 0 € S’]],f(L) be arbitrary, K* be the i-skeleton of K and K; := L U K'. We
shall establish by induction over ¢ that ji k, 1s an epimorphism. For ¢ =0 define

__J0(o), o€l
bolo) := {0, o€ Ko\ L.

Clearly 6y € SE(Ko) and j; , (60) = 6.
Now assume 6;_1 € S{;(Ki_l) such that szFl(Hi_l) = 0. Define 6; € S¥(K;)

0;-1(0), o€ K
0;(0) = .
(’Y(jaa,Ki_l(ei—l))a o€ K; \ K.
Clearly, this is an S-form, j} x, (0;) = 0, and if N is the star-bound of K, its norm is given
by

||9i\|g§(Ki)=Hei—lHZE(Ki_l)Jr > (167 SN IR [
cEK\K;_1

= O PR NI DU Dl [T
O'EKi\Ki_l TEJT

< Hei—lugg([(iil) + IVIIPN E; HHZ'—I(T)”%/&(T)
TEK;—1

— p . p
= (14 PNy e, -

2.3.15 Corollary. By defining S{; (K,L) := ker jz, x> We obtain a short exact sequence
of cochain complexes

0—— Sp(K, L) —— Sp(K) —— S, (L) ——0
inducing a long exact sequence in cohomology.

Proof. This follows directly from the definition and Lemma 2.3.14. O
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3 The Isomorphism between the simplicial and the
S-form cohomology

In this section we establish an isomorphism H,(K) — 4,(K). To that end we construct
two maps

w:Cy(K,L) = S,(K,L): 1

on the chain level, which induce two maps, [I],[w] on the cohomology level. We will then
prove that these induced maps [I],[w] provide isomorphisms in cohomology (although I,w
are usually not isomorphisms):

Co(K, L) ——— 8,(K, L)

| ]

Hp(K, L)?%(K ,L)

3.1 The de Rham homomorphism

The map I is well-known: It is the same map that was already used by de Rham to prove
the isomorphism between singular cohomology and de Rham cohomology.

3.1.1 Lemma. Let K be a simplicial complex and L be a subcomplex. The map

I: Sk(K) — CMK),
1(0 /0

induces a well-defined chain map I : S*(K, L) — C*(K, L), called de Rham homomorphism
or just wntegration map.
For any 1 < p < oo, I restricts to a chain map I : Sj(K) — Cp(K). We claim in particular:
(i) I(d0) = d(1(9)),
(ii) I(SE(K)) c CH(K).

Proof.

(i) By Stokes’ theorem, we calculate

1@0)(@) = [ (o) = | Js0() = | 000) = 10)(00) = a(10)) (o).

One might worry, if Stokes’ Theorem is really applicable here. We think of o as
a smooth manifold with corners and although the boundary is not smooth, this
theorem still holds, c.f. [16, 14.20]. One might object further that 6(o) € Wy (0) is
not necessarily smooth. Although there are many versions of Stokes’ theorem in the
literature that require smoothness it is intuitively clear that this theorem should hold
under weaker assumptions since it involves integration only. A suitable generalization
can be found in [7, Theorem 9.
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(ii) Remember that by convention from 2.3.1 K is endowed with the standard S-metric.
Thus the Riemannian volume of every simplex o € K is given by |o| = |Ag| =:
Vg = % Let 0 € S;f(K) and calculate for any 1 < p < oo
/ (o

11O 2y = > 1O = S

ceK k) occK (k)
< 3 P10y i) < ORI
ceK(k)

In case p = oo, we calculate analogously

I7®)llos a0 = 55 suplT(6)()] = ess supl [ 0(e)
GEKUC) UEK(k)
< ess 5upla 1000 (o) < w0l ) =
ceK (k)

3.1.2 Theorem (S-form Isomorphism). For any simplicial complex K the transfor-
mation [ : S*(K) — C*(K) induces an isomorphism in cohomology.

This theorem is discussed in [26]. We just mention it here for reasons of completeness.
We will neither prove nor use this theorem and instead focus our attention entirely to the
L,-case.

3.2 Whitney transformation

We now construct the map w, the Whitney transformation, which is much more compli-
cated. Our approach is based on the work of Whitney and Dodziuk ([31, IV.C,§27] and
[2, 1]). Although this still seems to be state of the art today, we cannot refer directly to
them, because they use finite simplicial complexes. The simplicial as well as the S-form
cohomology are defined in terms of a simplicial complex K and do not refer to any mani-
fold themselves. Of course we could restrict our attention to finite simplicial complexes as
well. But for our purpose this had most unpleasent consequences: If K is a triangulation
of a manifold M, the finiteness of K would force the manifold M to be compact. Since
we are particularly interested in the study of noncompact manifolds, this would be fatal.
Therefore we will generalize Whitneys approach to infinite simplicial complexes. Some
preparatory work for this has already been carried out in 2.2.24 and 2.2.25.

3.2.1 Definition (Whitney transformation). Let K be a simplicial complex, o € K
and [o] = [zo,...,xs| be oriented arbitrarily. For each vertex z; denote by f; := f;(0) :
lo| — R its barycentric coordinate function (c.f. 2.2.1). Let ¢ € C*(K), k < s, and define

k
w(e)(o) := k! Z c([Tigy -, x4, ] Z ) Bi, dBiy A ./\%/\.../\dﬁik.
0<ip<...<ix<s r=0
We will see in Lemma 3.2.3 below that this does not depend on the orientation chosen on
o. The resulting map w : C*(K) — S*(K) is called Whitney transformation. We employ
the convention w(c) = 0, if £ > s. Since this formula is rather cumbersome, we introduce
the following abbreviations: For any index I = (igp,...,ix), define

(1] := [Zig, - - - » Tiy ]



3 The Isomorphism between the simplicial and the S-form cohomology 53

and for any 0 < r < k define

o —

By =By, . (0):=dBi(o)N...NdBi, (o) A... NdB;, (o),

10 4--ey0

By = Bio,...,ik(U) = dﬁio(U) VANAN dﬂzk (U)

3.2.2 Remark (factorization). The following factorization will also help to work with
the Whitney transformation: Let & € N, K be a simplicial complex, ¢ € K, [o] =

[z0,...,2s] and ¢ € C*(K). For any increasing multi-index I = (0 < g < ... < i}, < 8)
define
k
wr(e) =) _(=1)"8;,(0) B, i, (o).
r=0
Let N := (ZE) and A = (I1,...,Iy) be an enumeration of all such multi-indices I of

length k + 1. Define the maps

w'(0) :C’k(K) — RN, ¢ (c([z1]))ren,
w'(0) : RN = OF(a), (yr)rea = k> yrwi(o).
IeA

Then the Whitney transformation has a factorization

w(e)(o) = (w"(0) ow'(0))(c).

In particular w(o)(c) depends only on ¢ and the values of ¢ on the k-dimensional faces of
.

3.2.3 Lemma. For every k € N the Whitney transformation is a well-defined map
w: CF(K) — SH(K).

With the notation above, we claim in particular that w(c)(o) does not depend on the
orientation of o and that the collection {w(c)(0)}sek is an S-form, i.e.

Vr,o € K17 <o =j;,(w(o))=w(r).

Proof. Let ¢ € CF(K) be arbitrary. It is clear that w is linear in c.

STEP 1 (well-defined): The problem is that ¢ € C*(K) can only be applied to (equivalence
classes of) oriented simplices. But an S-form attatches a differential form to a topolocial
simplex o € K. Therefore we have to check that the orientation chosen on [o] does not
change the differential form w(c)(o) € Q¥ (o).

If 7 € 641 is any permutation,

c([:viﬂ(o), e %’,T(k)]) = c(sgn(m)[xig, - - - i), ]) = sgn(m)e([xig, - - - iy |)- (3.1)

Now we analyse the inner sum on the right hand side. Since any permutation can be
decomposed into a finite sequence of transpositions, it suffices to show that the sign changes,
whenever two adjacent indices are transposed. In order to avoid complicated notation, we
illustrate this for the indices (0,1). So now let 7 be the permutation transposing 0 and 1,
leaving all the other indices fixed. To shorten the notation further, define

B:=dBi, A... \dB;,, By =Bl . =dB, A...ANdBi A...NdB;,

19,050
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and calculate:

(—1)T6iﬂ(r)dﬁiﬂ(0) A dﬂi,r(l) A dﬂiﬂ@) VAN dﬁi,r(r) VANRAN dﬂiﬂ'(k)

M=

i
o

k
= Bi,dBiy A B — BipdBiy AB+ Y _ (—1)"B,dBi, A dBiy A By

= (3.2)
= —(BiydBiy A B+ Bi,dBiy AB) = > _ (=1)"B;,dBiy N dBi, A B,
r=2
k —_—
==Y (=1)"BidBiy A... AdBi, A... NdB;,.
r=0

Thus by combining (3.1) and (3.2), we see that any permutation 7 of the vertices of o
changes the Whitney transformation altogether by a factor sgn(m) sgn(m) = 1.

STEP 2 (S-form): Let ¢ = (xo,...,2s) be an s-simplex. We first prove the case, where
7 < o is a boundary face. For simplicity let us assume 7 = (xg,...,x5—1). Then the
inclusion j;, : 7 < o is given in barycentric coordinates by

s—1 s—1
xr = Z/\Z{L‘Z — Z)\ixi+0-x5.
1=0 =0

Thus
. Gi(t), 0<i<s—1
Bi(0) © jro = { i(7) ‘ (3.3)
0, 1=
Let us analyze the expression
Jr.o(Biy,...i,(0)) - (3.4)

= (/817« (U) o jT,U)d(ﬁio (U) © jT,U) AN d(/@ir (U) © jT,U) ARERA d(ﬁlk (U) © jT,U)?
where 0 < ip < ... < i < s, 0 <r <k, using the relations (3.3). We distinguish two
cases.

CASE 1 (s € {ig,...,ir}): This implies i, = s, since the indices are increasing. Again
two subcases may occur: Either k£ = r, which implies s = i; = ¢,, which implies that the
prefactor

Bi,(0) 0 jro = Bs(0) 0 jro =0

vanishes in (3.4). Or k # r, which implies that the factor
d(Biy (0) © jro) = d(Bs(0) © jr, =0

occurs in the wedge product in (3.4). In both cases j7 ,(Bj ,; (o)) =0.

CASE 2 (s ¢ {io,...,it}): In that case (3.3) implies that for any 0 < v <k, §;, (0)0jro =
Bi, (7), thus (3.4) equals B (7).
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Using these two cases, we obtain

k
j:,aw(o—):k! Z C '7;207 ' xlk Z jTO' zk(a))

0<io<...<ip<s r

=0
k

= k! Z c([zigs - xi, ] Z Bl (1) =w(T).
=

0<ip<...<3p<s—1

Applying this argument inductively to the boundary faces of smaller dimensions, we obtain
the statement for an arbitrary face 7 < o. O

3.2.4 Lemma. Let K be a simplicial complex, (z;);ey be an enumeration of the vertices
of K, 0 € K and let [0] := [jy,...,%;,] be an s-simplex such that iy < ... < i5. Let
A = (J1,...,Jn) be an enumeration of all increasing multi-indices J = (jo, ..., jx) such
that {jo,...,7x} C {éo,...,is}. With convention 2.2.24 in power, we may write

w( > C([T])[T]*>(U)=w(0)(0)Zk‘!ZC({wI])wI(U): > el o).

reK (k) IeA reK (k)

Thus w(c)(o) depends only on ¢ and the values of ¢ on the k-boundary of o.

Proof. The first equality holds by convention 2.2.24, the second holds by remark 3.2.2
above. To see the last equality, notice that if 7 is not in the k-boundary of o,

w'(e)([r]") = ([7]"([z1])1ea = 0,

thus w([7]*)(c) = 0. Thus the rightmost sum is finite. In case 7 is in the k-boundary of o,

there exists exactly one J € A and an orientation of 7 such that [r] = [z;]. In that case
w((r]) (o) = kY [ (fr)wi (o) = Kw,(0).
IeA
Conversely for any I € A there exists exactly one k-boundary face 7 such that [z7] = [7],
which implies the statement. O

3.2.5 Lemma (cochain map properties). For any complex K and any subcomplex L,
the Whitney transformation induces a well-defined chain map w : C*(K, L) — S*(K, L),
ie.

Vo € K : d(w(c)) (o) = w(de)(o). (3.5)
If K is star-bounded, w restricts to a map w : C5(K, L) — S;(K, L), 1 < p < oo.

Proof.

STEP 1 (cochain map): Let ¢ = (xg,...,xs) be an s-simplex and f; := B;(0) be its
barycentric coordinate functions. Define the index set

AY =T = (ig,...,i) |0 <ipg < ...<i} < s}
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STEP 1.1 (d(w(c))(0)): The product rule for exterior differentiation implies

d(ﬂirdﬂio /\...d/B;/\.../\d,Bik)
= dB;, NdBig A NGB, N N By + By d(dBig A A By AL NdB,,)  (36)
=dBi, AdBig ... NdB;, A ... ANdBi, = (=1)"dBiy A ... A dB;,.

Thus

k
dw(@)(@) L RS e(lar]) S dBi A A dBy,
IeAk r=0

= (k+ 1)' Z C([:L‘[])dﬂio VAN /\dﬁik.

IeAk

Notice that this expression depends only on simplices in the finite complex cl(o) C K.
Therefore, when calculating d(w(c))(o), we may replace the possibly infinite complex K
by cl(c). In that case, the dualized simplices form a basis of C*(cl(c)). For any such
[7]* = [xg]* == [y, .., xj,]", this expression simplifies to

d(w([7]"))(o) = (k + D)ldBj, (o) A... AdBj, (). (3.7)

STEP 1.2 (w(dc)(0)): By Lemma 3.2.4, the form w(dc)(o) also depends only on simplices
in cl(o). Therefore we may assume that K = cl(o). Thus it suffices to check (3.5) on a
basis, i.e. on a single dualized simplex [7]* = [z s]*.

We employ the notation I :={0,...,s}, I' := I\ {jo,...,jx} and the abbreviations from
Definition 3.2.1, assume that the vertices are enumerated such that jo < ... < ji and
calculate (see explainations (1),(2) below):

w(d( k+1
— o = > d([ag)) () Y (—1)7Bs, By

IEAk+1 r=0
k+1

Z Z%,JJJ [z1] Z(_l)rﬁi,«B;
r=0

Tenktier
k+1

_ZZ Z [z, 2 5] ([21])(=1)" Bs,. BY

i€l 1=0 repk+1

k
D3 (8B + Y (1) 85, dpi A BY)
r=0

iel’
k
=B, B+ Z D 8,d( Y 6) A BS
iel’ =0 iel’
2B, B+ Z D g,a(1- Y ) ABY
iel’ 1€{jos-rJk }

=ByY B+ Y, Z 1) 8;,dB; A B)

iel’ 1€{jo,.-,jx } =0
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2B,y i+ Z 1)"B;,dB;, A B

iel’
= By Z Bi + Z BiB,

il i€{jo,--2dk }
= (Xa+ X 8B

iel’ 1€{j05- Ik }

2.2.12

dﬁ]o VAN dﬁjk.

(1): All summands are zero unless (ig,1,...,%k+1) = (4,50, -+, Jk)-

(2): The summands are zero for all r, except for the one such that i = j,.

Altogether we have shown that w is a cochain map.

STEP 2 ([restriction): Let ¢ € C¥(K, L), 0 = (xo,...,xs) € K, 6 := w(c). By definition of
the Whitney transformation ¢(o) = 0 = 6(¢) = 0. So the subcomplex poses no problem.

Now we consider any standard chart (S, ... B, .. ,Bs) t|lo| = Ag C R® (c.f. 2.2.5) and
remember that K is endowed with the standard S-metric (c.f. 2.3.1). We obtain

A8y A B, A N dBy| = /et dpi)) "2V Jdet((08:, 08)) =
Since f;, <1, the definition of the Whitney transformation implies

0@ lwe @) < R +DE > fell@ig, - @i,])]. (3.8)

0<ip<...<ip<s

Let
, . , . k+1
alk,s) = #{(i0,...,ik) |0 <ip <...<ip < s} = , a:= max a(k,s),

S 0<s<m

and N be the star-bound of K. Denoting by o = (04, . .., 04, ) the various simplices in K,
we obtain

010 = S 10 s ) = 3 S @0 X felloe D)

ceK 5=0 g K () 0<in<...<ix<s

<Zzaks CESVY S elloigs - o)
oceK () 0<ip<...<ip<s
ap 1P p p
< 2°P((k + 1))’ Nm Z(k) e([r)I” < const flelgy, - O
TEK

3.2.6 Lemma ([ is surjective). The Whitney transformation w is a right-inverse of
the map I from 3.1.1, i.e.

Ve e CF(K) :VYo € K : I(w(c))([o]) = c([o]).

Proof.
STEP 1: First we check this for a single co-simplex ¢ = [r]* € C¥(K). Let (x;);en be
an enumeration of the vertices of K, 0 = [xj,..., %3], to < ... <'ig, T = [Tjo,-..,Tj],

jo < ... < ji. By definition
k

(Tow)@(ol) = [ w(e)(o) = kele) 3 (-

r=0

/@, . (3.9)

We will prove that this equals ¢([o]) by induction over k.
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STEP 1.1 (k= 0): In that case, the calculation above simplifies to
(10w (o) =0T (o] [ 0= 171 ) = ll)

(For the integral remember Convention 2.3.6.)
STEP 1.2 ((k—1) — k): If 7 # o, then

[7]*(lo]) = 0 = I(w([7]"))([o])

by (3.9). So let [7] = [o], [p] := [zj1, ..., 2] < [Tjo. %)y, ..., 2] = [7] be a boundary face
and I' := I'\ {jo,...,jr}- By Lemma 2.2.25
d([p —{—Z LTI N (3.10)
iel’
Since
> i ag,, . 2] ([0]) =0, (3.11)
iel’
and
I{w([p]") = [p)", (3.12)

by induction hypothesis, we may calculate

Hw(d([p)) = Y [2i, 2505 23] ))([0])

iel’

(3.10)

(3.11)

= I(w(d([p))([o]) *Z” d(L(w((p])) (o)) "= d([p]) (o))
= () (o)) = [wi @, - 23,1 (0]) = [7]([0)).

el’

(3.12)

By Lemma 3.2.4 this is sufficient.

STEP 2: For a general cochain ¢ € C¥(K), Lemma 3.2.4 again ensures the finiteness of the
following sums and allows us to calculate

rw@)o) = [w@e) = [ ¥ « (o)

TeK (k)

= Y M) = Y el (o) = e(lo]). 0

rek ) reK k)

3.2.7 Lemma (Sullivan). Let o be an i-simplex. There exists an isomorphism of
normed vector spaces

and thus it is induced by I. In particular the spaces % (o, d0) C Sy(0,d0) are closed.
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Proof (Sketch). This is more or less a variant of de Rhams theorem, which was also dis-
cussed by [26, 7]. Nevertheless all arguments except injectivity can be easily seen directly.

STEP 1 (construction of ¢): First define ¢ : 5’5(0, 0o) = R by

0 — /09(0).

By Stokes’ theorem and the fact that any w € S}’;*l(a, do) vanishes on do, we obtain

@(d@):/odé’(a):/ge(a)zo.

Thus ¢ factors through the quotient and we obtain our map [¢] : ,%Zk(a, do) — R.

STEP 2 (surjectivity): The range of ¢ is one-dimensional. Since [¢] # 0, [¢] is surjective.
STEP 3 (closedness): The space ) (0,00) = Z;/(0,00) /%L (0, 00) is a quotient space. By
what we have just shown, it is isomorphic to {0} or R, i.e. to a Banach space. Therefore

#(0,00) is closed. O

3.2.8 Main Theorem. Let K be a star-bounded complex and let L C K be a subcom-
plex. For any 1 < p < oo, there are well-defined cochain maps

w:Cy(K, L) = S,(K,L): 1
inducing topological isomorphisms in cohomology, which are mutually inverse to each other.

Proof. The Lemmata 3.1.1, 3.2.3 and 3.2.5 established the maps.

STEP 1 (strategy): We want to show that I induces an isomorphism [I] in cohomology.
We already have the commutative diagram:

ZF(K, L)~ 25K, L)

l l

k k
’% (KaL) Wﬁp(KaL)v

where the arrows to the bottom are the canonical projections. The map [ow is the identity
and this implies that I and [I] are surjective (c.f. 3.2.6). In Step 42, we will show that

Vo€ ZF(K,L): 1(0) =0= Twe S " (K,L) : dw =0 (3.13)

and in Step 42, why this implies the statement.

STEP 2 (preparations): Let K be the i-skeleton of K and denote by K; := LUK"®. We will
construct S-forms w; € S;f*l(Ki, L), i > k, such that dw; = j}‘(“K(H) by induction over .
For ¢ = dim K this implies the claim. The space ,%’;; (0,00) of k-dimensional co-boundaries
is closed in SF(o,d0) by 3.2.7. Therefore the map d : S¥~'(0,00) — %(0,00) is an
epimorphism of Banach spaces. As a direct consequence of the inverse operator theorem
(c.f. [30, IV.5.2] or [21, III.11]), there exists a constant C'(c) > 0 such that

Vo € %’5(0, o) : 3y € Sgil(a, 0o) : dy = a and ||7HS§_1(0',80') < C’(U)||a||55(0730). (3.14)
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We claim that this constant C' := C(0) does in fact not depend on o. This is due to the
fact that any k-simplex o is isometric to Ay. Therefore we obtain a commutative diagram

_ d
S]’; Yo, 00) —— %’]’;(J, o)

J |

S;:_l(Ak, 0Ay) — %S(Ak, 0AL),
where the vertical arrows are induced by isometries. Consequently the constant C'(Ay)
does the trick.

STEP 3 (construction of the form): We will now carry out the details of the construction.

STEP 3.1 (induction start i = k): We will now construct the S-form wy, € S¥~!(Kj, L).
If o € K_1, then wg(o) := 0. Let 0 € Kj \ Kx_1. By hypothesis df(c) = 0, so 6(o)
represents a cohomology class, and

7) = [ 8lo) = el(eD),

where ¢ is as in Lemma 3.2.7. Thus 6(0) € %’5(0, Oo) and (3.14) implies
AC > 0:3y(o) € 5'1];_1(0, o) : dy(o) = (o) and H’)/(U)waoq(g) < Cl0(0)[lwe o) (3.15)

(notice that |L|]Sk71(0_ 9oy and ]LHW;CA(U) are equivalent). Our convention 2.3.6 ensures
P ’ o]

that every k-simplex o is isometric to the standard k-simplex and thus the constant C

does not depend on the simplex o. By defining wy (o) := (o), we obtain

Wi (@) lyyi-1(,) = V()15 < CllO@) I (o)
and thus
HwkHSk YK L) Z lwk (o )”Wk 1 Scp Z 16(c )Hwk 1 —Cp|!9\|5k K,L)"
ceK (k) ceK (k)

Therefore wy, € Sg_l(Kk, L) and by construction dwy = j}“(k’LH.
STEP 3.2 (induction step (¢ — 1) — ): Assume now that we have constructed a form w;_; €
S]’;_l(Ki,l, L), for which dw;—1 = j}FLKG. By Lemma 2.3.14, there exists w’ € Sﬁ_l(Ki)
such that j}‘(Fl’Kiw’ = w;_1.
If 0 € K;_1, then set w”(¢) :=0. If 0 € K; \ K;_1, then
Jb0,1c,(0 — dw') = dw;—1(00) — d(j, (W) =0,
d(0 — dw') = df — ddw' = 0.
Consequently § — dw' € ZF(0,00). Since ) (0,00) = 0 by 3.2.7, there exists y(0) €
Sk=1(o,00) such that (o) — dw'(c) = dy(o) and H’Y(U)HW&‘I(U) < O|f — dw'[lwk (5)- Set
W' (o) :=(0o). If T < o is any boundary face
Jrew"(0) = j7 ov(0) = 0= w(T).
Thus the various w”(c) assemble to an S-form w” € SE~(K;, L). Define w; := w' + .
Then w; € S]’;_I(Ki, L) and by construction:
Vo € K1 : dwi(o) = dw'(0) + dw” (o) = dw;—1(c) = 0(c)
Vo € K; : dwi(0) = dw'(0) + dw" (o) = dw'(0) + dvy(0) = dw'(0) + 0(0) — dw' (o) = O(o).

Consequently, dw; = Ik, 0.
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STEP 4 ([I] is a monomorphism): Let 6§ € 2 (K, L) such that [0] € ker[[], i.c.
0 = [1](16]) = [Z(0)]-
By definition there exists ¢ € Z¥(K, L) such that I(6) = dc. This implies
0=1(0) — de = I(8) — I(w(de)) = I(8 — w(dc)).
Since in addition
d(0 — w(de))) = d(0) — d(w(d(c))) = 0 — w(d(d(c))) = 0,

equation (3.13) implies that there exists w € SA~(K, L) such that § — w(dc) = dw, which
means precisely that

[0] = [w(dc) + dw] = [d(w(c) +w)] = 0. O
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4 Currents on manifolds

In this section we introduce the basic notions about currents on manifolds. One should
think of currents as a generalization of distribution theory: Instead of working with the
dual space of smooth functions having compact support in some open subset of R™, we
work with the dual space of smooth differential forms having compact support in a manifold
M. The primary reference for currents is [23, III]. For distributions one may consult [9].
In principle the theory of currents has nothing to do with L,-cohomology. It is a topic of its
own. The reason we include it here is that some properties of the regularization operators
introduced in section 5 have a nicer and more general form when expressed in terms of
currents. This chapter does not involve the Riemannian metric on M, so it suffices that
M is a smooth oriented m-manifold without boundary.

4.1 Basic definitions

4.1.1 Definition (test forms). Denote by

the space of compactly supported test forms, i.e. the space of all smooth differential forms
having compact support endowed with the following notion of convergence: A sequence of
forms w; converges in (M), if there exists w € Z(M) such that: There exists a compact
K C M such that

Vj € N:suppw; C K

and a finite cover of K by charts ¢; : U; — V; C R™ i € A C N such that for every
component function wj ; of w; with respect to ¢; (i.e. w; =3 w; rdp!)

Vie A:Vk €N [lpiwir — giwrller v,y — 0.

We denote this by
Jj—o0
Wi — W .
2 (M)

We also denote by Zi(M) := QF(M) the space of compactly supported test forms of degree
k (endowed with the same notion of convergence).
Denote by

E(M) :=Q(M)

the space of test forms, i.e. the space of all smoth differential forms endowed with the
following notion of convergence: A sequence of forms w; converges in & (M), if there exists
w € &(M) such that: For every compact subset K C M and every chart p : UNK — V
and for every component function wj ; of w; with respect to ¢

Vk € N: [[pswj1 — pewillerowni)) — 0-

We will denote this by
. Jj—00
Wj o a0 w

We also define & (M) := QF(M) (endowed with the same notion of convergence).



4.1 Basic definitions 64

We should convince ourselves that these notions of convergence are independent of the
choice of charts. Both cases are proven by the following lemma.

4.1.2 Lemma. Let w; € &(M). Let K C U C M be compact and assume there exists a
chart ¢ : U — V such that

Vk € N: [lpswjrller oy = 0,

where wj ; are the components of w; with respect to p. If ¢ : U — V is any other chart
and w; j are the components of w; w.r.t. 1, then

Vk € N [|90.0j 1l ek (i) — O-
as well.

Proof.
STEP 1: For any k-times differentiable function h : U C R™ — R"™ define

— gt
1Rllex @y == 21618 aeNrgrLl:aﬁ\gk 12‘?&'8 h'|(x).

Now let F € CE(U C R*,V C R™), k > 1, and g € CF(V,R). We claim there exists C > 0
such that
g Fller@y < CrllFllck@)llgllerovy- (4.1)

This can be proven by induction over k£ using the chain rule and the Leibniz rule: For
k =1, this follows from

10;(g 0 F)| <> 10:F7 digl < nl|Fllerunlgller ovy-
=1

For the induction step, we just notice that for any o € N™ such that || = k+ 1 there exist
pe€N"and 1 <j < nsuch that || =k and o = 3 + €. Therefore

0%(g o F)| = 10°0;(g 0 F)| < |0°(0:F dig)|
=1

- B .
< Z Z <7> 1878, F7 991 9,9)| < ClF[ler+1llgllersr(vy-

i=1+<8

STEP 2: Let F :=tpop~' : V — V be the transition map and let A := VF be its Jacobian.
The coordinates transform by

Dy =w(0Pj,,...,00;,) = w(Adp;,, ..., A% dp;,) = Alw,

1

where A} := A% ... A% We obtain

45,5l e oy = 15,0 0 071 0 @ 0 ™ ler (i)

Step 1 _1 R 1
< CIE lerwmnll@s,s o e llerpr))

= CIIF Yler iy 1 ATws.0 0 07 ler(o(x))-
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STEP 3: This implies the statement: The Ag o~ ! are a finite number of functions, which

are all bounded in C*(¢(K)). Therefore by the Leibniz rule

|ASw; 10 0 Hery = AT 007" - wj g 00 lek oy < Cllws,s o 0™ ek

= Cllowwy, J ek (po(x)) — O -

4.1.3 Definition (current). A linear functional T': Z(M) — R is continuous, if for any
sequence {w;} in Z(M)

w = T(wj) ——T(w).

Wj ot
7(M) R

A continuous linear functional T': (M) — R is called current. We denote by
7'(M)
the space of all currents on M.

4.1.4 Definition (restriction).If U C M is open, any form w € Z(U) can be extended
by zero outside U to a form w € Z(M). If T' € (M) we say T'|y : 2(U) — R,

w— T(0),
is the restriction of T to U. It is clear that T|y € 2'(U).

4.1.5 Lemma (first sheaf axiom). For any open set U C M, any open cover {U;};cn
of U and any T € 2'(U):
VieN:T|y,=0=T =0.

Proof. Take a partition of unity {t;} subordinate to the {U;}. Let w € Z(U) be arbitrary.
Since supp w is compact, it is contained in the union of finitely many U;. Sow = >,y ¥iw,
where all terms are zero except for finitely many i. Let I C N be the finite set of those i.

We calculate
T(w) = T( 3 wiw) =" Ty, (i) = 0.

i€N iel ]

4.1.6 Remark. It is certainly not necessary to think of currents as a sheaf. Nevertheless
it is interesting to know that 2’ also satisfies the second sheaf axiom: For every open cover
{Ui}ien and any given T; € 2'(U;) such that Ti|y,nu; = Tjlu,nu; there exists T € 2'(U)
such that for any ¢ € N, we have 7|y, = T;. For distributions a proof of this can be found
in |9, 2.2.4].

4.1.7 Definition (support). Let T € 2'(M). We say p € M is not in the support of
T, if there is an open neighbourhood U of p such that T'|;y = 0. The complement of the
set of all points not in the support of T is the support of T' and is denoted by supp 7.

4.1.8 Definition (currents with compact support). A current 7' € 2'(M) has com-
pact support, if supp T C M is compact. The set of all such currents is denoted by

&' (M).
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4.1.9 Remark. This notation is due to the fact that &’(M) is the topological dual of
&(M). We can apply a T € &' (M) to a form w € &(M) as follows: Since suppT =: K is
compact, there exists a smooth bump function ¢ € C°(M) and an open set K C U C M
such that ¢|x =1, suppy C U and ¥|pny = 0. Then wyp € (M) and consequently, we
may apply the compactly supported T' € 2'(M) to w:

T(w) :=T(wy).

This does not depend on the chosen 1, since if 1; is any other such function Yw — @w =0.
Linearity of T implies 0 = T'(Yw — ¢Yw) = T'(Yw) — T (Yw).

4.1.10 Definition (homogenous). A current T' € 2'(M) is homogenous of order k, if
Vwe P(M):degw # k= T(w) =0.

Similar, a current T' € &' (M) is homogenous of order k, if
Ywe &EM) :degw # k = T(w) = 0.

In both cases, we call m — k the degree of T. We denote all such currents by 2! _, (M)
respectively &), (M).

4.1.11 Lemma. Any form w € L¥, (M) defines a current by setting (w) : Zp,_x(M) —
R

77b—>/ wAmn,
M

and (w)(n) := 0, if degn # m — k. Consequently the order of (w) is m — k and the degree

of (w) is m — (m — k) = k. This defines an injective embedding ( ) : L’f’loc — 7, (M),
which allows us to identify the form w with its generated current (w).
Proof. This can be proven by the same method as in 2.1.13. O

4.1.12 Definition (convergence of currents). Convergence of currents {7} in 2'(M)
respectively &’ (M) is defined as

ijT = Ywe (M) : Tj(w) ——T(w),

resp:

TjWT = YwedM): Tj(w)TT(w).

This enables us to define continous operators between currents.

4.1.13 Definition (continuous operator). A linear map ¥ : 2'(M) — 2'(N) is con-
tinuous, if for any sequence of currents {7;},7 € 2'(M):

Tj——T = V(1)) ———¥(T).
2'(M) 2'(N)

In that case ¥ is a continuous operator.

In 2.1.9 we defined the notion of a weak differential for L,-forms, which led to our definition
of exterior Sobolev spaces in 2.1.10. This construction also works for currents.
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4.1.14 Definition (exterior differential). Let T € Z,(M). For any n € Zp,_j—1(M)
define
dT () = (=1)**7(dn).

This defines a map dT' : Z(M) — R, the exterior differential of T.

Exactly as in the case of Sobolev spaces, we have the following Lemma.

4.1.15 Lemma (properties of exterior distributional differential). Let T' € 2'(M).
(i) d: 2(M) — P(M) is continuous.
(i) dT € 2'(M), i.e. d: ' (M) — 2'(M) is a continuous operator.
(iii) d*T = 0.
(iv) ¥ T € 2;,(M), then dT € Z;__(M).
)

(v) The following diagram commutes (provided dM = 0)):

)
Wiioo(M) —=— Z; (M)

L

(L)

LH (M) == 7}, (M)
Proof.
(i) Assume w; € Z'(M) such that
Wi ﬂ)()
I g

By definition this means that there exists a compact subset K C M such that
suppw; C K and for any chart ¢ : U =V, UNK # 0,

Vk € Nt [lpwwj1llerpxnuy) — 0-

In other words w; already tends to zero with all its derivatives. Since the component
functions of dw; are given by the derivatives of the component functions of w;, the
statement follows.

(ii) Is a direct consequence of (i).

(iii) Clear.

) Clear.

(v) Let w e W (M) and n € D1 (M). By definition

(iv

<MW:&WMFPMH/WWFFNWWWZWWW-D

M

4.1.16 Definition (distributional de-Rham-Complex). Lemma 4.1.14 allows us to
define the distributional de Rham complex to be the chain complex of vector spaces 7. (M)
with the distributional exterior differential d : Z;,(M) — 2, ,(M).

4.1.17 Definition (multi-Kronecker delta). Let I = (iy,...,4) and J = (j1,...,1)
be two multi-indices. We denote their concatination by

IJ = (ilj...,ik,jlynwjl)'
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If # € G is a permutation, we denote by

(1) = (in(1)s - -+ bn(k))-
Furthermore we denote by

s {sgn 7, if neither I nor J has a repeated index and J = 7(I) for some permutation 7,
J =

0, if I or J has a repeated index or J is not a permutation of I,
the Kronecker delta for multi-indices.. Denote
E:=FE,:=(,...,m).

and for any I denote by I¢ the complementary multi-index to E, i.e. if I = (i1,...,1x),
then I¢ = J = (j1,..., jm—k) is the multi-index, obtained by taking the increasing order
of the set {1,...,m}\ {i1,..., i}

4.1.18 Definition (exterior product). Let T € /(M) and a € &(M). Then we
denote by
TANae P'(M)

the exterior product between T and « defined by
Vwe ' (M) : (T A a)(w) :=T(aAw).
If T is homogenous of degree k and w € &(M), we define
aANT = (—)MT Aa.

4.1.19 Theorem (local decomposition). Let ¢ : U — V be a chart and let T €
2, (U). Then there exists a unique decomposition

7= Tindg, (4.2)
I€Ty,
where T7 € Z}(U) and as usual Zy, is the set of all increasing multi-indices I = (i1,...,)).

The currents 17 satisfy

c

Tr(d®) = 65T (dp™).

In particular if T'= (n), n € L1 10c(M), then (n)r = (n1).
Proof. By definition, if w € Z(U) is of degree m — k
(Ty N dp")(w) = Tr(dp’ Aw),

so the right hand side is indeed a well-defined current of degree k.

STEP 1 (uniqueness): Assume 7" is decomposed as in (4.2). Let J = (ji,..., jm—k) be an
increasing multi-index. We obtain

T(de?) = (Tr ndp")(de”) =D Tr(de" A dp?) = 65 ;Tye (d"),
I I

so the T7 are uniquely determined by 7.
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STEP 2 (existence): We have no choice, but to define
Ty (dg") := 67T (dy").

We already discussed that the wedge-combination of these expressions is a current. The
equality holds by construction.

STEP 3: The general formula for T7 follows already from what we have proven. In case
T = (n), we just verify

() 1(dp") = 677 (n)(dp™") = 677 /U nAde' =5 /U nyde”’ A de!

=5f}c/Umd90”c Z/UmdcpE = (nr)(de"®). O

In closing we say a word concerning currents on product manifolds. These are systemat-
ically studied by de Rham in [23, I11.§12|, where he introduces them as double currents.
Even in classical distribution theory the study of distributions on product spaces is a rather
involved subject culminating in the celebrated Schwarz Kernel Theorem, c.f. [9, V]| We
don’t want to elaborate on this topic here and merely remind of some rather easy results
from distribution theory and reformulate them in terms of currents.

4.1.20 Theorem. Let T} € 2'(My), Ty € 9'(Ms). There exists a current T' € 9'(M; X
M>) such that

Vo1 € Z(My) : Vg € D(My) : T(p1 A p2) = Ti(p1)Ta(p2).
This current T satisfies
Vip € D(My x M) : T(¢) = Ti(x1 — Ta(xe — Y(x1,22))) = Ta(ze — Ti(z1 — Y(x1,22)))
and is called the tensor product of Ty and Ts. We define
Th®Ty:=T1T.

Analogous statements hold if 2’ is replaced by &”.






5 Regularization operators 71

5 Regularization operators

In this section we introduce regularization operators. They will be required for the proof
of the Main Theorem 6.2.1 and imply some nice relations between L,-cohomology and
classical de Rham cohomology of a manifold. We will basically follow [3] and [23].

The setup for this section is the following: U C R™ is an open set equipped with an

arbitrary Riemannian metric g. We will denote the induced norm by | _|. The Euclidean
norm is still denoted by || _||. We assume that U contains the closed Euclidean unit ball
F = Bl (0)

5.1 Notation and technical preliminaries
Before we start, let us briefly collect some basic calculus facts about regularization tech-
niques in R"™.

5.1.1 Definition (e-neighbourhood). Let (X,d) be a metric space, A C X and € > 0.
Then
A =0(A)={reX|JacA:d(x,a) <e} = U B.(a)
acA
is the e-neighbourhood of A.

5.1.2 Theorem (standard mollifier). Let ¢): R — R be defined by

1
. exp(—), >0
0, z <0.

For any € > 0, define p, p. : R® - R

= [ e lelPde @) == ol pele) = 5o (5).

Then the following holds:

(i) ¥ € C®(R,R>p), ¢, pe € C¥(R",R>p).
(ii) fgn @e(2)de = 1.
(iii) supp e C Be(0).
(iv) 0 <@ < 5.

S
We call ¢, the standard mollifier due to the following theorem.
5.1.3 Theorem. For any f € Li(R")
(i) f*pe € C(R"),
(if) supp f * e C Oc(supp f),

(i) fxpe 201,

(iv) f* e %}R?l)) f, whenever f is uniformly continuous and bounded,

e—0 k(on
(v) fxepe Wf , whenever f € CJ(R").
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(vi) fx*g; % f* g, whenever g; € CF(R") such that g; %g '

5.1.4 Definition (interior multiplication). Let M be a manifold, X € T(M), w €
QF(M). The map tx : Q¥(M) — QF~1(M), defined by

tx (W) (Y1, Y1) = w(X, Y1, ..., Y5,
is the interior multiplication with X.

5.1.5 Theorem (properties of interior multiplication). The interior multiplication
satisfies:

(i) txw is linear in X and w.
(i) [,%/ = 0 and therefore 1y oty = —ty o x.
(i) HF:M—-N,XeT(M),YeT(N), X and Y are F-related, w € Q(N), then

tx o F* =F*ouy.

(iv) "Cartans Magic formula”
dowy +irody =%,

where . is the Lie derivative.

(v) Anti-Derivation-Property
Vw e QF(M) :Vn e QM) : VX € T(M) : ix(wAn) =ix(w) An+ (=1)Fw A ux(n).
Proof. See |20, p. 379 O

5.1.6 Convention (extensions to products). Let M, N be smooth manifolds and
X € T(M),Y € T(N). Then both fields admit an extension to the product manifold
M x N by defining

V(p,q) € M x N : X ) i= X, + 0 € T,M & TyN = T, (M x N),
V(p,q) € M x N : Y4 =0+ Y, € T,M & T,N =T, (M x N).

Therefore we may routinely extend suhc fields to X,Y € T(M x N). If mpy : M x N — M,
N : M x N — N are the canonical projections, X is ms-related to X and Y is m-related
toY.

5.2 Localization

Regulariziers may be constructed rather easily when the involved domain of definition
is R™. But we will require them to work on a neighbourhood of the unit ball B, since
later, we want to use this domain to regularize forms on manifolds. Therefore we need
to establish some tools in order to localize the theory. All these techniques were already
developed by de Rham in [23, IIL,§15] and are admittedly very technical. Nevertheless we
will give a revised self-contained treatment of this theory, because 23] is not very detailed,
the notation is a bit cumbersome, it contains several typos and this book is no longer
printed.
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5.2.1 Lemma (localization).
(i) There exists a function n € C*(]0, 1[,]0, 0o[) such that

T r 1
) = { | o0

such that n’ > 0. Define ng := 77|[; 2. The function 7 is a smooth diffeomorphism.
3’3
(ii) The function ¢ : B — R™,

Moy ko,
T
0, z =0,

is a smooth diffeomorphism with inverse 1~! : R™ — B,

-1
1ty oy 0,
y Y
0, y=0.

(iii) For any k € N

n®) (1) —— oo .

r, 1
Define 6 := 1/n. Then for any k € N
(k)
Proof.
(i) Since
1 _
limr = - < ¢’ = lim ") 2,
sy 3 /3

it is clear that 1y may be chosen such that 7 is smooth and n’ > 0. Therefore 7 is a
diffeomorphism.

(ii) The smoothness of 1 follows from the fact that if 0 < |z| < %, this implies

oy = ), el

] ||

Therefore v is smooth even at x = 0 and so is ¢»~! (by the same reasoning). Since 7

and 1! are inverse to each other, we obtain
-1 -1
et 0ty TRE@D ) a(e)
AR 77 B (2 R 7

and an analogous calculation holds for 1 o 1y~1. Therefore 1 and 1~! are inverse to
each other.
(iii) First we show that for any & € N there are polynomials psj of degree 3k such that
for any r > 2/3
n®)(r) = par((r — 1)) D
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This can be seen by induction: In case k = 0, the statement is trivial. For the
induction step k£ — k 4+ 1, we calculate

1) = (pae(r = 1) el D7) ()

= — (P ((r = 1)) (r =172+ 2(r — 1) Bpgr((r — 1)7 1)) D77,

:1p3(k+1)((7’—1)71)

This immediately implies the first statement. The second follows from the generalized
reciprocal rule (taken from an exercise in [32, (0.4)]) for the k-th derivative of the
function § = 1/n:

B . B (p
o0 = S o (r)... " (r)

k+1
B1+...0k=k n (T)
::P3k(17;—1)_1

= Y c psg, ((r— 1)) . psgp, (r — 1) 1) eklr=D72
= B8k e(+1)(r—1)=2

B1+...0r=k
= Z Cﬁl,,ﬁkpgk((r — 1)*1)87(7.71)_2 N 07

Bi1+...0k=k

asr — 1. D

5.2.2 Theorem. For any y € R", let 7, : R®™ — R", 2 = x4y, be the translation. Define
the map s : R™ x U — U by

(Yp~1o Tyo)(x), z€B
@,2) = {:U, x ¢ B.

We call s the localized translation group.

(i) For any y € R™, the map s, : U — U, z — s(y, x), is a smooth diffeomorphism with
inverse

_1(x):{<w—1w_yow><x>7 reB

x, x ¢ B
Clearly sy p = id.

(ii) For any point = € B, the map a, : R™ — B, y — s(y,x), is a diffeomorphism and
a;l: B — R™ is given by

w (T,w(z) o) (w).

(iii) The map s is smooth.

Proof.
STEP 1: Since
Yy #0: v~ (y)l =0 (lyl) €)0,1],

we obtain

v Hry(W(@)), z€B
x, zreU\B

VyER”:Va:EU:s(y,x)—{ ceU.
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Thus s has the correct range. This implies that all the s, have the correct range as well
and that sy]U\B =1id. For x € B, we calculate

z=s(y,x) =97 (ry(Y(@)) = (W(2) +y) & ¥(2) = P(x) +y,

which implies
syt =9 loT 01, gt =T @) 0 Y.

STEP 2 (smoothness): We have to show that s € C>*°(R™ x U,U), i.e. we have to check
that (y,z) — s(y,z) is smooth in every component z;, y;, 1 < i < m. Clearly, for any
fixed x € U, the map R™ — U

(1 oryo)(zr), z€B

yHam(y)ZS(y,wb{x’ pe B

is smooth in both cases. The crucial problem is to show that for any fixed y € R™, the
map sy : U — U is smooth. We will obtain this result in several substeps.

STEP 2.1 (flow): For any 1 < i < m define ; : Rx U — U, (t,z) — s(te;,z). Fix any
1 <i < m. We claim that j; is a flow, i.e. it satisfies for any & € U and any t1,f2 € R

Bi(0,x) = =, Bi(t1 +t2,x) = Bi(t1, Bi(te, v)).

This follows from the following calculations (let y,y’ € R™):

5(0,2) = {w—1<ro<w<x>>>, i;iz o)
sy, 0w)(a), weB
s(y,s@,x))—{ e

@{w Lor, ooy o, 0p)(a), z;g (5.2)

=s(y+y, ) (5.3)

(*): Notice that sy|;\p =1id : U\ B — U \ B is bijective and consequently s, restrict to
a map sy|p : B — B. Thus if x € B, so is s,(z) and we do not need another two case
differentiations.

This implies that

(VY= i(¥(2))', z€B

Xi(x) = 0u(Bi(t, @)))|t=0 = {x 0¢ B

defines a vector field on U.
STEP 2.2 (X; is smooth): Let y € R™ and define

O =9 = ®(y), re=n""(ly)), o=yl (54)
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We obtain the equations

—1
i i 7~ (|y]) i L
7t = di(y) = =~y 5.5
(v) VoY (5.5)
y (5.5) 2
Oy, (lyl) =~ ="~ (5.6)

“11)) — Yy e 1
Pl ) =yl )

Having this in mind, we calculate

Ay, (n (lyDy")lyl = 0y, (I~ (ly))y’

. —1
0, (™)) = 0y, (@) () 2, (LU0 =

| lyl | lyl>
_ Oy (M wDy'lyl | ™ (yDdy; (W)lyl By, (yhn~ " (why’
lyl? lyl? lyl?
(5.5),(5.6),(5.7) x'a) 7 ztad
= - . 5.8
' (r)r? - a(r)  ra(r) o9

Now consider z € B, |z| — 1. Then y := ¢)(x) — co. This implies that

r=r(y) =0 (V@) = 2| = 1, n(r) = n(lz[) = oo, 7' (r) = 0.

Consequently
Ay, (V™) (Y (x)) ——=0.

|z|—1

Though intuitively clear, one has to show that this convergence holds for all the derivatives
of (5.8) as well: Notice that if r(z) = |z| — 1, then r is bounded by 5.2.3 proven below.
Remember that ||f o gllcx < C|fllckllgller (this can be proven by induction using the
Leibniz and the chain rule).

Consequently there are generic constants C' such that

'l ' j —1y2 '
7o llee S Cllatllexllla lexllr= e I1/7 lexllrller = O,
rorles = Clrlice/nllex =0,

igd ‘ .
22 < Cllles el lerllee 1/l =0,

as |x| — 1 using 5.2.1(iii).

STEP 2.3 (f; is smooth): Since X; is a smooth vector field, X; generates a unique maximal
smooth flow 6; (c.f. [16, 17.8]). In particular its integral curves vary smoothly with the
initial data. Since the generated flow is unique, we obtain 8; = 6; by construction of X;.
Consequently f3; is smooth.

STEP 2.4 (s is smooth): By (5.2), we obtain

s(y,z) = S(Zyiei, x) = s(y1e1, s(y2e2, (... (s(Ymem,x))...)))
i=1
= By (B2(y2(. - - (Br(ym, @) - - )))),

thus s is smooth as a finite composition of smooth maps. ]
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5.2.3 Auxiliary Lemma. Let 0 <r < R < oo and
K, r:= Bgr(0)\ B.(0) C R™.

Then for any multi-index «, |a| = k, there exist a constants Cl, C,, such that for any

WS K,«’R
1 -
o ()’ < .
[&d|

Proof. We will prove this statement by induction over k. The case £ = 0 holds by

[0%(llz[D] < Ca,

construction. For the induction step consider any a = f+ ¢;, |a| = k+ 1, |B] = k,
1 <i<m,x € K, r and calculate

9°||z|| = 9°8: ]| = & <HZ\> -y <§> 05~ (2,)9" (Hxl”> (5.9)

v<B

By hypothesis |y| < || < k and therefore this expression is bounded by some constant
Cy. Now consider

o (1) =2 (otiel)) = =0° (paddlah) )

Now we can apply the Leibniz rule twice to these product of three functions. All occuring
expressions are bounded by hypothesis or by what we have just proven. O

We need to establish some Lipschitz properties and therefore introduce the following no-
tational conventions.

5.2.4 Definition (Lipschitz). A function f : D C (X,|_|) — (Y,||_||) is Lipschitz
continuous or just “is Lipschitz” with constant L(f) > 0, if

Vay,xp € D |[f(22) — fa)]| < L(S)|lx2 — 2.

We denote by L(f) a Lipschitz constant of f, although this constant does not have to be
optimal (and is therefore not unique).

5.2.5 Theorem (properties of Lipschitz functions). Let (X, ||_|), (Y,||_I), (Z,||_I)
be normed spaces.

(i) Assume f: X — Y and g : Y — Z are Lipschitz with constants L(f), L(g). Then
g o f is Lipschitz with constant L(go f) < L(f)L(g).

(ii) Assume f,g: D — C are Lipschitz with constants L(f),L(g) and globally bounded
with constants B(f), B(g). Then f-g: D — C is Lipschitz with constant L(fg) <
max(B(g)L(f), B(f)L(g))-

(iii) Assume X, X9 C D C X, where D C X is convex and X, Xy are not empty, closed,
and satisfy X; N X; =, D = X; U Xs. In other words D is split up into two closed
subset X7 and Xo wich meet at a common nonemtpy boundary. Assume f: D — Y

is continuous, f|x, is Lipschitz with constant Lq(f), f|x, is Lipschitz with constant
Lo(f). Then f is Lipschitz with constant L(f) < max(Li(f), La(f))-

Proof. Let z1,2z9 € D.
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(i)

lg(f(x2)) — g(f (@)l < L@l f(z2) — flz)|| < L(g)L(f)l|z2 — 1.
(i)
| f(22)g(z2) — f(z1)g(z1)l| < ||f(z2)g(22) — f(22)g(21)|| + [|f(22)9(21) — f(21)g9(21)]]
< B(f)L(g)l|z2 — 1]l + B(g)L(f)|lz2 — z1].

(iii) In case z1,x2 € X or 1,22 € Xy, this is clear. So let x; € X7 and z2 € X5. Then
there exists a ¢ € [0, 1] such that ' := x1 + t(zg — x1) € X1 N Xo. We calculate

I1f (z2) = f@)]l < [1f(22) = F@)II + [ f(2) = fz1)]
= [lf2(22) = fo(a)[| + [ f1(2") = fr(z1)]
< Li(f)llwz — 2| + La(f)[l2" — 21|
< max(Li(f), La(f) (2 — || + [[2" — z1]])
and
[z = &'l + 2" = a1l = [|(1 = )z — (1 = H)an || + [[t(z1 — 22
= (A =8) +)llz2 — 21| = llz2 — 1. O

5.2.6 Theorem. With the notation from 5.2.1:
(i) n~' is Lipschitz with constant L(n~") < max(1, L(no) ™), L(ny ') := max, g1 21 [7o(r)]-
3’3
(ii) Themap ¢~ : R™ — B™ is Lipschitz continuous with constant L(x~1) < max(6, L(n')).
Proof.

(i) We already established that 1 and ! are globally smooth. We analyse the derivative
of n: Clearly

1
Vr €]0, §[ n'(r)=1.
We calculate

2 —2\/ —2
“ A (r=1) — _ _1\-3,(r-1)
Vr €] 3 1[: (e ) 2(r—1)""e ,

(e““*l)’?)" - (6(r ) A — 1)*6)60“*1)’2 > 0.

The second equation tells us that the first derivative is monotonously increasing.

Therefore 5 o
_ R / > (7‘—1)_2 “ — 1 ]
\77“613,1[77(7”)_(6 ) (3) 54es > 1> 0

Since 1y is strictly monotonously increasing, 7 is invertible on its image. Since [%, %]
is compact, we obtain some bound

L(ny ') == max |no(r)| < oo

303
Using the fact that Vr €]0,1[: (n71)'(r) = W, we obtain that
vr €]0,1[: |n'_1(r)] < max(1, 5467%, L(no_l)) = max(l,L(no_l)) =: L(Tfl).
Now the itermediate value theorem tells us that

Vri,r €)0,1[: 36 € [ro,mo] = [~ (r2) =~ ()| = (071 (©)lfra—ra| < L(n™H)|r2—r4].
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(ii) Now we use Theorem 5.2.5 to obtain the following results: The function R™ — R,
n~'o| |, is Lipschitz with constant < L(n~1).
Furthermore we claim that R™\ By /3(0) — S™, y Iz%\’ is Lipschitz continuous with
constant < 6:

y y oz x x| _ly—ax| jalz] -y
Va,y € R™\ Bys(0) | L - D) = | L - D4 Do |
/ yl 2l Uyl Tyl "yl e [yl lyllz]
§3|y_l“+M§3|y—l“+’x_y’§6|y—x|.
ly||] vl
Now
-1
- n Yy
Vy € Byy3(0) : 7 (y) = \15|| Dy:y,

thus ¢! is Lipschitz on By /5(0) with constant 1. Outside it satisfies

Wy € R™\ By 5(0) : ¢ (y) = n,l(,y‘)%

and is therefore a product of two bounded Lipschitz functions. Using 5.2.5 and the
first part, we calculate

L(~") < max (L(¢_1’Bl/3(0))a L(w_lfﬂw\Bl/?,(O)))

< max (1,max (B<n-1<\y|>>L<,§|rRm\Bm@), L<n-1<|yr>>B<|§j\Rm\31/3<0>>))

< max(1,1-6,L(n"")-1) < max(6, L(n, 1)) O
5.2.7 Corollary. Let y € R™ and let s, : U — U be a localized translation. Then
Vo € U Jsy(@) o] < L)yl
Proof. Since ¢! is Lipschitz with some constant L by 5.2.6, we obtain

Vo e U :[sy(x) —a| = [~ (1 (¢(x))) — 7 ()| < Liry(¢(2))) — ¥ ()| = Llyl,
Vo € B:lsy(z) —z|= |z —z|=0< Lly| O

5.3 Construction of the operators

Before we can start with the construction of the regularization operators in detail, we need
to remind of some results concerning the classical de Rham theory of smooth differential
forms (c.f. [16, 15]).

5.3.1 Definition (notation). Let M, N be smooth manifolds, I := [0,1] and let H :
M x I — N be a homotopy between F,G : M — N. For any t € I define iz : M — M x I,

p (p,t).

5.3.2 Definition (homotopy Operator). The map h: QF(M x I) — QF1(M),

1
w»—>/ Lo,wdt,
0
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is the homotopy operator. Somewhat more explicity, this means that for any Xi,..., X1 €

T(1) 1
Vp € M : h(w)|p(X1,. .., Xp-1) :/0 Wip.y) (O, X1, ..., Xi—1)dt,
where 0y, X; € T(M x I) are the vector fields on M x I that are defined by 5.1.6.
5.3.3 Theorem. The operator h is a cochain-homotopy between i, and 47, i.e.
hod+doh =1 —i.
Proof. See [16, 15.4]. O
5.3.4 Corollary. The operator h := h o H* is a cochain homotopy between F* and G*.

Proof. Since Hoig=F and H oi; = G,
hod+doh=hoH"od+dohoH* = (it —i})o H* = G* — F*. O

5.3.1 Regularization on R"

Before we proceed, we will outline how to define regularization operators on R" as a
motiviation for the localized version in the next section. These operators were introduced
by de Rham in [23, II1.§15].

5.3.5 Lemma (special Case). Lety € R and define S, : R™xI — R™, (z,t) — x+ty.
Obviously Sy is a homotopy between 7, : R™ — R™, x + x4y, and id : R — R™, z > x.
We claim that b = ho S} : QF(R™) — QF(R™), h as in 5.3.2, is given by

e = | i () syt
where Y € T(R™) is the vector field with constant coefficients y.
Proof. In that case M = N = R™. Consider X1,...,X; € T(R™) and observe
Xilway = X002l 2y = X705 (1)
To calculate the push-forward, notice that in classical notation
VSy(z,t) = (En y) € R (D),

Combining these insights, we conclude

Syul@ny(Xi) = X7 oty Syl e (05| (@) (5.10)
= Xi?’ﬂc-&-ty(vsy(% t))§a$k|x = Xz']|cc+tya$j|x = Xilz+ty,
Syl@n(0) = (VSy(2,1))1410%ilatty = Y'OTilatty = Y |atey- (5.11)

This allows us to clalculate for x € R™

1 ~ o~ ~
h(w)]m(Xl, e ,Xk> = h(SZ(w))’x(Xl, cee ,Xk) = /0 SZ(w)|(x7t)(at,X1, .. .,Xk)dt

1
= /0 Wls, @,t) Syl @000 Sy @ X1, -+ Syl (2,0 Xk)dt

(5.10) [* 1
= /Ow|x+ty(Y,X1,...,Xk)dt:/O by (W)|agty (X1, ..., Xp)dt. O
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The operator h from Lemma 5.3.5 above can be used directly to define regularization
operators in R™.

5.3.6 Definition (regularization in R™). Denote by s, : R® — R", z — x + y,
Sy : R"x I, (z,t) = x+ty, the standard translations and let ¢ > 0. Define R* : Z;(R") —
Zx(R") by

Vo e U: RFw)|, = /Rm (syw)|ape(y)dy == Z (/

I€Ty,

(sy)1(2)-(y)dy ) da’,

m

where 7, is the set of all increasing multi-indices of length k and . is the standard mollifier
from 5.1.2. Similar, define A* : 9, (U) — 25,_1(U) by

c AR (w), = h(w
Vo e U : AR (w)|, /Rmh( ) e(y)dy

= ¥ ([ [ atsienene )

1€l

where h is taken from Lemma 5.3.5 w.r.t. the homotopy Sy. Denote by R., AL the
corresponding operators on currents 2'(R™).

These operators have numerous interesting properties. We just collect a few, since we will
study the localized versions in more detail.

5.3.7 Theorem (properties of regularization operators on R™).

(i) The operator R. is a cochain map, i.e.
R.od=doR..

The analogous result holds for R..

(ii) The operator A. is a cochain homotopy from R. to the identity, i.e.
A;od+do A, = R: —id.

The analogous result holds for AL.

(iii) ThmRegOpsRegRn For any current 7' € Z;(R™) there exists a smooth form w €
QF(R™) such that RL(T) = (w), i.e.

Vi€ T RAT)0) = o)) = [ wnn

Proof. The proof for properties (i) and (ii) is almost identical to the proof of the localized
versions in Theorem 5.3.11. Therefore we will skip them. Let us prove property (iii), the
reason why R is called "regularization operator”:

STEP 1 (preparations): For any x € R™ and any function F' € 2(U)
Re(P)e) = [ (@P@ewdy= [ Fatnemiy= [ FE gl o)
=1z (2)
= [ Piadn = (F)adi) = (F) A di) 1), (5.12)
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We consider 9 as a smooth function R™ x R™ — R, (z, z) — ¢(x, z). By fixing = or z we
obtain two families of functions ¥, ¥, on R™ and any v, has compact support.
Now since

Vi<i<m:Vz,y € R™: s;;(dxzﬂx =d(z" 0 sy)|s = d52|x = 0. (2" 4+ ") |pda? |, = dz’|,,

J

the Euclidean volume element du = daz' A ...dz™ is invariant under all translations.
Therefore

Vf € Zo(R™) : Re(fdp) = Re(f)dp. (5.13)

STEP 2 (regularity): The strategy is to use the local decomposition theorem 4.1.19.

STEP 2.1: Let us first consider the case where T' € Z)(R™). Any form w € Z,,,(R™) may
be written as w = fdu, where f € Z5(R™). We calculate

(RLT)(w) = (RLT)(fdp) = T(Re(fdp)) "= T(R.(f)dp) = T(dp A Re(f))

— (T A dp)(Ro(£)) "2 (T A dp) (@ ((F) A dp) (i62))
() ) > (T A dp)(02)) = [ S0 (5.14)
——— U

=:07(2)

- /U 0fdp = (0)(fd) = (0)(w),
where
0 :=0r = (T Ndu)(y ) € Q*(R™). (5.15)

STEP 2.2: For the general case, notice that we may choose a global coordinate system on
R™ (the identity) and decompose T' € 7, (R™) into

T = ZT[ VAN dajI,T[ € @é(Rm)

by Theorem 4.1.19. For any I let R.(T7) = (01), where 01 := 07, € Qi(R™).
Using the translation invariance of du again, we obtain for k-form w € Z(R™)

R.(dz! Aw) = dz! A Ro(w). (5.16)
Therefore
R.T ZR’ (Ty Ada")(w) =D (T Ada")(Rew)
1
5.16)
—ZTI dz! A Rew) = Z (Re(dz! Aw)) (5.17)
1
—ZR/TI (dz!f Aw) = < ) (dz! A w) Z (01 A da?)
1 1

is smoothly generated. O
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5.3.2 Localized regularization

If we exchange the translation with the localized translation in the definition of R, and A,
on R, we obtain the localized versions on U.

5.3.8 Definition (regularization operators). Let s:R™ x U — U be the localized
translation group from 5.2.2. Let L be the Lipschitz constant of ¢ calculated in 5.2.6. For
any y € R™ define Sy : U x I — U, (x,t) — sy(x). We call Sy a localized translation
homotopy. For any 1 > & > 0 such that O.(B) C U, define* R” : Qk(U) — QF(U) by

Ve eU: ng(w)|x = /Rm (syW)lzpe/r(y)dy == Z (/

IEIk

(531 (@)1 (v)dy ) da',

m

where 7y, is the set of all increasing multi-indices of length £ and . is the standard mollifier
from 5.1.2. It will follow from a more detailed analysis in 5.3.9 that R.(w) € QF(U) as
claimed. Notice that for each y € R™, s,(x) € U, so this integral is well-defined. We call
R, the regularizer.

Similar, define A¥ : QF(U) — QF1(U) by
Vo e U: Al(w)la -—/ / Lo, (Sy (W) |0y dt e/ (y)dy

/m/ 0, (S (z,t)pe/r(y )dtdy)dg;f

We employ the convention Ag =0 as well as 5.1.6.

I€T),_1

5.3.9 Theorem (basic properties). Let w € QF(U).
(i) For any x € U\ B

RE(w)’E = w’rv As(w)’m =0.
(ii) If K := suppw, we obtain

supp R:(w) C O.(KNB)UK\ B €U,
supp A:(w) C O (KNB) €,

and therefore in particular
supp R (w) C O:(suppw), supp Ae(w) C O (suppw).
(iii) Re and A. define continuous operators R., A. : Z(U) — 2(U).

Proof. It is clear that R.(w), A-(w) € Q¥(U). Also notice that since supp ¢e/1, C Beyr(0)
by 5.1.2, one may always express these operators by

&w—/ (5%w) e (9)dy, w—/ /@t W))dt g1, (y)dy.
Bs/L(O) s/L(O)

40f course these definitions make sense for ¢ > 1 as well. But we need this operators only for small values

of ¢ and this avoids technical issues.
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(i) Remember that
VeeU\B:VyeR" :sy(z) =2

by Theorem 5.2.2. Therefore for any X1,..., X, € T(U), z € U\ B, we obtain
Re@)l(Xne o X0) = [ s Xepern)dy
= [ ool i XKoo )y
— [ el Xy
= w|p(X1,..., Xk) /Rm (pE/L(y)dy = w|x(X1,..., Xk).

By definition, for any y € R™, we have S, : U x I — U, (x,t) — s4(x). Thus again
by 5.2.2, this implies

VeeU\B:VyeR™:Vtel:Sy(x,t)=sy(z)=x.

Thus S, does not depend on ¢ here and consequently Sy, |+ (5,5) = 0. This implies

AL X = [ [ 1S (Frve K e 0y
= [ [ Sn(@ T Kot )iy
/m/ w8, (2) Sy @) 0 Syl @y X1s - Syl @ty Xa—1)dbipe s, (y)dy = 0.
(ii) Assume x € U and R.(w)|, # 0. We conclude

04 / (550 0o (0)
E/L

:>3yeBE/L( ):3X1,.. ., X eT(U):
0 # s, (w)](X1,..., Xg) = wsy(x)(sy*Xl, oy 8y, Xk)
= W, (x) 7 0= 8y(7) € suppw.
Now by 5.2.7, we obtain
|sy(z) —a| < Lyl <e

and therefore z € O, (suppw).
With almost the same proof, we obtain the same statement for A.: Let z € U and
assume A.(w)|, # 0. We conclude

1
=04 / / 10,(S5@) [yt 02 (v)ly
BE/L(O) 0
= Jy e Be/L(O) cdt e [0, 1] cAXy,. ., X110 F# LatS;(w)’(x,t)(le - ,Xk_l)

= wgy(x,t)(Sy*ét, Sy*Xl, ceey Sy*Xk_l)
= WS, (e,r) 7 0 = sty(x) € suppw.
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Again by 5.2.7, we obtain
|sty(x) — x| < Lity| < Lly| <e

and therefore = € O.(suppw).

(iii) Now we carefully combine the two statements above to see that R, Ac define maps
Q.(U) = Q.(U): Assume w € Q.(U) and suppw C K C U and K is compact. By
(i), (ii) and our choice of €

supp R:(w) C O.(KNB)UK\ B e U.
supp A:(w) C O (KN B) e U.

Thus R.(w), Ac(w) € Qc(U).
Now we check continuity: Let w; € Z(U) such that

WJTO

Let K C U be compact such that
Vj € N:suppw; C K CU.
By what we have already proven and by choice of € in Definition 5.3.8, we obtain

Vj € N :supp Ac(wj),supp Re(wj) C O (K NB)UK \ B € U.

=K

Therefore the supports of all the R.(wj), A-(w;) are contained in the compact set
K..
Now for any x € U, o € N, |a| < [, and any I € 7}, we obtain

o (Re(wp)i| < [ i@y = [ 102 (551 @) |p=/2.9)

smBs/L(O)

< lleeszlleoee) vol(Ke) max |07 (syw;)r ()]

Now assume w; = fjdxl = fjdxz™ A...Adx" (which is no loss of generality, since all
operations are linear). We obtain

sy(wi)lz = fiosyd(@xosy)A...Ad(z™ 0s,) = fjos, 8]13y . 8]ks§fda:31 - Adatk,

By the Leibniz rule, the expression
05 (fj0sy ajlsy ...6jks;’“),

is bounded in terms of || fj 0 sy[lci(x.) and [|8j,s;' ... 8j, st llci(c.)- The latter one is a
constant due to compactness of K.. The first one is bounded in terms of || fjllct(x.)
and ||syllct(x.) by combining the chain rule with the Leibniz rule and again due to
compactness of K.. Altogether this implies that

Jj—00
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In a similar fashion, we estimate

1
o (Act)n) | < [ e | 102 Galyte) (.l n ol

< lpe/rllcox.) vol(Ke x T) o max |05 ta, Sy (w)1(z,1)]

and the convergence
Jj—00
Ae(wj) 2 »0

follows analogously. O

5.3.10 Definition. Define R, : Z,(U) — Z,(U) by
VT € Z3,(U) :Vn € Dk (U) : RL(T)(n) := T(Ren)
and AL : 2/(U) = 2.._,(U) by
VT € DU : V0 € Doniar  ALT) () = (—1)FT(Acn).

Notice that by Theorem 5.3.9 these maps extend to bounded linear operators R., AL :
2'(U) — 2'(U). The reason for the sign will become apparent in the proof of Theorem
5.3.11 and 5.3.13.

5.3.11 Theorem (homological properties). The operator R. : Z2(U) — 2(U) is a
cochain map, i.e.
R.od=do R,

and A. : 2(U) — 2(U) is a cochain homotopy from R, to the identiy, i.e.
doA.+ A.od=R. —id.
The analogous statements are true for R., AL : 9'(U) — 2'(U).

Proof.

STEP 1 (R is cochain map): Since pullbacks are natural (c.f. [16, 12.16]) and w € QF(U),
we obtain

Ve € U : Re(dw)ls = / SZ(dW”x‘Pe/L(y)dy = / d(sZw)|z<p€/L(y)dy = dR:(w)|s-

m RrRm

STEP 2 (A is homotopy): Obviously S, is a homotopy from z — S,(z,0) = so(z) =
id(z) = = to @ — Sy(x,1) = s;(z). Consequently 5.3.4 implies that for any y € R™,
the operator h = ho S,, satisfies

- ~ 1
VyeR™:doh+hod= s, —id, h(w) :/ Lo, (sy(w))dt.
0
Thus for any w € Z(U) we obtain
| @ohshod@iemdy = [ =iy
= [ Do+ [ de)ewidr= [ sy = [ wemay

=dA;(w) + A:(dw) = R (w) — w.
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By dualization we obtain the corresponding statements for R., A: For any T € 2, (U)
and ) € Py, _—1(U), we calculate

(RLod)(T)(n) = d(T)(Ren) = (=1)" *T(dRen) = (—=1)"™ *T(R=dn) = (d o RL)(T)(n)

and

(do AL+ ALod)(T)(n) = (—1)* "M AL(T)(dn) + (—1)*d(T)(An)
DT (Azdn) + (—1)FHRHT(dAn)
Acdn + dAcn)

R.n—n) = (RL(T) = T)(n). O

(
(

7(
T(

5.3.12 Convention. Since L, may be embedded into 2, we could regard R., A. as
operators on the spaces L1 1oc, W1 loc, Lp, W) and so forth. On the other hand, we could
define R., A. on L 1oc(U) directly by the same formlae 5.3.8 as in the smooth case. The
next theorem will ensure in particular that both definitions agree. Therefore Theorem
5.3.11 is also valid for the operators defined directly on Wi joc. In the following we may
therefore always choose the definition that is the most convenient.

5.3.13 Theorem (regularity).
(i) If w € L}, (U), then
RL((w)) = (Rew)
and R.(w)|p € Q¥(B). We say R. is regularizing in B.
(i) If w e Lf,.(U), then
AL((w)) = (Aew)
and if in addition w € C"(U), then A.(w) € C"(U). We say AL is nowhere deregular-
12ing.

In particluar the following diagram commutes:

Proof. The idea is to modify the proof of Theorem 5.3.7(iii). Since the volume element is
not invariant under localized translations s;, equations (5.13) and (5.16) unfortunately do
not hold in this setting. Therefore we cannot establish the claim step by step. Consequently
we will prove the claim directly with a similar approach as in (5.12).

STEP 1 (regularity of R.): Let y € R™, z € U and I = (i1,...,14;) be any multi-index.
We calculate
sp(dal)]e = s (da™ AL A da')],
=d(z" os,) A... Ad(2™ 05y)|p = dsél Ao A dsé’“\x
= Z 3les;1(1:)...8mjk(x)dxj1 AN daik|, (5.18)
J=(j1,-:3k)

=Y Oq,(sh)(x)dz’.
J
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Remember from 5.2.2 that for any z € B : sy(z) = s(y,z) = a,(y) and that a, : R™ — B
is a diffeomorphism. Thus we obtain

Vo € B:sy(z) =2z a;'(2) =y.

This implies that for any w € L% loc(U) and any z € B

Re@lo = [ sy@oqntay = [ 5( 3 wrde! Lo iy

IeTy,

- wi(sy(2))sy(dz’) e (y)dy

gf: /m I Pe/LY
Yy / r(5,(2))0%, () 0) /1 0)dyd”

1€, J

=2 Z/ )0, () (y) e/ (y) dydar”

1€y, J Be/r
=2 Z / ) Ous(ah) (a7 ' (2)) ey (0 ' (2)) | det(Vag(ay ' (2)))| 7 dzdz”

1€y, e/L

=:0;(z,x)

= Z Z/ 2)0(z, x)dzdz’ . (5.19)

Since §; : R™ x B — R is a smooth function compactly supported in x, this implies
R.(w)|p € Q¥(B).

STEP 2 (commutatlwty of R.): This part of the proof is inspired by a remark in [3, p.255].

Let w € L} loc(U) and n € Zp,(U). Notice that for any y € R™, the map s, : U = U

is a d1ffeomorphism. Therefore by the diffeomorphism invariance of the integral, the fact

that ¢./(—y) = ¢-/r(y) and (s;",)_1 s*,, we obtain

) = [ Retwllennlode = [ [ sj(@)lepusnlo)dy nnloda

[ [ sl nale eptoinn = [ [ sl naladog.
/ / (wA s, (m)|zdrp. 1 (y dy—/ /w|$/\s Mzdrpe 1 (y)dy
// w|a:/\3 |:v§0€/L dydm—/w’m / |a:905/L( )dydm

:/Uw|m/\R( )edz = (w)(R=(1)) = RL((w))(n).

STEP 3 (regularity of A.): The theorem on differentiable parameter dependence of inte-
grals ensures that if w is C", then for any |o| < r

1
0% ((Ae(w))1)(x) = /U /0 010, (57 (w))1(z, 1) pe () dtdy.

Since tg,, S, are smooth, the statement follows.
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STEP 4 (commutativity of A.): Let w € Llf,loc(U) and 7 € Zy—p11(U).

1
W= [ Al Al = / L[ dSi@Nlandt eopntw) dy nludo
:/ | [ oS3l nnlads pepntw) dy
m JU JO

1
/R /0 1, (Sy (W))l@,) A TG ()] 2y de dt oy (y) dy
.1.5(v)
- /m/ /‘8t (W) AT (M) @y de dt ooy (y) dy
1)k+1/ /0 /U(S;(wm(%t) A Lo (70 ()] @,y dx dt o1 (y) dy
m \ﬂ_/

=0

1
o ( [ () A 0) L dx) 0t p.y1(y) dy
1
" ( /U st (WA 5" (55 0))) e dx) 0t o)1 (y) dy

. ( / @l A S e dx> dt 9e1(y) dy

[ay

ot
Q‘

I
%\
S— S>— — >—

3

1

I
T 5 5

3

1
. /UL ey A S50)mer) i dt 2yu () dy
1
- /Rm/o Lat a:t) A S ( )|(:c,t)) @E/L(y) dt dy dx
(5.20)
Now on the other hand
AL = (D @) Aen) = (1 [ vl Aol (5.21)

This integral can be transformed by the same methods as above. The prefactor (—1)* fits
in perfectly because of 5.1.5(v): In (5.20) we used this theorem in the form of

ix(@) A B=1x(anB)— (-1)Fanux(B)
N—_——

and in (5.21) we have to use it in the form of

(—DFfanix(B) = ix(anB) —ix(a) AB.
—_——
This shows that (5.21) equals (5.20). O

5.3.14 Theorem (integrability). The linear operators R. : L’;(U) — L];(U) and A :
L];(U) — L’Ij_l(U) are bounded. (We remind that L, is taken with respect to an arbitrary
Riemannian metric on U).

Proof.
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STEP 1 (preliminaries): Before we can start the estimates, we need some preliminary in-
equalities.

STEP 1.1: By Theorem 5.2.2, the map s is smooth. Therefore, the map B x B — R,
(x,y) — ||(sy)«|z|; is continuous (here ||(sy)«|.|| is the operator norm of s, at x) . We
obtain

Cri= sup ||(sy)«lall < oo,
(z,y)€EBXB

since this is a supremum of a continuous function over a a compact set. Again by 5.2.2,
we know that for all z € U \ B and any y € R"™, we obtain s,(z) = z, which implies

Ve € U :Vy € B : ||(sy)«]s]| < max(Cy,1) =: C.

By Corollary 1.2.10 this implies that the operator norm of the induced pull-back on k-forms
satisfies

VeeU:VyeB: sl < <TZ> mCy =: C,. (5.22)

Also notice that by 5.2.6 the Lipschitz constant L satisfies L > 1 and since ¢ < 1 by
definition 5.3.8, this implies that the Euclidean ball B,/ (0) satisfies

Bs/L(O) CcBcU.
STEP 1.2: In a similar fashion consider S, : U x I — U. We obtain

C) = sup |8y, @l < o0
(y,z,t)eBxBxI

and since for any z € U \ B, Sy(x,t) = sy(z) = x, we obtain

Sup HSy*|(x,t)H < maX(Cz/lv 1) =: Czll/
(y,z,t)eBxUXI

Again by 1.2.10, this implies that norm of the corresponding operator on pull-backs of
k-forms satisfies

VeeU:WyeB Vel ]S myl < <k>ck o (529
STEP 1.3: The interior multiplication 1y, : QF(U x I) — QF LU x I), w > 15,(w), is
smooth and O.(B) C U. Therefore

sSup ”Lat’(a:,t)” =: (5 < o0, (524)
(z,t)€O(B)x1

since we again take the supremum of a continuous function over a compact domain.

STEP 2: For any 1 < p < oo, we calculate

p
IRe@ ) = [ IR()@)Pde = / [ s da
</ / Delleessw)ldy) de
/L()
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E (el [ ] )
2 () [ i)

()" [ W@ volByp 0)rds

L—megm

1(B)e™L~ m
_ (CCQVO / w(z)Pdz

mgm

= (cCy vol(B)) [lwll7,
N—— P

=:C%

)

In case p = oo, the calculation is very similar:

IRl 0y = o5 suplRee)(@)] = ess s [ s5loe )iy
zelU zelU

< ess sup/ ‘SZ(W)‘wHSOE/L(y”dy
zelU Ba/L(O)

¢ / 157 @) ald
S — €SS Sup S, (W y
L=mem “ocu Jp00 U

(5.22) cCh
<

L—megm

vol(B.,L(0)) ess S(}lp|w(9€)| = Csllwllzx @)
FAS

STEP 3: Remember that supp A.(w) C OL(B). Therefore we calculate in a similar fashion

1
. P
Ay = [ = [ | [ [ enleotenmaf d
p

/ / /|Ldt m,t)|dt’90s/L(y)|dy> dzx
5.1.2
) L) [ uatsienleolaa) a

(L 9 0O(B) B/L(O) k ( )
(5.24) cChs p/ / / P
< — [ 1S, (W) |(z.1)|dtdy ) dx

(L € ) (’)s(B)( Be/L(0) ! 0 )

(5.23)
< (cCiCi / / /|w[ |dtdy d:B
L=me =(B) Y Be/L(0)

CC%CZVOK E/L
g( o /U [wle[Pdz = (cC5Cavol(B))? wllf . 1
=:C¥

Again, in case p = oo this simplifies to

[Ac(@) ot g7, = 058 5up| A-(w)la] < ess sup / / 16, (S5 (6) e 1021 ()
z€O.(B) z€0(B)/R™

5.1.2 c
< T mm ©58 sup/ / Lo, (Sy (W) ](2,0) | dtdy
z€0:(B) B /(0

(:24) O
< fmSmess sup/ / |S;(w)|(z7t)]dtdy
L=me 2€0(B)Y Be/rL(0) /0
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(5:23) CsCy

< T s sup/ / |w|z|dtdy

L—megm
€0 ( B, /(o)

< CC5C4 VO]( a/L)

ess sup|wl,| = CGHWHL’;O(U)' -
xelU

5.3.15 Corollary. The operators R., A. may be regarded as linear maps

R., A, : Lp,loc(U) — Lp,loc(U)7 R., A, : Wp,loc(U) — Wp,lOC(U)u
Re, A.: Ly(U) = Ly(U), Re, A - W, (U) — Wy(U).

As such they define bounded linear operators on L,(U) and W,(U).

Proof.

STEP 1 (L-spaces): We already know from Theorem 5.3.14 above that R., A, : L,(U) —
L,(U) are continuous linear maps. Now let w € Ly joc(U). Let K C U be compact and

define
5 w, on K
W= € L,(U).
0, onU\K

This implies
R (W)L, x) = 1R (@), 0y < ClI@llL, ) = Cllwllr,x) < oo

The same argument holds for A..

STEP 2 (W-spaces): For any 1 < p < oo and any w € W} (U) we obtain
”Re(w)Hg{/gf( = ||R€(w)|’1£,;(U + [|[dRe(w )HLk-H
5.3.11
| Re(w )”p + ||R5(dOJ)HL,€H < CH“”%/}@(U)
by Theorem 5.3.14. And similar
14 @) gy = [Ae@I7 ) + IdAI75 07
5.3.11
A+ IRele) 0 — Acld) 2
p
<A@ g+ (IR gy + loll o + 14e(de) gor)
< CHO‘]”W}c(U

by what we have proven so far. By the same token if w € W (U)
[ Be(@)llwe 0y = max{|| Re(w)ll Lx, @), 1R (@) s gy}

"2 max{|| Re (@)l 0y |1 Be(deo) gt 1} < Cllwllws o
as well as
| A (@)l @y = max{[|Ae (@) | i1 1y [dA (@) 1,0}
2 max{[| A @) it s [ Re(w) = w = Ac(dw)] 0}
< max{[| A= (@) -1 1y, 1R @) | i 0y + 9]l o) + 1 4=(0) | 5,0}
< Cllwllwe oy

The statement for W), o follows as in the first step. O
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If we collect all the facts we have proven so far, we obtain a rigorous proof of the first
existence theorem for regularization operators, which is stated by Gol’dshtein, Kuz'minov
and Shvedov in [5, Lemma 3| and is also discussed by de Rham in [23, III.§15].

5.3.16 Theorem (regularization operators I). Let U C R™ be a bounded open set,
endowed whith an arbitrary Riemannian metric, containing a closed Euclidean ball B of
radius one. Then the maps R., A, specified in 5.3.8, 5.3.9, 5.3.12 satisfy the following
properties for any 1 < p < oo:

(i) These maps restrict to bounded linear operators
R.: LE(U) — LE(U), Ac: LEU) = Ly ().
(ii) They also restrict to maps

(U) = WhLU)

p,loc

Re : WE (U) = W (U), Aot WE

satisfying the relations
R.od=doR,, doA,+Acod=R. —id.

So R is a cochain map and A, is a cohomotopy between R, and id.

(iii) These maps restrict to bounded linear operators
R.: WE(U) —» W), Ao Wy (U) - W),

(iv) For any compactum F' C Int B and any w € L’;JOC(U) the form R.(w)|F is essentially

bounded. R restricts to a bounded linear operator
R.: LE(U) = L (F).
(v) For all w € Ly 10c(U)
(Rew)|inB = w, (Aew)|tns = 0.
(vi) For any w € Ly 10c(U)

supp Rew C suppw \ BU O (suppw N B) C O (suppw),
supp A:w C BNsuppw C O (suppw).

Proof. Everything but (iv) has already been proven in 5.3.9, 5.3.11, 5.3.14. To see (iv)
notice that for any w € L’;JOC(U), the form R.(w)|p is smooth by 5.3.13 and therefore
bounded on any compact F C Int B. But we now estimate the operator norm R :
L,(U) = Loo(F) and obtain this statement independently of 5.3.13. The case p = oo
already follow from (i), therefore assume 1 < p < co.

The idea of this proof is to generalize the proof of the well-known inequality

1f*9llzee < N llzi 9l Lec

where f € L1(R™) and g € Loo(R™).
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STEP 1 (preparations): First of all notice that by our choice of ¢ in 5.3.8 and by hypothesis
F,B.;(0)c BCU.

Remember that the localized translation group is a smooth map s : U x R™ — U, c.f.
Theorem 5.2.2. There we also defined the maps a,(y) = s(y, ) = sy(x). The set

K:=s(F,B)cU

is compact as well.

STEP 1.1 (metric): We recall again that U is equipped with an arbitrary Riemannian
metric g. This will turn out to be inconvenient, but fortunately on a compact manifold

any two Riemannian metrics are equivalent. Temporarily denote by | | the norm induced
by the Riemannian metric, by || || the Euclidean norm (canonically extended to A¥(U) by
Theorem 1.2.4 as well) and by |_|r,, || _[|z, the induced L,-norms. There exist constants

¢, C' > 0 such that
V€ B:VYV eT,B: c|V] <|V]<COIV|. (5.25)

STEP 1.2 (pullback): Let w = fda! = fdaz™ A... Ada' € LE(U) and 2 € F be arbitrary.
For any y € R™, the pullback is given by

syl = (fo sy)(gc)d(gci1 o0sy)A...Nd(x o Sy)le = (fo sy)(:c)ds;1 A A ds;’“\;E
=(fo sy)(x)ﬁjlsy (z).. Ojksly’“( z)dzlt A L. A dae|,.
Now define
Ci:= max max _|J,s"(x)|, Cy := m*CY. (5.26)

1<v,u<k (z,y)€FxB

STEP 1.3: Finally, we bound the expression

Cs:= I(na>)< K¢€/L(a;1(z))| det(Vag (a1 (2)))| ™! < oo, (5.27)
z=s(z,y)e

STEP 2: Remember that the da” are a Euclidean orthonormal basis. Therefore by defini-
tion of the extended metric from 1.2.4, we calculate for any x € F

IRe@lell = | [ spelepesntdas
N H/n (f '5y)(2)0;, y( z). "ajkszk(x)%/L(y)dy dx?t A

<Z/ (f 0 5y)(2)05 53 () ... Oy 5yt (@) ey (y)ldy da? Ao A da* s

(5. 26)

kz/ (f o 5) (@) e ()| dy O CQ/S/L(O)|(f(az(y))|90s/L(y)dy
=0y /%(B) | (2)lpen (! (2))] det(Vag (az ' (2)))|dz
(5.27)

1
<<M@/wmw<@%mmuwmmp (5.28)
K
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where p’ is Holder conjugate to p. Notice that the last expression is independent of z. This
implies the statement via

(5.28) 1
[Re(W)|Loo(F) S CllRe)llpoo(ry < COC3u(K) Y ||wll 1, (k)

(5.25) 1 1
< cCCC3u(K) Y |wlp, k) < cCCC3u(K) 7 w1, 0)- O
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6 The isomorphism between the L,-cohomology of
forms and S-forms

6.1 Preliminaries

Let us recall our setup: M is an oriented Riemannian m-manifold without boundary, K is
a simplicial complex in some R", {x;};cn is a numbering of its vertices and h : |K| — M
is a smooth triangulation. The aim of this section is to prove that the L,-cohomology
Hy(M) = H*(Wp(M)) of M is isomorphic to the L,-cohomology 77,(K) = H*(S,(K)) of
S-forms on K.

6.1.1 Remark. Before we delve into all the technicalities (some of which we already
carried out in the last chapter), it might be useful to take a look at the big picture first.
The overall strategy outlined by Gol’dshtein, Kuz'minov and Shvedov in [5] is the following:

/ pr\) (6.1)

(Sp(K), | s, (x6)) M), [ _llw,(an)

\/

M), || _ls, 1))

In Lemma 2.3.13, we already established that ¢p, : Wog j0c(M) — S(K) is an isomorphism
of cochain complexes. Therefore its inverse map is an isomorphism as well. In Lemma
6.1.6 we will show that this map satisfies ¢} ' (S,(K)) =: S,(M) C W, (M) and is contin-
uous, if S,(M) is endowed with the subspace topology. By restricting, we obtain a map
©n + Sp(M) — Sp(K) again. In 6.1.7, we will force this map to be continuous by endow-
ing Sp(M) with another norm || _|[s,(ar)- The operators Z, </ : (Wp(M), || _llw, ) —
(Sp(M), || _ls,(ar)) will be constructed in 6.2.1. In 6.2.2 we will show that ¢ o Z is an
inverse to ¢ o gpgl up to the cochain homotopy 7.

It turns out that this strategy works only under certain restrictions on the triangulation
(c.f. 1.3.6).

6.1.2 Definition (GKS-condition). A smooth triangulation h : |K| — M satisfies the
Gol’dshtein-Kuz’minov-Shvedov condition (or just ”is GKS”), if
(i) The simplicial complex K is star-bounded with star-bound N.
(ii) There are constants Cq,Cs > 0 such that for every simplex o € K the push-forward
of the map h : |o| — M, seen as a smooth map between manifolds with corners,
satisfies

sup || e[| < C1. sup || ey | < Co
TEo rxEoT

Here || || denotes the operator norm, which is induced by the Riemannian metric on
M and the S-metric on K. It is of the utmost importance that Convention 2.3.6 is
in power, i.e. K is endowed with the standard S-metric gg.
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A Riemannian manifold M is GKS if there exists a triangulation h : |K| — M that is
GKS.

6.1.3 Convention. For purposes of integration, we may think of |K| as a smooth Rie-
mannian manifold: Certainly the union of interior of the simplices of top dimension is a
smooth manifold and the rest is a set of measure zero anyway. It is also useful to think of
h as a (C1,C3)-bounded diffeomorphism, c.f. 1.3.6.

In particular, we may think of |K| as a metric space: For any two points z,y € K we
define d(x,y) as the infimum of all piecewise smooth curves connecting = and y. The
notion of piecewise smooth curves is still senseful and the curve length is calculated using
the S-metric on K.

6.1.4 Lemma. Let h: (|K|,g95) = (M, g) be GKS.
(i) The metrics (h*gs,g) are (C ', Cy)-equivalent.
(ii) The induced metrics dy and dg on M respectively |K| satisfy

Va,y € |K|: Oy tds(z,y) < dg(h(x), h(y)) < Cads(z,y).
In particular, any GKS manifold is complete.

Proof.
(i) This is a direct consequence of Theorem 1.3.7.

(ii) Assume 7 : [0,1] — |K]| connects xz and y (for simplicity assume 7 to be smooth).
Then h oy connects h(x) and h(y). We calculate

1 1 1
Lg(hO'Y):/O |at(h07)(t)’dt:/0 !h*w)ﬁ(t)\dtﬁc‘l/o [9(8)ldt = C1Ls (7).

Since any curve connecting h(x) and h(y) is of that form, the first inequality follows.
The second one is proven analogously.

This estimate shows that for any dy-Cauchy sequence (p;) in M, the sequence (z; :=
h~1(p;)) is an S-Cauchy sequence in |K|. Since |K| is complete, it has some limit
x € |K|. This forces (p;) to converge to p := h(x). O

6.1.5 Lemma. The map h induces bounded operators h* : L,(M) — L,(|K|), (h=1)* :
Lyp(|K1]) = Lp(M).

Proof. This follows from Theorem 2.1.28. O
6.1.6 Lemma. If h is GKS, the isomorphism ¢, : WE |- (M) — S*¥(K) from Lemma
2.3.13 satisfies o, ' (SF(K)) C W}(M),1 < p < oo, and the map opt (Sk(K), I _lls,x)) =

P
(WE(M), ||_||W§(M)) is continuous.

Proof. The fact that ¢ is an isomorphism was already established in Lemma 2.3.13.
So gp,:l is a well-defined map and its restriction clearly remains injective. We have to
check that ¢, ' : SE(K) — WJ(M) is continuous. Therefore let § € SF(K) and let
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w =, L) e Wk 1OC( ). Define Cy := (’Z})C’éC and calculate for any 1 < p < oo

ol ary /’“"pd‘/— > / wPdv = / (o)) [PdV

oK (m) oceK(m)

Say | o B ORIV <30 160D vol(b(o)

ceK(m)

1.3.4 . ~
<ener S 100) e, vollo) < CROT v 191
ceK(m) —.Cp

In case p = 0o, we calculate analogously:

lwoll L& a1y = ess suplw|(z) = ess sup |w|(h(x)) = ess sup|(h™")*(8(0))|(h(2))
zeM ceK,x€o ceK,x€o

1.2.10 ~ ~ ~
< Cyesssup|0(0)|)(x) < Coess S}gpl\ﬂ(a)llwg(o) = Co||flsn (x0)
S

ceK,x€o

Since d commutes with the pull-back of h~! by Theorem 2.1.29, and since d is bounded,
we obtain

ol s apy < Clll161] 5

which implies the statement. O

6.1.7 Lemma (o, and 8,(M)). Let @ (S5 _lls,00) = (WEQD. | lhwgcan)
be as in 6.1.6. Define S,(M) := ¢, ' (S,(K)) and

3=

b <
Yoo € SE(M) ¢ [l ggar) = (Soen lolfg o) 1S p <o
SUPgek Hwngo(h(a))y p = Q.
() Then g : (Sp(M), | _lls,ca1)) = (S, |_lsy(z0) is continuious.
(ii) If w € Wp(M) and |wl|g,(ar) < 00, then w € Sp(M).
(iii) The inclusion ¢ : (Sp(M), || _[s,ar)) = (Wp(M), || _llw,(ar)) is continuous.

Proof.
(i) First assume 1 < p < 0co. Let w € S’{;’ (M) be arbitrary. For any o € K, we calculate

N 1.2.8 /m
suplilzels) "< (1)t sup ol = () CHll o,
reo reET

The same can be done with dw and since d commutes with h*, there exists a constant
C > 0 such that

[lon(w = D ol o) < CP D0 Mwllye oy = CPIwI s
ceK oeK

The statement for p = oo follows analogously.

(ii) Assume w € W;(M) and [|wlls, () < o0o. Clearly w € W oc(M). Therefore
on(w) € S¥(K). By hypothesis

len(@)lls,x) < Cllwlls, ) < 0,

thus pp(w) € SS(K). Consequently w = ¢; (pp(w)) € SE(M).
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(iii) We calculate for any w € S,(M), 1 < p < oo,

Il ) = ZZAAM%;Ejmmwww%ww

oceK(m) cecK(m)
1.3.4
< Clom Y @lLeeh(o)):
ceK

Applying this to dw as well yields the statement. The case p = co is similar. O

6.1.8 Definition. Let ¢ € N be arbitrary.

(i) Let (z;) € K be a vertex, let stx(x;) be the star of x; in K and stp(x)(z;) be the
star of x; in the first barycentric subdivision of K. A triple of closed sets

X, cy,czZ;,cM
such that

E; = h(stB(K)(xi)) C Int X,
X, cIntY;, Y, CcIntZz;, Z;CIntk,
Ei = h(StK(fEi))

is a star triple (see figure 6.1).

(i) A homeomorphism ¢; : ¥; — Bs(0), which restricts to a diffeomorphism on each
simplex of ¥; such that

vi(Yi) C Byy2(0) C B1(0) C ¢i(Z;)

is a star chart (see figure 6.1).

(iii) We say that LZU Y — X is a simplicial isomgrphism, if there exists a simplicial
isomorphism 1);; : stx (z;) — stx(x;) such that 1;; = hop;j o b1

(iv) A cho~ice {X:,Y;, Zi, i }ien of star triples and charts is galacticly compatible, if when-
ever v;; : X; — X; is a simplicial isomorphism, then

i = pj o Uij, X = i (X0), Y; = 1i;(Vi), Zj = i;(Zy). (6.2)

(M), A; : L¥, (M) —

1,loc

(v) Let 1 > e > 0. Define star regularizers R; : Llf,loc(M) — L]f’loc
L¥ L (M) by

1,loc

¥ “H*(w on X;
}Mm:{fmﬂ%)(»):mimg

Ai(w) = 7 (A:((97 ) (@) on
' . 0 ,outside ;.

Notice that R;, A; depend on €.
(vi) For any closed F' C M and any 6 > 0 denote

F5 .= FUO(;(FQEZ').
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K M

Figure 6.1: Star triple and chart

6.1.9 Lemma. There exists a galactically compatible choice of star charts and triples.
In the following we will assume that such a choice has been made.

Proof. The reason for that is the star-boundedness of K: By 2.2.20 there exists only a
finite number of isomorphism classes of stars. Therefore we may choose one representative
for each of them together with an arbitrary star triple. Since any other star must be
simplicially isomorphic to one of them, we just define the other star triples (X;,Y}, Z;) as
well as the star charts ¢; by the equations (6.2). O

6.1.10 Theorem (regularization operators II). For any 1 < p < oo and any i € N
the following hold.

(i) The star regularizers restrict to bounded linear operators
R;: Ly(M) — LE(M), A; t LE(M) — L1 (M).

(ii) They restrict to maps

Ri s Wyioe(M) = Wyioe (M), Ai s Wytoo(M) = Wyioo (M),
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which satisfy

R;,od=doR;, doA; +A;od=R; —id.
Furthermore there are constants A, /\; such that
[Ri(w)llwx s,y < Apllwllws ), 1A (@) =153y < Apllwllwe sy

and the same equations hold for the L)-norms (with the same constants).

(iii) There exists a constant /\Z such that for any w satisfying w = 0 outside Yj, there
exists a small € > 0 such that

1Ri (@)l sy < )\gHWHLg(Ei)'
(iv) If I C M is closed and w|ypp = 0, then

Ri(w)lanpy = 0= Ai(w) a5,
for some ¢ = d(¢) such that lim.,0d(¢) = 0. In addition A;(w)|ppz =0, if € > 0 is
sufficiently small.

We may choose Ay, Aj), Aj > 1.

Proof. We want to apply Theorem 5.3.16 of course. Thus we choose U = By(0) C R™ and
recall that although this is a subset of Euclidean space, we allowed U to be equipped with
an arbitrary Riemannian metric. We choose (gp{l)*g, where ¢ is the Riemannian metric
on M and therefore declare ¢; to be an isometry. We already noticed in Theorem 2.1.30
that L,-spaces are preserved by isometries.

(i) Assume 1 < p < oco. There exists a constant C' > 0 such that

IRA@E sy = lb (Be(o ) @DIE sy = IR @7 @D reiony
< e @I tgewy = ClIWIlE, sy

Therefore

”Ri(w)lep(M) = ”Ri(w)leI,(zi) + || Ri(w )Hp »(M\3;)
< C”WHZ,(ZZ.) + HWHIEP(M\EZ-) <(C+ 1)HWH§p(M)-
With exactly the same argumentation, we obtain the statement for A;. The proof
for p = oo is analogous.
(ii) This follows directly from (i), 5.3.16 and the fact that pull-backs commute with d.
(iii) Choose ¢ > 0 sufficiently small such that O.(Y;) C Z;. By hypothesis w|yny, = 0,
thus by construction of ¢,
supp(; 1)*(w) C ¢i(Y)
= supp R;((¢; ) 'w) C O:=(pi(Y3)) C 9i(Z)
= supp ¢} (Ri(p; ) )w C Z; C %

Therefore we can apply 5.3.16(iv) to F' := ¢;(¥}) C By2(0) C B2(0) =: U and
obtain a constant A > 0 such that

1R (@)l 2o 2y = 0F (Re((907 ) @z 2y = IR((07 ) (@) oo ()
< M@ ) @)l @) = Allwlz,s)-
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(iv) This follows more or less directly from 5.3.16 as well. The only problem is that the
e-neighbourhoods there are taken with respect to the Euclidean metric. If ¢; were
an isometry when taking the Euclidean metric in R™, we could take §(g) = . But
since any two Riemannian metrics are equivalent on a compact set, the statement
follows.

To see the equation A;(w)[ar\z, = 0, notice that by construction of A;, we obtain
Ai(w)|ans, = 0 anymway. Now consider a form w on X;.

(671w € Litoc(Ba(0), = supp A:((;)"w) C Ox(supp(piw) N B) C @il Z)

, provided e > 0 is sufficiently small. This implies supp A;w C Z;. O

6.1.11 Lemma. The constants \,, A\, A7 and d from 6.1.10 above can be chosen inde-

pendently of 7.

Proof. We discuss the constant A, in detail.

STEP 1 (strategy): Let i,j € N be arbitrary. Theorem 6.1.10 ensures that such a constant
Ap exists for ;. We have to show that A, can be chosen for 7 such that it does the job
for j as well. The problem here is of course the fact that in general K contains infinitely
many vertices. But since K is star-bounded, the galactic cover of |K| is finite (c.f. 2.2.21).
Therefore we may at least assume that i,j € N belong to the same galaxy (which may
contain infinitely many stars).

Now fix 7 and take again a look at 6.1.8 and the proof of 6.1.10(i). We see that the constant
Ap was obtained by

IRl 1,5 = 195 (Re((07 VDI < Mf NI RNl (07 ) Mwll 250 = IRe il (50)-

where ||R.||; denotes the Ly-operator norm. Remember that ¢; : ¥; — Bs(0) =: U; and
that U; was endowed with the metric g; := (; ')*g, which induces the L,- norm |_|;. In
other words one may choose A\, = ||Rc|;. The problem is that the operator norm || R.||;
depends on the metric g;. Thus our goal is to prove that there are constants Cs,Cy > 0
such that (| _|i,|_|;) are (C3,Cy)-equivalent. These constants must not depend on j. If
we have archieved this, we are done, because in that case the operator norms transform by

Rwl|; C Rw|;, C
Bewly G g (Betli _ Capp (63)
|wl; Cs w0 |wli Cs

| Re|l; = sup

w#0

STEP 2 (details): In order to find these constants Cs,Cy, assume that galactically com-

patible star triples and charts are chosen as in 6.1.9 and (6.2). Take any j in the galaxy of

i. By definition (see 2.2.21) there exists a simplicial isomorphism ;5 : st (x;) — stx(x;).
By construction the diagram

StK(CCZ') L> >

d}”i J}”J Y
Pj

StK(QZj) L> Ej —U

commutes. Finally, we are able to establish the result using Theorem 1.3.7: By Theorem
2.3.5(ii) the map t;; is and isometry, hence (1,1)-bounded. By hypothesis the map h is
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(C1, Cy)-bounded. This implies

i, || = e © iz, 0 B < Nl lllabig B < CLCo

i <l = 1w 0wt o < (IRl lligy, I < CiCo,
thus z;ij is (C1C4, C1C3)-bounded. Consequently ((Qﬁigl)*g|gi,g|2j) are (CI_ICQ_I,C102)-
equivalent. Finally

(&7 ) (W) gls (07 D alsy) = (0 o0 gl 95) = (07 ) glsi0 95) = (90, 95)

are (C3,Cy) := (C7'C5 Y, C1Cy)-equivalent. Therefore the induced Ly-norms are (Cs, Cy)-
equivalent as well by Theorem 1.3.8(iv).

The statement for the other constants follow in the same fashion: The crucial equation
(6.3) can also be written down for the operator norms of A. to obtain )\;3 and the norms

for /\Z. The second step remains unchanged. This also implies the statement concerning
d. O

6.1.12 Theorem (regularization operators III). For any i € N, let R;,A; be as in
Definition 6.1.8. Now define %;, % : L1 10c(M) — L1 10c(M) by

r@iI:.RlO...O.Ri, JZ{iI:%i_lOAZ'.
We employ the convention that %, := id, @4 := A;. Define Z : L} oc(M) — L’fVIOC(M),

o : LF

1,loc

(M) = LY. (M),

1,loc

1—00 1—00

X = lim % = lim Rio...oR;, %::Z%:ZRIO...oRi_loAi. (6.4)
i=1 i=1

We claim that these operators restrict to maps

& Wlk,loc(M) — Wlk,loc(M)v o Wlk,loc(M) - Wkil(M)v

1,loc

such that Z is a cochain map and &7 is a co-homotopy from Z to the identity, i.e.
Fod=do<, doof + o od=% —id.

furthermore for any w € Ljjoc(M), the form Z(w) is smooth. If w € Q(M) is smooth,
then o/ (w) is smooth.

Proof. On any compact subset K C M only finitely many R; are distinct from the identity
and finitely many A; are distinct from zero. So strictly speaking we first use (6.4) to define
X (w)| i, o (w)|k by employing the convention that we ignore the infinitely many identities
respectively zeros. This defines a form on any compact subset. But this in turn globally
defines forms Z(w), </ (w). By successively applying Theorem 6.1.10, we obtain that %, </
are operators Wi joc(M) — W1 joc(M). furthermore we obtain from 6.1.10 that

VieN:Ziod=((Rio...oR;))od)=do(Rio...0R;)=do%;
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and therefore Z od = d o #. Similar

J
doof + o/ od= lim Zdo%i_loAi+%i_1oAiod
=1

J—00 <

Jj—00 4 J—o0 4

J J
= lim > Zi1(do A+ Ajod) = lim Y % _1(R; —id)
i=1 i=1

J
= lim %z_%z— =% —id.

By construction, the manifold M is covered by the ;. Let i € N be arbitrary. By Theorem
5.3.13, the form RE(cpfl*(w)) is smooth. Therefore R;(w)|x, is smooth. Since smoothness
is a local property, Z(w) is smooth. The statement about &7 follows analogously. O

6.1.13 Corollary. Let M be any compact manifold. Then for any 1 < p < oo, the
inclusion ¢ : Q(M) — W,(M) induces an isomorphism Hag (M) — H,(M).

Proof.
STEP 1: We do not assume M to be triangulated. Simply cover M by finitely many charts

@i + U; — By(0), where U; C M are open such that {o;
of M. Define R;, A; analogously to 6.1.8(v) (just forget about the stars) and use these

operators to define %;, <7 and %, </ as in Theorem 6.1.12 above.

STEP 2: Since M is compact, any form w € Q¥(M) is also an element of W;(M) for any
1 < p < oco. Therefore the inclusion ¢ : Q(M) — Wp(M) is well-defined. Choose some
1 >¢e > 0. By Theorem 6.1.12 for any w € W),(M), the form Z(w) is smooth. Therefore %
can also be seen as a map % : W,(M) — Q(M). By Corollary 2.1.14, we may regard (M)
as a subcomplex of W,(M). Now the statement follows from the fact that the identity

1(B1(0))} is still an open cover

Z—id=dodd + o od

is satisfied on the larger complex W,,(M): Let us temporarily denote by [_]4r the de Rahm
cohomology class and by [_], the L,-cohomology class. Then

(7 o ]([wlar) = [2(¢(w))lar = [w]ar, e o Z)([wlp) = [Z(W)]p = [Wp- -

6.2 Main results

We are finally in a position to prove our second Main Theorem.

6.2.1 Main Theorem. Let h:|K| — M be a smooth triangulation satisfying the GKS-
condition (c.f. Definition 6.1.2) and let %, </ be as in 6.1.12. For any 1 < p < oo, these
maps satisfy

(i) Z(WF(M)) C SF(M) and the operators

Z - (W (M), || _llw,an) = (S5 (M), | _ls, an),
Z = (W (M), || _llw,an) = Wy (M), || _llw, (ar))

are bounded.



6.2 Main results 106

(ii) o (WE(M)) C Wﬁ_l(M) and the operator

p
o (WM, || _llw,an) = WEHM), | _llw, o))
is bounded.
(iii) %(SS(M)) C Sg_l(M) and the operator
A 2 (SEM), || _ls,ary) = (S5 M), | _ls,ary)
is bounded.

Proof. For simplicity assume that M is connected. In this proof we will employ the
notation

I(0) = {i e N| (z) < 0}

for an m-simplex o € K.
We will always discuss the case 1 < p < oo in detail (the case p = oo follows similarly, but
easier.)

(i) STEP 1: First we show that

R (Wr (M), || _llw, ) = (S5O, _lls,an)

is bounded.

STEP 1.1 (preparations): Let w € W;(M) and i € N be arbitrary. Let z; € K be a
vertex and define

w, on X;
w1 = . wo =W — Wq.
0, outside X;,

Assume that j € N is sufficiently large that {z;,...,z;} contains all the vertices
Zj,. .., 25, 7 < N, of the star st (x;). Choose € and § in the definition 6.1.8(vi)
(respectively in Theorem 6.1.10(iv)) of R; and A; such that

Ons(M\ X;) N, = 0. (6.5)
STEP 1.2 (estimates for a single ¢ € K(™)): We notice that
VEEN:VI<Sv<rit#j, = Rly =idy

by construction. This implies (R10...0R;)(w2)[s; = 0 by Theorem 6.1.10(iv) (applied
to F'= M \ X;) and (6.5). Consequently

(w5 = Z(w1)|s; = Zj(wi)|s; = (Rio... 0 Rj)|sy (w1)
= (Rj 0...0 R )| (wr).

There exists an 1 < s < r such that js = 4. By Theorem 6.1.10(i)(iii), we obtain

(6.6)

IRj 0.0 Ry (wi)llLo(sy S A% IR, 00 Ry (wi) o)
<A MRy 00 Ry (wi)ll L, (s
< NN w2, (s (6.7)
S AT w1y (-

=:C



6 The isomorphism between the L,-cohomology of forms and S-forms 107

Recall from Theorem 6.1.11 that this constant C does not depend on i. Altogether
this implies

(6.6) 6.7)
12l cp = By oo R )il =) < Cllwllgs)  (68)

For any o € K(™) the inclusion o C Uicr(o) St (xi) implies

(6.8)
12@)E_noyy < Z |2 < €7 S Nelly gy (69)

icl(c i€l(o)

STEP 1.3 (globalizing estimates): In order to globalize the estimate (6.9) obtained
on h(o) to M, we have to sum over all ¢ € K(™). Therefore we analyse the sum on
the right hand side of (6.9) (see explainations (1),(2),(3) below):

(2
SO el ) 2 S el sy < N Il

ceK(m)iel(o) i€N e (m) 1€EN
(zi)<o

=N D el ey

’iEN O'EStK(l'i)(m)

(6.10)
(3) »
< N(m+1) Z ”wHLp(h(g))

ceK(m)
= N DIl o

(1): Here we just swapped the index sets: On the left hand side we sum over all
m-simplices ¢ and then for any such o over all its vertices. On the right hand side
we sum over all vertices x; of K and then for any such vertex over all m-simplices
attached to z;.

(2): This is due to the fact that N is the star-bound of K.

(3): We again swapped the index sets: On the left hand side we sum over all vertices
z; and then over all the m-simplices o in its star. This is the same as summing over
all m-simplices o and then over all its (m + 1) vertices.

STEP 1.4 (estimates for K(™): This yields a constant C’ > 0 such that

(6.9

Y 2@ e e YooY el

ceK(m) ceK(m) iel(o) (6.11)

(6.10)
< N(m+1)CP HWHL » (M)

We may apply equation (6.11) above to dw instead of w as well. Since Z(dw) =
dZ%(dw) by 6.1.12, we obtain

Z H%(UJ)HP (h(0)) < C,||WH€VP(M)' (6.12)

ceK(m)

STEP 1.5 (estimates for K): On the left hand side of equation (6.12), we would like
to replace K (™) with K. This can be done using the following argument, which holds
for any n € W 10c(M): For any 7 < o, we certainly have

7w (h(r)) < 1Ml wee (o)) -
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Consequently for any &k < m

ST llwamey < D Inllwemo):

reK (k) ceK(m)

since for any 7 € K®) there exists o € K™ such that 7 < o. (This maybe wrong
for a general simplicial complex K, but does hold in this case, since K triangulates
a connected smooth manifold.) By applying this argument m-times, we obtain

2 Il oy Z > ey =m 20 Il gy (613)
ceK k=0 gc K (k) cecK(m)
Altogether we obtain

| % (w S(M ZH% Woo(h(a) < m Z (| % (w ||p
ceK ceK(m) (614)

(6.12) R
< mC el o

This completes Step 1.
STEP 2: By combining Step 1 with Lemma 6.1.7(ii)(iii) we obtain the other claims.

(ii) We proceed in a similar fashion and show that there exists a constant C’ > 0 such
that [|(@) | g1 < C'lollig -

STEP 1 (preparations): Let w € W]f(M) and ¢ € N. By 6.1.10(iv), we obtain
Ai(w)lanz; = 0. (6.15)
Assume that € > 0 is chosen so small that 6 = §(¢) > 0 from 6.1.10(iv) satisfies

ON(;(ZZ') C Ei. (616)

STEP 2 (local estimates): Let us analyze the quantity ||.2%(w) HLI;—I(Ei) for some fixed
i € N. By (6.15), we obtain supp Ajw C Z;. Now consider the operator R; for 1 <
j <i—1. By definition 6.1.8(vi), R; is the identity on L,(%;) unless (z;) € st (z;).
We collect all those z; in the set

{le, e ,l’jr} = Cl(StK(.CCi))(O) N {xl, e 7371’—1}
and obtain
JZ/Z'((.U)‘Zi = (R1 ©0...0 Ri—l o) AZ)(w)]gl = (le o...0 Rjr o AZ)(W)’El

Since K is star-bounded, we obtain r < N. Successively applying 6.1.10(ii), we

obtain
1 @) 1y = [(Bjy 0+ 0 Ry, 0 A) (@)l 1 s
S A}}HAZ-( i1y < AN Il (s, (6.17)
——

=:C
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STEP 3 (global estimates): We calculate

I @y = 2 M@y = 2 || )]

ceK(m) ceK(m) ieN

=3 | 30 e )

ceK(m) iel(o (h(o))

< 9(m+1)p Z Z |2 (w Lk . (6.18)

e K(m) icl(o)

Ly~ (h(0))

617)
< gm+tpcw Z Z Hw”ig(z)

cekK(m) icl(o)

(610 (m+1)pp p
< 2 C N(m—i—l)HwHL,;(M)

This equation (6.18) may be applied to dw instead of w as well. Since do/(w) =
w—XA(w)— (dw) by 6.1.12, this implies the statement (together with the fact that
we already derived the analogous estimate for Z in (i)).

(iii) Again we proceed similarly but slightly differently.
STEP 1 (preparations): Let w € Sf;(M). This implies w € W;(M), thus o/ (w) €
Wﬁ_l(M) by (ii). By 6.1.7(ii) both claims follow, if we can find a constant C' > 0
such that [ Fwls,ar) < Cllwlls, -

STEP 2 (local estimates): First of all notice that for any o € K™

I @l zwtnian = | X )|, < D 1) o
€N

eI)

6.1
> (W)l n s S C’ > wlles)

i€l(o) 1€l(o)

(6.19)

IN

The same can be done with dw and therefore, using do/w = w — Zw — &/ (dw) again,
we obtain a constant C” > 0 such that

| (w) Sk 1 Z | (w Wk Yh(o < m Z | (w Wk L(h(o))
ceK ccK(m)
(6.19)
P Y el gy <mCm ) Y [l o
ceK(m)iel(o) ceK(m)
< mcll(m+ 1)Hng§(M)- O

We are now in a position to make the strategy outlined in 6.1.1 rigorous.
6.2.2 Corollary. If h:|K|— M is GKS, then the composition

Sp(I) = Sp(M)—— W(M)
induces a topological isomorphism J¢,(K) — Hp(M).

Proof. Consider diagram (6.1) again.
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STEP 1 (continuity): The map ;' is continuous by 6.1.6, ¢y, is continuous by 6.1.7(i), %
is continuous by 6.2.1(i) and ¢ is continuous by 6.1.7(iii). Consequently the maps ¢ o ¢} *
and @p o Z are continuous and induce continuous maps in the cohomology.

STEP 2 (bijectivity): Let w € Z5,(K). We may combine the statements of 6.1.12 and 6.2.1
to obtain the identity

X —idy, vy =dod + o od: (Wp(M), | _llw, ) = Wp(M), | _llw,nr))-

Now S,(M) C Wy(M) and o7 (S,(M)) C Sp(M) by 6.2.1(iii). In addition ¢y, is a cochain
map by 2.3.13. Altogether this implies
[on o % 0 1o (W) = len(2(0y" (W)))]
= Len(d( (7 (@) + 7 (Al () + 27" (@))]
= [d(pn( (o5, (WD) + lon( (0 (d(W)))] + ooy (W))]
= [w].

Analogously let n € Z,(M) and calculate

[vo @y om0 Z([n]) = (2 (n)] = [d(< (n)) + o (d(n) + n] = [1]. B

6.2.3 Main Theorem. Ifh:|K|— M is GKS, then there exists a commutative diagram
of isomorphisms

Therefore all L,-cohomolgies of M are mutually isomorphic.

Proof. The solid arrows are given by Main Theorem 3.2.8 and Corollary 6.2.2. Define the
dashed arrow to be the composition of the solid arrows. ]
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7 Closing Remarks

In this section we will have a quick look at the history of the problem at hand, sketch some
possible generalizations and give a very panoramic overview of applications and more recent
developments concerning L,-spaces and -cohomology.

7.1 Background

The isomorphism theorems presented in this thesis were published by Gol’dshtein, Kuz’minov
and Shvedov in 1988. Their contribution continues the work of Dodziuk, who published his
approach in 1981, [1]. Dodziuks setup differs from our approach: He restricts his attention
to the case p = 2 and his manifold M is assumed to be complete oriented Riemannian such
that the following conditions are satisfied:

(I) The manifold M has injectivity radius d > 0.

(Cy) The curvature tensor R of M and its covariant derivatives V'R, 0 < | < k, are
uniformly bounded.

He also imposes a condition, let us call it (D), on the triangulation of the manifold that is
slightly different from ours, c.f. |1, (2.3)]. The most important disadvantage of Dodziuks
approach is the fact that he only works with reduced Ls-cohomology. As we have pointed
out in 2.1.22, this considerably changes the notion of an exact form. Nevertheless he
established the following result, [1, Theorem 2.7]:

7.1.1 Theorem (Dodziuk). Let M be a complete oriented Riemannian manifold satisfy-
ing the conditions (1) and (C}) for an integer k > %5 —1. Let 7 : K — M be a triangulation
(satisfying condition (D),[1, (2.3)]). Then integration of forms over simplices of K induces
an isomorphism

7.2 Possible generalizations

Our global assumption was that (M, g) is a smooth oriented Riemannian manifold without
boundary. In case M is not orientable and has a boundary, this theory, in particular
the Main Theorems 3.2.8 and 6.2.1 as well as their corollaries, are still valid with minor
modifications. In general one has to replace the Riemannian volume form d,V' € Q™ (M)
by a Riemannian volume density j4. In the Definition 2.1.9 of the weak differential one has
to require all test forms 7 to be compactly supported in Int M, the interior of M. Theorem
6.1.10 also requires a slight modification in case x; € OM.

One may even drop the condition that M is smooth and use the notion of a Lipschitz
manifold instead (c.f. [27], [28]):

7.2.1 Definition (Lipschitz manifold). Let M be a topological m-manifold. An atlas
A= (p; : Ui = V;)ier for M is a Lipschitz atlas, if for any 4,7 € I the transition function

@pjo gol-_l : gpi(Ui N Uj) — (pj(Ui N Uj)

is Lipschitz continuous (with respect to any norm on R™).
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Notions like L,-forms, exterior derivatives and currents can be defined on Lipschitz man-
ifolds as well. A key ingredient for this generalization is Rademachers Theorem (c.f. [31,
11A]), which states that any Lipschitz continuous map is differentiable almost everywhere.
Finally, the exterior algebra is of course not the only vector bundle on which one could
define the notion of L,-sections.

7.2.2 Definition. Let (M,g) be a Lipschitz Riemannian manifold, 7 : E — M be a
Lipschitz vector bundle with fibre metric h and 1 < p < co. Then

L,(E) :={s: M — E | s is a measurable section and HSHQP(E) = /M 8|17 pg < 00}
is the space of Ly-sections (similar for p = 00).

However, on a general bundle there is no exterior differential and therfore this does not
define a cohomology theory.

In 2.1.11 we already remarked that instead of L,-forms one can also define L, ;-forms for
p # ¢q. In its most general form, the definition of the corresponding cohomology has to be
changed as follows:

7.2.3 Definition (weighted L, ,~cohomology). For any 0 < k < m let o3, : M — R be
some positive function. Then for any 1 < p,q < 0o

W]f,q(Mv Ok, k1) = {w € L*(M) | HWHWZ;ﬁq(M,ak,akH) = ”UkWHL’;(M)+||Uk+1dw”L';+1(M)}
is the space of weighted L, ,~forms. In this case the closed forms are defined by
Zy(M,0p) = {w € Wy (M, 04, 0) | dw = 0)},
the exact forms are defined by
B;;,q(M, Okp—1,0%) = {w € I/Vf’q(M7 ok, 0x) | In € W;,fq_l(M, Ok—1,0%) 1 dn = w)}.

and the weighted Ly, 4-cohomology of M is defined by

ZF (M, o)
HF (M, o} = A .
p,q( Tk 170k) leiq(M7 O-k—laak)

Furthermore denote by
ngq(Mv Ok—1, Gk)

the closure of B;f’q(]\/[, Ok—1,0%) in L’;(]\/[7 or). Then

] ZF (M, o)
ok (M =B (Mo
pa(M, Ok, 0%) B,],f,q(M7 Ok—1,0%)

is the reduced weighted Ly, 4-cohomology of M and

B§7q(M7 Ok—1, Uk‘)
Bﬁq(Ma Ok—1, U/C)

Tzﬁq(M, Ok—1,0%) =

is the weighted Ly, 4-torsion of M.
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7.3 Applications and further theorems

As pointed out by Pansu in [18], the theory of L,-cohomology is much less developed than
Lo-cohomology. Nevertheless we want to sketch some of what is known yet. There are two
types of theorems concerning L,-cohomology one might expect: On the one hand, theorems
that conclude something about L,-cohomology (e.g. theorems that actually calculate the
L,-cohomology) and on the other hand theorems that conclude something from the L,-
cohomology.

Let us discuss the former ones first. In general it is very difficult to calculate the L,-
cohomology. However it is actually possible to give some qualitative statements at least,
if the manifold is particularly simple or has additional structure. In 2.1.24, we already
discussed the real half-line. There are more results on one-dimensional manifolds.

7.3.1 Intervals and warped cylinders

7.3.1 Theorem (L,-cohomology of intervals, Kopylov, 2009, [12, Theorem 2.3]).
Let a < b and 09,01 : [a,b[— R be some continuous positive functions and 1 < p,q < oco.
Define the number

1
p

1
STl ar|" p>q

J2 loo()lPdt]) oy ()| dr

SUP ¢ [a,0] { J2 loo(t) Pt
T o Pt
52 (| i vty

Here p’ and ¢’ are Holder conjugate to p respectively q. Then
(i) Hg’q([a,b[, {a},00,01) =0 <= xpq(a,b,00,01) < c0.

Xp,q(aa ba 0o, Ul) =

q

y P<q.

(ii) H;’q([a,b[, 00,01) =0 <= Xpq(a,b,00,01) < 00 or Xpq(b,a,00,01) < c0.

7.3.2 Theorem (Kopylov, 2009, [12, Theorem 2.5]). Let a < b and 09,07 : [a,b]— R
be some continuous positive functions and 1 < p,q < co. Then
(i) Hpq(la,b[,00,01) =0,
(i) Hp ,([a,b],{a},00,01) = 0 if and only if ff o1(t)~7dt = oo or fab ob(t)Pdt < oo.
(iii) If f_Iig’q([a, bl,{a},00,01) =0, then

9:R=H"({a}) = H,,([a,b], {a}, 00, 01)
is an isomorphism of Banach spaces.

7.3.3 Definition. Let (X, gx) and (Y, gy') be two Riemannian manifolds and f : X — R
be continuous. The Riemannian manifold (X x Y, g) := (X XY, gx + f2gy) is the warped
product of X and Y. In case X = [a, b[, we say Cz:bY = X X7 Y is a warped cylinder. We
set Y, :={a} xY. 7

7.3.4 Theorem (warped cylinders, Kopylov, 2009, [12, Theorem 2.5]). Let Y be
an orientable Riemannian n-manifold, —co < a < b < oo, f : [a,b[— R4 be continuous,
1 < p,q < oo. Assume there exists o € Z5 (V) N ZJ71(Y) such that e Ay # 0 for
some v € Q0 /TH(Y), dy = 0. The following hold

(i) if xpq(a;b, f%_ﬂ—l, f%_jﬂ) = o0, then

) (C1, Y,) #0;
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(i) if xp,q(a, b, fr It f%_jﬂ) = oo and xp.q(b, a,f%_jﬂ,f%_jﬂ) = 00, then T;{q(Cjb) #
0 and hence
dim Hg’q(C'({bY) = 00.

7.3.2 Surfaces of revolution
In case M is a surface of revolution, the following is known.

7.3.5 Theorem (normal solvability, Kopylov, 2007, [12, Theorem 1]). Let M C
R™*1 n > 1, be a surface of revolution defined by

n+1
M = My := {w eR™ | f(z1)? = Zx?,o <z < b} c R"2,
j=2

where b > 0 and f is some positive smooth function. Let I' be a closed subspace satisfying

QM) cCT C Wiq(M). Let f be unbounded and assume % —% < %ﬂ’ 0 <k <m. Then
the operator dp : L’;(M ) — LSH(M ) is not normally solvable®.

The following is a very nice example of how geometric properties of a manifold can be
characterized using L,-cohomology.

7.3.6 Theorem (torsion and volume of a surface of revolution, Kopylov, 2009,

[12, Theorem 3.3, 3.4]). Suppose that 1 < p, ¢ < oo, % — 1% < %—‘rl and let M := My be

a surface of revolution as above.
(i) If f is unbounded, then TY ,(M) # 0 for any 1 < j < n+ 1.
(i) If T2 ,(M) = 0 for any 1 < j < n + 1, then

lim f(x) =0 and vol(M) < oc.

T—00

In particular f is bounded.

7.3.3 Lie groups
There are also some results for certain Lie groups.

7.3.7 Theorem (Gol’dshtein, Troyanov, 1997, [8, Theorem 1]). Let SOL be the
Lie group of matrices of the form

e 0 =z
0 e? y| eR¥™
0 0 1

endowed with the bi-invariant Riemannian metric ds? = e~?*dx? + e?*dy® + dz>. For every
1<p,g<oo
. 2
dim Hj, ,(SOL) = oo.

5Recall that an unbounded linear operator T : X — Y between Banach spaces that is defined on a dense
subset A C X is normally solvable, if T(A) = T'(A).
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7.3.8 Theorem (Kopylov 2007, [12, Theorem 1]). Let H,, be the Heisenberg group,
i.e. the Lie group of matrices of the form

€ R(nH+2)x(n+2)

)

1
0
0

SHSES
— N <

where E,, € R™ " is the unit matrix, x € R*"? 2z ¢ R"*! ¢ € R. Then

p<q=dimH, ,(H,) = co.

Another survey of geometric results concerning L,-cohomology can be found in [19].

7.3.4 Hodge decomposition

There are well-established analytic results about the Laplacian on a Riemannian manifold
involving Ls-spaces. Let us fix the following notation.

7.3.9 Definition (Hodge Laplacian). Let (M, g) be a complete Riemannian manifold
with exterior differential d. Denote by d* the formal L?-adjoint of d. The operator

A:=dod" +d"od

is called Hodge Laplacian. In case Lso-norms are taken with respect to some weight function
o = e~ ?, we denote the corresponding operator by Ag. Denote by

Hyp(M, o) :=ker AN LE(M,0).

In case o = 1, we drop ¢ in our notation.

In case p = 2 the Hodge decomposition is a well-known theorem.

7.3.10 Theorem (Hodge decomposition, Kodaira, 1949, [10]). The Ls-space over
M admits the following orthogonal direct sum decomposition

LE(M) = Hy (M) @ dQF(M) @ d*Qk(M).

For compact orientable manifolds, the Hodge decomposition can also be found in classical
textbooks on global analysis, e.g. [29, Theorem 6.8|. It seems quite natural to ask if such
a decomposition is still possible for p # 2. For compact manifolds, the following answer
known as strong Ly,-Hodge direct sum decomposition has been given.

7.3.11 Theorem (Hodge-decomposistion, compact case, Scott, 1995, [24, Propo-
sition 6.5]). Let M be a compact, orientable smooth Riemannian manifold without bound-
ary and 1 < p < oco. For any 1 <k < dim M

LE(M) = Hy (M) & dW~ (M) & Wt (M).
Here the Sobolev spaces are defined slightly different than in 2.1.10, namely

WEM) = {w € ZEOD) | llolhwpany = Nollyany + 1l g gy + 187wl 10y < 00}
(7.1)
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In case M is non-compact, matters are much more complicated. By a rather recent result
of Li, the Hodge decomposition holds under certain restriction on the so called Riesz
potentials. Their definition is rather involved and requires the theory of singular integral
operators, c.f. [14, 3].

7.3.12 Theorem (Hodge decomposition, non-compact case, Li, 2009, [14, The-

orem 2.1]). Let (M, g) be a complete Riemannian manifold, ¢ € C3(M), 0 := e %, p > 1,
1 1

q:= p%l. Suppose that the Riesz transforms d(Ag)_E, d* (Ag)_i are bounded in L, and

Ly and the Riesz potential (Ag)fé is bounded in L,. Then the Strong LP-Hodge direct
sum decomposition holds:

LE(M,0) = Hy,(M,0) & dWE (M, 0) & d;Wit (M, 0)

The definition of WE(M, o) is analogous to WE(M) from (7.1).

7.3.5 Poincaré duality
Another natural problem closely related to Hodge decomposition is the Poincaré duality.

7.3.13 Theorem (analytic Poincaré duality). Let M be a smooth compact oriented
manifold of dimension m. The bilinear pairing 3 : H¥; (M) x Hgf{k(M) — R,

([W],[n])H/MwAn

is well-defined and regular. The map ¥ : Hx, (M) — (Hgﬁ*k)*, [w] = ([n] — B([w],[n]), is
an isomorphism.

This instance of the theorem can be found in [29, 6.13]. It is proven using the Hodge
decomposition for Lo. This version of course has the disadvantage that M is required to
be compact. A slightly less popular version is the following (taken from [16, Exc. 16-6])

7.3.14 Theorem. Let M be a smooth oriented m-manifold. Then the map PD : QF(M) —
Qr=F(M)*, w (n+— [;,w An), induces an isomorphism H%, (M) — HI*(M)*.

This version is proven using a similiar bootsrap argument as in the “elementary” proof of
the de Rham theorem given in [16, 16.12| and relies on a Mayer-Vietoris sequence.

Again one might ask what happens if M is non-compact, but a complete Riemannian
manifold, and p is arbitrary. The following answer (translated from the French article) was
given by Pansu.

7.3.15 Theorem (Poincaré duality, Pansu, 2008, [18, Lemma 13]). Let M be a
complete oriented Riemannian manifold of dimension m. Let p > 1 and let ¢ be Holder
conjugate to p. Let w € L];(M). Then the following holds:

. Tk . . . m—k
(i) 0# [w] € Hy(M) if and only if there exists n € Ly*~"(M) such that

/Mcu/\n;éo.
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(i) 0# [w] € Hz’f(M) if and only if there exists a sequence n; € LZ"_’“(M) such that
/Mw Am;>1 and HdnjHLq(M) — 0.

(iii) As a consequence, we obtain

Tk rrm—k k m—k
HE (M) =0 < HI (M) =0, TH(M) = 0 <= T/ *(M) = 0.

7.4 Ly-Duality

In functional analysis there is yet another famous duality theorem, see for instance [22,
6.16].

7.4.1 Theorem. Let (X, A, u) be a o-finite measure space, 1 < p < oo and let ¢ be
Holder conjugate to p, i.e. % + % = 1. The Hélder pairing pairing 3 : Lq(p) X Lp(p) = R,

(f.9) = [x fgdp, is regular and the map W : Ly(u) = Ly(n)*, f+— (9 = B(f,9)) is an
isometric isomorphism.

We would like to adapt this theorem to L, (M). To that end we require some preparation.

7.4.2 Definition (Holder pairing). Assume 1 < p,q < oo are Holder conjugate. The
pairing 8 : L*%(M) x LE(M) — R,

(w,m) = / w A1
M
is called the Hdlder pairing of M.

7.4.3 Lemma. Any w € L™ (M) satisfies the the standard estimate

i f

Therefore 3 is well-defined.
Proof. The Riemannian volume form dyV may be expressed locally by
dgV=E'A...E™,

where E1,..., Ey, is a local orthonormal frame (c.f. [16, (13.6)]). This implies

d,V| = |E'A...AE™ "2 (7.2)
Now the integration of functions on M may be expressed measure theoretically: Define
the measure space (X, A, ug) by X := M, A := o(1ap), i.e. the o-algebra generated by
the topology 7ps of M and for any A € A define ;14(A) := [, xadyV, where x4 is the
characteristic function of A. Now the inequality

] / fdu]< I (73)
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holds for any measure space (X, A, ). Any w € L™ (M) may be written as w = fd,V for
some function f and therefore, we obtain
Lel=1
M

(7.3)
[ gav|=| [ saw) < [ i, = [ 14y
[ iaviay = [ 1aviay = [

This implies any w € Lg"”_k(M), n € L’;(M)

2.1.18

\B(W,TMS/M\M/\UI < oo, -

7.4.4 Definition (finitely framed). A Riemannian manifold (M, g) is finitely framed,
if there exists a subset M’ C M of measure zero and a finite family of measurable subsets
{U,hi<v<n of M\ M’ such that

() Uyl Uy = M\ M.
(ii) For any p # v the set U, N U, has measure zero.

(iii) For any 1 < v < N there exists an orthonormal frame on U,,.

7.4.5 Lemma (examples of finitely framed manifolds). If (M, g) is either
(i) complete or
(i) GKS or
(iii) an open subset of R™,
(iv) compact,
then M is finitely framed.

Proof.

(i) If M is complete, introduce the following notation: Let ¢ : R — M be a geodesic,
p = ¢(0), v :=¢(0)

to :=to(c) :=to(v) :=sup{t > 0 | d(c(t),p) =t} €]0, 0]
Cr(p) == {to(v)v | v e T,M, |jv|]| = 1,to(v) < oo} C T, M
Dr(p) :={tv|ve T ,M,|v|=1,0<t<ty(v)} CT,M

C(p) = exp,(Cr(p)) € M.

The set C(p) is usually called the cut locus. By a standard theorem from differential
geometry, M’ := C(p) is a set of measure zero and exp, : Dr(p) — M\ M'is a
diffeomorphism. Therefore normal coordinates centered at p yield an orthonormal
frame on M \ M.

(ii) Since any GKS manifold is complete by Lemma 6.1.4, this follows from (i).

(iii) This is clear.

(iv) Follows from (i). O

For the following theorem we are not aware of any reference in the literature. Its proof
shall conclude this thesis.
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7.4.6 Theorem (Holder duality for L,(M)). For any Holder conjugate 1 < p,q < oo
and 0 < k < m, the Holder pairing S : Lgn‘_k(M) X LI;(M) — R is regular and the map
Wi L (M) — LE(M)*, w— (n— B(w,n)), is an isomorphism.

Proof. We alread established in Lemma 7.4.3 that this pairing is well-defined.
STEP 1 (pairing is regular): Since QTF(M) C LI;(M) the Fundamental Lemma 2.1.13

implies that for any w € LI"*(M)
Vn € L’;(M) :B(w,m) =0 = w=0.

This also implies that ¥ is injective. It remains to show that ¥ is surjective.

STEP 2 (case k = 0): Again consider the measure space (X, A, pg) = (M, 1o, [, dgV).
Let [ € LS(M)* be arbitrary. We are looking for an w = fd,V' € Ly*(M) such that for any
n € Ly(M)

() = Blw.n) = /M WA= /M nfdyV = /X Frdug. (7.4)

Such an f and hence w := fdyV is provided by Theorem 7.4.1.
STEP 3 (general k): Let | € LI,;(M)*.

STEP 3.1 (local version): In a first step replace M by an measurable subset U C M, which
is sufficiently small such that there exists a local orthonormal frame E1, ..., E,, € T(U).
For any I € 7 define a functional I : Lg(U) — R, g = I(gE"). By the previous step,
there exist w! = frd,V € L7 (U) such that

V€ LY(U) : i(n) = B, ). (7.5)

Define
w = *( 3 fIEI> =" fislE" (7.6)

1€y, 1€y,

Here 4 is used as in 4.1.17. Since the {E1°} are an ONB of Q™ *(U), this implies
51 FE iy = [ BT 1,V = [ 1510y = [ 1dVIdY = 1T

and therefore in particular w € LZ”*’“(U). Now let n =3_ ;o7 B’ € L’;(U) be arbitrary.
We obtain

Blw,m) =3 S BB B = 3 Y /U 1. frnyE" A B

JEIL €Ty, JETL €Ty,
= / 87efmiE” NET =) / famadgV
Jez, 'V Jez, U
(7.5)
=Y Bwing) = > L) = lnsET) =1(n).
JETy JETy JETy

STEP 3.2 (global version): Now let [ € L’;(M)*. Let {U,}1<v<n be a disjoint open cover
of M\ N, where N is a set of measure zero and therefore negligible. For any 1 <v < N
define the functional [, : L’;(UZ,) — R, & — l(x,€), where x, := xy, is the characteristic
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function of U, (we think of x,& € L';(M) as extended by zero outside U,). By the local
version, there exist w, € Lg”_k(U,,) such that

VI<v < N:VEEeLEU)  1,(€) = Blw, &) (7.7)

Extend w, by zero outside U; and define

N
w = Zwy.
=1
Since
N
Il v ary = z; lwull v v,
1=

we obtain w € L,’]”*k(M ). This part of the proof requires the cover to be finite. We notice
that

Y # v Blwp, xumw) =0 (7.8)
and conclude
N N 1) N
l(n) = ZZ(XVUV) = ZZV(XVWV) = Zﬁ(waﬂ?u)
v=1 v=1 v=1
(18
== Z /B(W;MXVT/V) :5(%77) O

v,pu=1
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