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1 Distance Functions and the Riccati Equation

Let M be a Riemannian n-manifold.

1.1 Definition (distance function). Let U ⊂M be open. A smooth function f : U → R satisfying

‖ grad f‖ ≡ 1

is a local distance function.
The non-empty level sets Mr := f−1(r) are hypersurfaces, i.e. (n−1)-dimensional submanifolds of M .

1.2 Example. Let p ∈ M and ε > 0, such that expp : Bε(0p) → Bε(p) is a diffeomorphism. Let
U := Bε(p) and f : U \ {p} → R, f(q) := d(p, q). Then f is a local distance function: By construction
U is open and f is smooth. In order to show, that the condition on the gradient holds, choose normal
coordinates near p and consider the radial distance function r near p (c.f. [2, (5.9)]) and the radial unit
vector field ∂r. By definition f(q) = d(p, q) = r(q), which together with the Gauss Lemma implies

grad f |q = grad r|q
[2, 6.9]

= ∂r|q
[2, 5.11e)]

= ċq(f(q)),

where cq is the unique minimizing unit speed geodesic from p to q.

From now on let f : U → R be a local distance function.

1.3 Lemma. Let c : [a, b] → U ⊂M be a piecewise smooth curve, define

p := c(a) q := c(b) f(p) =: r0 f(q) =: r1

and suppose r0 ≤ r1. Then
L(c) ≥ r1 − r0,

where equalitiy holds if and only if c is (up to reparametrization) the solution curve cp of

ċp = grad f ◦ cp cp(0) = p.

In particular cp is a geodesic and shortest path in U from Mr0 = f−1(r0) to Mr1 = f−1(r1).

Proof. We calculate

L(c) =
∫ b

a
‖ċ(t)‖dt ‖ grad f‖ = 1

=
∫ b

a
‖ċ(t)‖‖ grad f |c(t)‖dt ≥

∫ b

a
|〈ċ(t), grad f |c(t)〉|dt (1.1)

≥
∣∣∣∣∫ b

a
〈ċ(t), grad f |c(t)〉dt

∣∣∣∣ ≥ ∫ b

a
df |c(t)(ċ(t))dt

=
∫ b

a
(f ◦ c)′(t)dt = f(c(b))− f(c(a)) = f(q)− f(p) = r1 − r0.

Analogously for cp

L(cp) =
∫ b

a
‖ċp(t)‖dt =

∫ b

a
‖ grad f(c(t))‖dt =

∫ b

a
(f ◦ c)′(t)dt = r1 − r0.

In particular cp is a shortest path in U by construction, thus a geodesic in U , thus a geodesic in M .
Conversely, if c is not cp (up to reparametrization), there exists t0 ∈ I, such that ċ(t0) 6= grad f |c(t).
This implies strict inequality in the Cauchy-Schwarz-Inequality in (1.1).

We are interested in the second derivatives of f .
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1.4 Definition (Hessian). Let f ∈ C∞(M). For any two smooth vector fields X,Y define

Hess f(X,Y ) := ∇2f(X,Y ) = Y (X(f))− (∇YX)(f) = Y (〈grad f,X〉)− (∇YX)(f)
= ∇Y (〈grad f,X〉)− 〈grad f,∇YX〉 = 〈∇Y grad f,X〉

(c.f. [2, Exc. 4.5]). This defines a symmetric tensor field 1 , i.e.

Hess f(X,Y ) = 〈∇X grad f, Y 〉

as well.

1.5 Lemma. Let f : U → R be a distance function, X,Y ∈ T (U), r ∈ R and p ∈Mr := f−1(r) ∩ U .
(i) Then Lin(grad f |p) = (TpMr)⊥ = NpMr and for any X,Y ∈ TpMr:

Hess f(X,Y ) = 〈∇XY,− grad f〉 = 〈II(X,Y ),− grad f〉 = h(X,Y ),

i.e. Hess f is the scalar second fundamental form h of Mr with respect to the unit normal field
− grad f .

(ii) If X ∈ TpM , Y ∈ NpMr, then Hess f(X,Y ) = 0.
(iii) Moreover the restriction of U ∈ T 1

1 (U)

U(X) := ∇X grad f

onto TpMr → TpMr is the shape operator (”Weingartenabbildung”) ofMr with respect to − grad f
(c.f. [2, p.140]).

Proof. We consider Mr as a submanifold of M .
Step 1 (Characterization of the tangential space): For any arbitrary curve γ : I →Mr through p we
have r = f ◦ γ, consequently

0 = df |γ(t)(γ̇(0)) = 〈grad f |p, γ̇(0)〉 ⇒ grad f |p ⊥ γ̇(0),

thus Lin(grad f |p) ⊂ (TpMr)⊥. Equality holds for dimensional reasons.

Step 2 (Analysis in normal directions): Since f is a distance function, we have ‖ grad f‖ = 1. This
implies

0 = ∇X〈grad f, grad f〉 = 2〈∇X grad f, grad f〉,

thus ∇X grad f ⊥ grad f . By step 1 we obtain ∇X grad f ∈ T (Mr).
For Y := grad f , we get

Y (f) = df(Y ) = 〈grad f, grad f〉 = 1 ⇒ X(Y (f)) = 0

and
(∇XY )(f) = df(∇XY ) = 〈grad f,∇X grad f〉 = 0.

Consequently
Hess f(X,Y ) = X(Y (f))−∇XY (f) = 0.

1 Since g is symmetric and ∇ is torsion free:

Hess f(Y, X)−Hess f(X, Y ) = X(Y f)−∇XY (f)− Y (Xf)−∇Y X(f) = [X, Y ](f)−∇XY (f)−∇Y X(f) = 0.
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Step 3 (Analysis in tangential directions): If Y ∈ T (Mr), we obtain

Hess f(X,Y ) = 〈∇X grad f, Y 〉 = ∇X(〈Y, grad f〉︸ ︷︷ ︸
=0

)− 〈∇XY, grad f〉

= 〈∇XY,− grad f〉 = 〈II(X,Y ),− grad f〉.

This implies the statements concerning the shape operator by definition (c.f. [2, (8.3)]).

At this point we assume the reader to be familiar with covariant differentiation of vector and tensor
fields on manifolds and along curves (otherwise see for example LRM). Since there is a canonical
isomorphism End(V ) → T 1

1 (V ) between the endomorphisms of a vector space and its tensors of type
(1, 1), we also obtain a diffeomorphism End(M) → T 1

1 (M) between the endomorphism fields and the
tensor fields of type (1, 1) on M (c.f. [2, 2.1]). Using this identification we can also introduce covariant
differentiation of endomorphism fields in a very general setting. We have to use the fact, that a linear
connection on a manifold induces connections on all tensor bundles in a canonical manner (see [2, 4.6]).
If you are unfamiliar with the concept of covariant differentiation of endomorphism fields, you may
also want to consult the appendix first.

1.6 Definition (Riccati equation and solution). Let c : I → M be a unit speed geodesic and U ∈
End(c⊥) be a symmetric field of endomorphisms along c. If R := Rv := R(_, ċ)(ċ) ∈ End(c⊥), v = ċ(0),
is the curvature endomorphism along c, we call

U ′ + U2 +R = 0

the Riccati equation. We say U ∈ End(c⊥) is a solution of the Riccati equation, if

∀X ∈ T (c⊥) : U ′(X) + U2(X) +R(X) = 0.

1.7 Definition (Jacobi equation and solution). Let c : I →M be a unit speed geodesic. We call

J ′′ +R ◦ J = 0

the Jacobi equation. We say J ∈ End(c⊥) is a solution of the Jacobi equation, if

∀X ∈ T (c⊥) : J ′′(X) +R(J(X)) = 0.

1.8 Theorem (Riccati equation). Let f : U → R be a local distance function, r ∈ R, such that
Mr := f−1(r) ∩ U 6= ∅ and let U ∈ End(U) be the shape operator of Mr as in Lemma 1.5. Let
c : I →Mr be a unit speed solution curve of ċ = grad f ◦ c, f ◦ c = id 2 and restrict U to U ∈ End(c⊥).
Then U is a solution of the Riccati equation, i.e.

U ′ + U2 +R = 0.

We remark that U , U ′ and R are symmetric operators on T (c⊥).

Proof. Since this is a local question it suffices to check this near an r0 ∈ I. let σ :] − ε, ε[→ Mr0 be
any smooth curve satisfying σ(0) = c(r0). Let cs be the solution curve of

ċs = grad f ◦ cs cs(r0) = σ(s)

2This is always possible since
(f ◦ c)′(t) = df |c(t)(ċ(t)) = 〈grad fc(t), grad fc(t)〉 = 1.
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Then H :]− ε, ε[×]r0− δ, r0 + δ[, (s, r) 7→ H(s, r) := cs(r), is a smooth variation. According to 1.3 the
variation is a variation through geodesics and consequently the variation field J is a Jacobi field (c.f.
[2, 10.2]). By definition of U

DrJ(r) = Dr∂sH(0, r)
[2, 6.3]

= Ds∂rH(0, r) = Ds grad f |H(s,r)|s=0

= ∇∂sH(0,r) grad f |H(0,r) = Uc(r)(∂sH(0, r)) = Ur(J(r)).

Inserting this in the product rule, we obtain (using the Jacobi equation)

U ′r(J(r)) = Dr(UJ)(r)− Ur(DrJ(r)) = (D2
rJ)(r)− U2

r (J(r)) = −R(J(r), ċ(r))ċ(r)− U2
r (J(r)).

By choosing σ accordingly we can create (n−1) normal Jacobi fields in that way which are all linearly
independent on a small neighbourhood near r0. Therefore U is a solution of the Riccati equation.
By [2, p.140] the shape operator U is symmetric.
By the symmetries of the curvature tensor (c.f. [2, 7.4]), we obtain

〈R(X, ċ)(ċ), Y 〉 = Rm(X, ċ, ċ, Y ) = Rm(ċ, Y,X, ċ) = Rm(Y, ċ, ċ, X) = 〈R(Y, ċ)(ċ), X) = 〈X,R(Y, ċ)(ċ)〉

and therefore R is symmetric. Thus U ′ = −U2 −R is symmetric as well.

In order to solve the Riccati equation, we do not necessarily need a local distance function and the
corresponding level sets.

1.9 Theorem (Riccati and Jacobi equation). Let c : I → M be a unit speed geodesic, E1 = ċ, and
let E2, . . . , En be a parallel ONB along c. Let t0 ∈ I and let X2, . . . , Xn be any basis of (ċ(t0))⊥. For
any 2 ≤ i ≤ n let Ji be the Jacobi field (existence is guaranteed by [2, 10.4]) along c satisfying

Ji(t0) = Xi DtJi(t0) = U0(Xi),

where U0 is a given symmetric endomorphism on ċ(t0)⊥. Define a tensor Jt : (ċ(t))⊥ → (ċ(t))⊥ along
c by

Jt

( n∑
i=2

αiEi

)
:=

n∑
i=2

αiJi.

The endomorphism J = Jt solves the Jacobi equation J ′′ +RJ = 0, is invertible for any t near t0 and

Ut := J ′t ◦ J−1
t

is a symmetric solution of the Riccati equation.
Conversely, if Ut is a symmetric solution of the Riccati equation, a field J satisfying J ′t = UtJt is a
solution of the Jacobi equation J ′′t +RtJt = 0.

Proof. By construction Ji(t0) = Xi and the Xi are a basis of (ċ(t))⊥. So Jt0 is invertible, which
implies that it is invertible in a small neighbourhood of t0 by smoothness. There the Jacobi equation
(c.f. [2, (10.2)]) implies, that for any 2 ≤ i ≤ n

J ′′t (Ei) + (Rt ◦ Jt)(Ei) = Dt(J ′t(Ei))− Jt(DtEi) +Rt(Ji)

= D2
t (Ji) +Rt(Ji) = 0

or just
J ′′t +RtJt = 0.

on ċ⊥. For t near t0 define
Ut := J ′t ◦ J−1

t : T (c)⊥ → T (c)⊥.
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Using A.3, we obtain for any Y ∈ T (c⊥)

DtU(Y ) = Dt(U(Y ))− U(Dt(Y ))

= D2
t J(J−1(Y )) +DtJ(Dt(J−1(Y ))) +DtJ(J−1(DtY ))−DtJ(J−1((Dt(Y ))))

= −R(J((J−1(Y ))) +DtJ(Dt(J−1(J(J−1(Y ))))

= −R(Y ) +DtJ(−J−1(DtJ)(J−1(Y )))

= −R(Y )− U2(Y ) = 0.

Conversely let U be a symmetric solution of the Riccati equation, i.e.

DtU + U2 +R = 0

and additionally let
J ′ = U ◦ J.

Now it suffices to check the Jacobi equation for J on a parallel ONB. Therefore if E is parallel

J ′′(E) +R(J(E)) = (J(E))′′ +R(J(E)) = (J ′(E))′ +R(J(E)) = (U(J(E)))′ +R(J(E))

= U ′(J(E)) + U(J ′(E)) +R(J(E)) = −U2(J(E))−R(J(E)) + U2(J(E)) +R(J(E)) = 0.
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2 Comparison Theory for the Riccati Equation

In the last section we discussed the Riccati equation as an equation of field of endomorphisms on T (c⊥)
along c. Now we discuss the corresponding one dimensional ODE of the same type.

2.1 Definition. Let κ ∈ R and let u : I ⊂ R be differentiable. Then u
(i) is a solution of the Riccati inequality, if

u′ ≤ −u2 − κ.

(ii) is a solution of the Riccati equation, if

u′ = −u2 − κ.

(iii) is a solution of the Jacobi equation, if

u′′ + κu = 0.

Notice that we already encountered the Jacobi equation as an equation of fields of endomorphisms
in the last chapter. The study of this equation as an equation of vector fields is a classic topic in
differential geometry (c.f. [2, 10]).

2.2 Lemma. Let c : I → M be a unit speed geodesic, U be a symmetric solution of the Riccati
equation along c, E be a parallel vector field along c such that E ⊥ ċ and ‖E‖ = 1. Define u : I → R,
u := 〈U(E), E〉, and let K(E(t)∧ ċ(t)) denote the sectional curvature of the plane determined by E(t)
and ċ(t). Assume K(E(t) ∧ ċ(t)) ≥ κ for some κ ∈ R. Then u is a solution of the Riccati inequality

u′ ≤ −u2 − κ.

Proof. By definition

u′ = 〈(U(E))′, E〉+ 〈U(E), E′〉 = 〈U ′t(E) + Ut(E′), E〉 = 〈−U2(E)−Rt(E), E〉
= −〈U(E), U(E)〉 − 〈R(E, ċ)ċ, E〉 = −〈U(E), U(E)〉 −K(E ∧ ċ(t)).

By the theorem of Cauchy/Schwarz

u2 = 〈U(E), E〉2 ≤ ‖U(E)‖2‖E‖2 = 〈U(E), U(E)〉.

This implies the statement.

2.3 Lemma. Let c : I → M be a unit speed geodesic, U be a symmetric solution of the Riccati
equation and J be a field of isomorphisms satisfying J ′ = J ◦ U (in particular one may choose U and
J as in Theorem 1.9). Define u : I → R by

u :=
1

n− 1
(ln(det(J)))′.

Then u = 1
n−1 tr(U) and

u′ ≤ −u2 − 1
n− 1

Ric(ċ, ċ).

Consequently, if there exists a constant κ ∈ R, such that Ric(ċ, ċ) ≥ (n − 1)κ, then u is a solution of
the Riccati inequality.
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Proof. Let E1, . . . , En be a parallel ON frame along c, t0 ∈ I and let jik be the matrix of J w.r.t. this
frame. Then det J := det(jik) does not depend on this choice of frame. The rules of differentiation for
the determinant imply (since J is invertible):

(n− 1)u =
1

det(J)
det′|J(J ′) =

1
det(J)

det(J) tr(J−1J ′) = tr(U).

Furthermoore since U solves the Riccati equation

u′ =
1

n− 1
tr(U)′ =

1
n− 1

tr(U ′) = − 1
n− 1

tr(U2)− 1
n− 1

tr(Rt)

(1)
≤ − 1

(n− 1)2
tr(U)2 − 1

n− 1
Ric(ċ, ċ) = −u2 − 1

n− 1
Ric(ċ, ċ) ≤ −u2 − κ.

(1): By definition tr(R) = Ric(ċ, ċ) (c.f. 1.6). The estimate for the trace is done in the next Lemma
2.4.

2.4 Lemma. Let U ∈ Rn×n be symmetric. Then

tr(U)2 ≤ tr(U2)n,

where equalitiy holds if and only if there exists λ ∈ R such that U = λE.

Proof. Define the scalar product

〈A,B〉 = tr(ABt) =
n∑
i=1

(ABt)ii =
n∑

i,j=1

AijB
i
j

on Rn×n. Using the Cauchy/Schwarz inequality, we calculate

tr(U)2 = tr(UEt)2 = 〈U,E〉2 ≤ ‖U‖2‖E‖2 = 〈U,U〉〈E,E〉 = tr(UU t) tr(EEt) = tr(U2)n.

2.5 Lemma (Jacobi and Riccati equation). Let κ ∈ R. If j : I ⊂ R → R solves the Jacobi equation

j′′ + κj = 0

and ∀t ∈ I : j(t) 6= 0, then u := j′/j solves the Riccati equation

u′ = −u2 − κ.

Conversely if u solves the Riccati equation, then any solution j of

j′ = uj

solves the Jacobi equation
j′′ + κj = 0.

Proof. We calculate

u′ =
(
j′

j

)′
=
j′′j − j′j′

j2
=
−κj2 − j′j′

j2
= −κj

2

j2
− u2 = −u2 − κ

and conversely

j′′ + κj = (uj)′ + κj = u′j + uj′ + κj = −u2j − κj + u2j + κj = 0.
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2.6 Definition. We denote by snκ the unique solution of the Jacobi equation satisfying

snκ(0) = 0 sn′κ(0) = 1

und by csκ the unique solution of the Jacobi equation satisfying

csκ(0) = 1 cs′κ(0) = 0.

For our comparison theory we require specific solutions of the Jacobi equation, which will be useful
throughout the script. We collect some easy facts about them.

2.7 Lemma (Properties of snκ and csκ). For any κ ∈ R, the following hold.
(i) The solutions are explicitely given by snκ, csκ : R → R

snκ(t) =


1√
κ

sin(
√
κt) , κ > 0

t , κ = 0
1√
−κ sinh(

√
−κt) , κ < 0

csκ(t) =


cos(

√
κt) , κ > 0

1 , κ = 0
cosh(

√
−κt) , κ < 0

(ii) Defining

Rκ :=

{
π√
κ

, κ > 0

∞ , κ ≤ 0
Lκ :=

{
π

2
√
κ

, κ > 0

∞ , κ ≤ 0
,

we obtain

∀t ∈]0, Rκ[: snκ(t) > 0, ∀t ∈]0, Lκ[: csκ(t) > 0.

(iii) We obtain the symmetries

∀t ∈ R : snκ(−t) = − snκ(t), ∀t ∈ R : csκ(−t) = csκ(t).

(iv) These functions satisfy

sn′κ = csκ, cs′κ = −κ snκ .

(v) In particular
ctκ :=

csκ
snκ

solves the Riccati equation on ]0, Rκ[ and satisfies

lim
t↘0

ctκ(t) = +∞.

Proof.
(i) Just verify, that these functions solve the desired initial value problem.
(ii) This is a direct consequence of (i) and the zeros of all the functions occuring there.
(iii) Follows from 1 and the symmetries of all the functions occuring there.
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(iv) This is a consequence of the uniqueness of initial value problems: The function sn′κ satisfies

(sn′κ)
′′ + κ sn′κ = (sn′′κ)

′ + κ sn′κ = −κ sn′κ +κ sn′κ = 0,

sn′κ(0) = 1 = csκ(0), sn′′κ(0) = −κ snκ(0) = 0 = cs′κ(0)

Thus sn′κ is a solution of the Jacobi equation with the same initial values as csκ. Analogously,
we verify:

(cs′κ)
′′ + κ cs′κ = (cs′′κ)

′ + κ cs′κ = −κ cs′κ +κ cs′κ = 0,

cs′κ(0) = 0 = −κ snκ(0), cs′′κ(0) = −κ csκ(0) = −κ = −κ sn′κ(0).

(v) Follows from (ii), (iv) and Lemma 2.5.

2.8 Lemma. Let κ ∈ R and let u, v : [a, b] → R be solutions of the Riccati inequality rsp. the Riccati
equality, i.e.

u′ ≤ −u2 − κ, v′ = −v2 − κ.

(i) The function v − u is monotonously increasing. In particular, if v(a) ≥ u(a), then

∀t ∈ [a, b] : v(t) ≥ u(t).

(ii) If v(a) ≥ u(a) and additionally ∃t0 ∈ [a, b]: v(t0) = u(t0), we obtain

v|[a,t0] ≡ u|[a,t0].

Proof. Let F be any anti-derivative of u+ v. We calculate

((v − u)eF )′ = (v′ − u′)eF + (v − u)(eF )′ = (v′ − u′ + (v − u)(v + u))eF

= (v′ − u′ + v2 − u2)eF ≥ (−v2 − κ+ u2 + κ+ v2 − u2)eF = 0.

2.9 Lemma. Let u :]0, b[→ R solve the Riccati inequality u′ ≤ −u2 − κ and assume

lim
t↘0

u(t) = +∞.

This implies
∀t ∈]0, b[: u(t) ≤ ctκ(t)

and if there exists t0 ∈]0, b[, such that u(t0) = ctκ(t0), then

u|]0,t0] = ctκ |]0,t0].

Proof. Assume to the contrary that there exists t0, such that u(t0) > ctκ(t0). Then u(t0) > ctκ(t0−ε)
for a sufficiently small ε > 0, thus u(t) > ctκ(t− ε) on ]ε, t0] by Lemma 2.8. This contradicts

u(ε) = lim
t↘ε

u(t) <∞,

thus we obtain the first statement.
In case u(t0) = ctκ(t0), we obtain u(t) = ctκ(t) for all t ∈]0, t0] by Lemma 2.8.

11



3 Cut Locus and Conjugate Locus

In this chapter M is a complete Riemannian manifold.

3.1 Definition. For reasons of convenience we will employ the notation

∀p ∈M : SpM := {v ∈ TpM | ‖v‖ = 1}

and
SM :=

⋃
p∈M

SpM.

3.2 Definition. Let c : R →M be a unit speed geodesic, v = ċ(0) and p = c(0). We define

t0 := t0(c) := t0(v) := sup{t > 0 | t = d(c(t), p)} ∈]0,∞]
t1 := t1(c) := t1(v) := inf{t > 0 | c(t) is conjugate to p} ∈]0,∞],

where we employ the convention inf ∅ = ∞. If t1 < ∞, there exists a Jacobi field J 6= 0 along c such
that J(0) = J(t1) = 0.

3.3 Lemma. With the notation above, we always obtain

t1 ≥ t0.

More explicitely: If there exists a Jacobi field J 6= 0 along c such that J(0) = J(t) = 0 for some t > 0,
then t ≥ t0 (see also [2, 10.15]).

Proof. Let s > t. For such a J we define

X(τ) :=

{
J(τ) 0 ≤ τ ≤ t

0 t ≤ τ ≤ s
.

Then X is a piecewise smooth vector field along c|[0,s] satisfying X(0) = X(s) = 0. Since J 6= 0 and
J(t) = 0, we get J ′(t) 6= 0 (since otherwise J ≡ 0). Choose a smooth vector field Y along c satisfying
Y (0) = Y (s) = 0 and Y (t) = −J ′(t) and define Xε := X + εY . Then Xε is a piecewise smooth vector
field along c|[0, s], which satisfies Xε(0) = Xε(s) = 0 and which is broken at t 3. We want to calculate
the index form I(Xε, Xε) along c|[0, s] and consider

I(X,Y ) = −
∫ s

0
〈X ′′(u) +R(X(u), ċ(u))(ċ(u)), Y 〉du−

∑
break points ti

〈∆tiX
′, Y (ti)〉

= −
∫ t

0
〈X ′′(u) +R(X(u), ċ(u))(ċ(u)), Y 〉︸ ︷︷ ︸

=0 ,since X satisfies the Jacobi equation here

du−
∫ s

t
〈X ′′(u) +R(X(u), ċ(u))(ċ(u), Y )︸ ︷︷ ︸

=0 ,since here X=0

〉du

− 〈X ′(t↙)−X ′(↗ t), Y (t)〉
= −〈J ′(t), J ′(t)〉 = −‖J ′(t)‖2.

Analogously
I(X,X) = −〈X ′(t↙)−X ′(↗ t), X(t)〉 = 〈J ′(t), X(t)〉 = 0.

3Notice, that the derivative satisfies

X ′
ε(↗ t) = X ′(↗ t) + εY ′(t) = J ′(t) + εY ′(t) 6= εY ′(t) = X ′

ε(t ↙).
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Consequently the index form satisfies

I(Xε, Xε) = I(X,X) + 2εI(X,Y ) + ε2I(Y, Y ) = −2ε‖J ′(t)‖2 + ε2I(Y, Y ) < 0

for small ε > 0. This implies, that the unit speed geodesic c|[0, s] is not minimizing (c.f. [2, 10.13])),
which implies s > t0.

3.4 Definition (Cut locus and conjugate locus). Let c : R → M , c(0) = p be a unit speed geodesic
and let t0(c) < ∞. Then c(t0(c)) is the cut point of p along c. The set C(p) of all cut points of p is
the cut locus of p. We call

CT (p) := {t0(v)v | v ∈ SpM, t0(v) <∞} ⊂ TpM

the tangential cut locus near p. By definition expp(CT (p)) = C(p).
If t1(c) <∞, we call c(t1(c)) the first conjugate point of p along c. The set of all first conjugate points
along c is called the first conjugate locus of p.

3.5 Remark. If M is compact, then t0 ≤ diamM (e.g. on Sn). But t1(c) = ∞ is possible, even for
all unit speed geodesics c in M (e.g. on flat Tori).

3.6 Lemma. Let c : R → M be a unit speed geodesic, let t0 := t0(c) < ∞, t1 := t1(c), c(0) =: p,
and let q := c(t0) be a cut point of p along c. Then there are two possibilities, which are not mutually
exclusive 4:

(i) q is conjugate to p along c, thus t1 = t0.
(ii) There is a second unit speed geodesic c̄ : R →M satisfying c̄(0) = p and c̄(t0) = q.

Proof. Assume, that q is not conjugate to p along c. Let v ∈ SpM such that t0 = t0(c) = t0(v). Then
q = expp(t0v) and there exists a neighbourhood U ⊂ TpM of t0v and a neighbourhood V ⊂ M of q,
such that expp : U → V is a smooth diffeomorphism ([2, 10.11]).
Certainly there exists a sequence (tn) in R such that tn ↘ t0 and c(tn) ∈ V . Thus we have

expp(tnv) = ctnv(1) = cv(tn) = c(tn).

Since tn > t0, the definition of t0 implies d(c(tn), p) < tn. Consequently the curve c is not minimizing
the distance between p and c(tn). By the theorem of Hopf-Rinow there exists a minimizing geodesic
between p and c(tn), which implies

∃wn ∈ TpM : expp(wn) = expp(tnv) = c(tn).

This implies ‖wn‖ = d(c(tn), p) < tn. In particular (wn) is bounded. We claim that wn /∈ U , wn ∈ U
would imply

exp(wn) = exp(tnv) ⇒ wn = tnv,

by the invertibility of expp : U → V . But wn 6= tnv by construction, so wn /∈ U . Since in addition
tnv → t0v, this shows, that t0v cannot be an accumulation point of the sequence (wn).
But since (wn) is bounded, there exists at least one accumulation point w /∈ U (we may assume that
(wn) converges). This point satisfies

‖w‖ = lim
n→∞

||wn|| ≤ lim
n→∞

tn = t0

and
expp(w) = lim

n→∞
exp(wn) = lim

n→∞
c(tn) = c(t0) = q.

Write w = t′v̄, where ‖v̄‖ = 1 and t′ := ‖w‖. We claim that c̄ := cv̄ is our desired geodesic: Clearly
c̄(0) = p, c̄(t′) = q and v̄ 6= v. We already obvserved t′ ≤ t0. On the other hand t0 = d(p, q) ≤
L(c̄|[0,t′]) = t′, which alltogether implies t′ = t0.

4For example consider antipodal points p, q ∈ Sn.
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3.7 Remark. If 0 < t < t0 none of the possibilites enlisted in Lemma 3.6 above can hold. The first
is a direct contradiction to Lemma 3.3. For the second, suppose there exists such a second unit speed
geodesic c̄. Then for any t < s < t0 the curve ĉ defined by

ĉ(τ) :=

{
c̄(τ) 0 ≤ τ ≤ t

c(τ) t ≤ τ ≤ s

is a curve from p to c(s) satisfying

L(ĉ) = L(c̄|[0, t]) + L(c|[t, s]) = t+ s− t = s = L(c[0, s]) = d(p, c(s))

by definition of t0. Thus the curve ĉ is a minimizing curve from p to c(s). Since c̄ 6= c, but c̄(t) = c(t),
this implies ˙̄c(t) 6= ċ(t) and ĉ is broken in t. This is a contradiction, since a broken geodesic can never
be minimizing (c.f. [2, 6.6]).

3.8 Corollary. Let p, q ∈M be arbitrary. Then

q ∈ C(p) ⇐⇒ p ∈ C(q).

Proof. Let c : R →M be a unit speed geodesic and c(0) = p. Let t0 := t0(c) and let q := c(t0) be the
cut point of p along c. We claim, that p is the cut point of q along c̃ : R → M , s 7→ c(t0 − s). Since
distance is symmetric, certainly

t0 = t0(c) = d(p, c(t0)) = d(c(t0), p) = d(q, c̃(t0)).

So by definition t̃0 := t0(c̃) ≥ t0(c) = t0. For the other estimate consider the two possibilites of Lemma
3.6
Case 1: If p is cojugate to q along c, then t0(c) = t1(c) and there exists a Jacobi field J 6= 0 along c,
such that J(0) = J(t0) = 0. Consequently J̃(s) := J(t0 − s) is a Jacobi field 6= 0 along c̃ satisfying

J̃(0) = J(t0) = 0 = J(0) = J̃(t0).

Thus q is conjugate to p along c̃ and t̃0 ≤ t1(c̃) = t1(c) = t0(c).
Case 2: Assume p is not conjugate to q along c and assume t̃0 > t0. Then by Lemma 3.6 there exists
a second geodesic c̄ : R →M satisfying c̄(0) = p and c̄(t0) = q. Consequently s 7→ c̄(t0− s) is a second
geodesic from q to p. But since t̃0 > t0, this geodesic must not exist by Remark 3.7 applied to c̃!

3.9 Lemma. The map t0 : SM →]0,∞] is continuous.

Proof. Consider a sequence vi ∈ SM , vi → v, and define

t∗ := lim sup
i→∞

t0(vi) t∗ := lim inf
i→∞

t0(vi).

Obviously we have to show that t∗ = t0(v) = t∗.
Step 1: For any t < t∗ there exists a subsequence (vik) such that t0(vik) > t. Denoting by ck the
geodesic satisfying ċk(0) = vik , we obtain

d(ck(t), ck(0)) = t.

Since vik → v as k → ∞ and since expp and d are continuous, this implies d(c(t), c(0)) = t , where c
is the geodesic satisfying ċ(0) = v. Consequently ∀t < t∗ : t0(v) ≥ t and thus t0(v) ≥ t∗.
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In the next step we will show, that t0(v) ≤ t∗. Since t∗ ≤ t∗ anyway, this implies alltogether

t∗ ≤ t0(v) ≤ t∗ ≤ t∗

and thus the claim.
Step 2: Now let (vik) be a subsequence such that

t∗ = lim inf
i→∞

t0(vi) = lim
k→∞

t0(vik).

Suppose t∗ < ∞ (otherwise there is nothing to show) and let c(t∗) not be conjugate to c(0). 5 The
inverse function theorem on manifolds ([3, 7.10]) implies the existence of an open neighbourhood U of
t∗v in TM , such that exp |U∩TqM is invertible for all q ∈ π(U), i.e. near p := c(0), where π : TM →M
is the canonical projection.
Since t0(vik) → t∗ by construction, we obtain for all large k, that t0(vik)vik ∈ U . Since exp is invertible
on U , pk := π(vik) is not conjugate to qk := ck(t0(vik)) = exp(t0(vik)vik), where ck is the unit speed
geodesic between pk and qk. Applying Lemma 3.6 to every k, the second item is in power and thus
there exist vectors v̄ik 6= vik in the same tangent space as vik , such that

exp(t0(vik)vik) = exp(t0(vik)v̄ik).

By construction of U we obtain t0(vik)vik ∈ U , but t0(vik)v̄ik /∈ U for all large k (again since exp is
bijective on U). Since the geodesics from 3.6 also have unit speed, we obtain ‖v̄ik‖ = 1. In particular
the sequence v̄ik is bounded and thus has an accumulation point v̄. This point satisfies v̄ 6= v, but
c̄(0) = c(0) and c̄(t∗) = c(t∗). Alltogether we have constructed a second unit speed geodesic between
c(0) and c(t∗). This implies t0(v) ≤ t∗, since t∗ < t0(v) contradicts Remark 3.7.

3.10 Lemma. Let
DT (p) := {tv | v ∈ SpM, 0 ≤ t < t0(v)}.

Then DT (p) is star-shaped with respect to 0p, open in TpM , ∂DT (p) = CT (p) and

∀w ∈ DT (p) : expp(w) /∈ C(p).

Proof. The definitions and Lemma 3.9 imply the first statements.
Suppose there exists w ∈ DT (p) such that expp(w) ∈ C(p). Then there is a w̄ ∈ CT (p) satisfying

expp(w̄) = expp(w).

Define

v :=
w

‖w‖
v̄ :=

w̄

‖w̄‖
.

By definition of t0 the geodesics c und c̄ determined by v resp. v̄ are minimizing till ‖w‖ < t0(v) resp.
‖w̄‖ = t0(v̄). By hypothesis c(‖w‖) = c̄(‖w̄‖) and consequently

‖w‖ = d(p, c(‖w‖)) = d(p, c(‖w̄‖)) = ‖w̄‖.

Thus t0(v̄) = ‖w̄‖ = ‖w‖ < t0(v) and in particular v 6= v̄. Alltogether we have found two geodesics
from p to c(w), which by Remark 3.7 implies ‖w‖ ≥ t0(v). Contradiction!

5Otherwise t0 ≤ t1 ≤ t∗ by Lemma 3.3 anyway.
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3.11 Theorem. For any p ∈ M the set M \ C(p) is open and expp : DT (p) → M \ C(p) is a
diffeomorphism. The function f : M → R, q 7→ 1

2d(p, q)
2, is smooth on M \ C(p) and for any

q ∈M \ C(p) the following holds.
(i) Denoting by cq the geodesic satisfying ċq(0) = expp |−1

DT (p)(q), we obtain grad f(q) = ċq(1).

(ii) Denoting by J the Jacobi field along cq satisfying J(0) = 0, J(1) = X, X ∈ TpM , we obtain
∇X grad f = J ′(1).

Proof.
Step 1 (expp is a diffeomorphism): Since M is complete by hypothesis, for any q ∈ M there exists a
minimizing geodesic form p to q. So expp : DT (p) → M \ C(p) is surjective. Remark 3.7 implies the
injectivity. Since conjugate points do not occur before t0 by Lemma 3.3, expp has maximal rank on
DT (p) (c.f. [2, 10.11]) and thus is a diffeomorphism.
Step 2: We will now prove statement (i). Let q ∈ M \ C(p) and X ∈ TqM . Choose ε > 0 and a
smooth curve σ :]−ε, ε[→M \C(p), such that σ(0) = q, σ̇(0) = X. Define w :]−ε, ε[→ DT (p) ⊂ TpM ,
w(s) := (expp |DT (p))−1(σ(s)), and H :]− ε, ε[×[0, 1] →M by

H(s, t) := expp(tw(s)).

So t 7→ H(s, t) is the radial geodesic from p to σ(s) which implies

f(σ(s)) =
1
2
d(p, σ(s))2 =

1
2

(∫ 1

0
‖∂tH(s, t)‖dt

)2

=
1
2

∫ 1

0
〈∂tH(s, t), ∂tH(s, t)〉dt.

In the last step we are just for once allowed to interchange the square with the integral, because
t 7→ H(s, t) has constant speed. Furthermore

〈grad f(q), X〉 = dfq(X) = Xq(f) = σ̇(0)(f) = ∂s(f ◦ σ)(0)

= ∂s
1
2

∫ 1

0
〈∂tH(s, t), ∂tH(s, t)〉dt|s=0 =

∫ 1

0
〈Ds∂tH(s, t), ∂tH(s, t)〉dt|s=0

=
∫ 1

0
〈Dt∂sH, ∂tH〉(0, t)dt

(1)
= 〈∂sH, ∂tH〉(0, t)|(0,1)(0,0)

= 〈∂sH(0, 1), ∂tH(0, 1)〉 − 〈∂sH(0, 0), ∂tH(0, 0)
(2)
= 〈X, ċq(1)〉

(1): We have
∂t〈∂sH, ∂tH〉 = 〈Dt∂sH, ∂tH〉+ 〈∂sH,Dt∂tH〉

and Dt∂tH(0,_) = 0 since H(0,_) is a geodesic from p to σ(0) = q.
(2): By construction

H(s, 1) = expp(1 · w(s)) = σ(s) ⇒ ∂sH(0, 1) = σ̇(0) = X

H(0, t) = expp(tw(0)) ⇒ ∂tH(0, 1) = ∂t expp(tw(0))|t=1 = ∂t expp(texpp|−1
DT (p)(q))|t=1 = ċq(1)

H(s, 0) = expp(0w(s)) = p⇒ ∂sH(0, 0) = 0

Step 3: To prove the second statement, we remark that

∇X grad f |q = ∇σ̇(0)ċq(1) = Ds∂tH(0, 1) = Dt∂sH(0, 1).

But ∂sH(0,_) is (according to Step 2, (2)) the Jacobi field J as in (ii).
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3.12 Corollary. M \ C(p) is diffeomorphic to the slice

Dn := {x ∈ Rn | ‖x‖ < 1},

where n = dimM .

Proof. There is only to show that DT (p) is diffeomorphic to Dn. We leave this as an exercise.

3.13 Theorem. If M is compact, then C(p) is a strong deformation retraction of M \ {p}, i.e. there
is a continuous map H : (M \ {p}) × [0, 1] → M \ {p} satisfying H(q, 0) = q for all q ∈ M \ {p},
H(q, s) = q for all q ∈ C(p) and s ∈ [0, 1] and H(q, 1) ∈ C(p) for all q ∈M .

Proof. Exercise.

3.14 Remark. The function d(p,_) =
√

(2f) is smooth on M without p and C(p) and there its
gradient has unit length (c.f. chapter 1).
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4 Injectivity Radius and Curvature Bounds from above

4.1 Definition (Injectivity radius). For any p ∈M we call 6

i(p) := min{t0(v) | v ∈ SpM} = min{‖w‖ | w ∈ CT (p)} = min{d(p, q) | q ∈ C(p)} ∈]0,∞]

the injectivity radius of M in p. We call

i(M) := inf{i(p) | p ∈M} = inf{t0(v) | v ∈ SM}

the injectivity radius of M .

By Remark 3.7 and Lemma 3.6 the number i(p) is the maximal radius r > 0, such that

expp : Br(0p) → Br(p)

is a diffeomorphism. Notice that the shape of DT (p) may be very different from Bi(p)(0p).

4.2 Lemma. The injectivity radius is a continuous function i : M →]0,∞]. In particular for any
compact manifold M

0 < i(M) ≤ diamM.

Proof. By Lemma 3.9 the function t0 : SM →]0,∞] is continuous. Let p ∈ M , U be an open
neighbourhood near p, such that there exists a smooth ON frame E1, . . . , En over U . This defines a
continuous function f : U × Sn−1 →]0,∞] by

(q, ξ) 7→ t0

( n∑
i=1

ξiEi|q
)

and
i(q) = min{f(q, ξ)|ξ ∈ Sn−1}.

Thus i is a composition of continous functions and hence continuous. This also implies the second
statment.

4.3 Theorem. Let q ∈ C(p) such that d(p, q) = i(M). Then one of the following is true:
(i) q is conjugate to p along a minimizing geodesic.
(ii) There are precisely two unit speed minimizing geodesics c, c̄ from p to q and

ċ(t0) = − ˙̄c(t0),

where t0 = d(p, q) = i(p).

Proof. Assume the first statement does not hold. By Lemma 3.6 there exist two unit speed geodesics
from p to q. The second statement follows, provided that we can show ċ(t0) = − ˙̄c(t0) for any two such
unit speed minimizing geodesics c and c̄.
Step 1: Suppose to the contrary that v1 := ċ(t0) 6= − ˙̄c(t0) =: −v2. Then there exists a vector
w ∈ TpM such that

〈w, ċ(t0)〉, 〈w, ˙̄c(t0)〉 < 0.

This can be seen as follows: By hypothesis ‖v1‖ = ‖v2‖ = 1 and consequently the Cauchy/Schwarz
inequality implies

|〈v1, v2〉| ≤ ‖v1‖‖v2‖ = 1.
6remind that t0 is continuous by 3.9
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Since equality holds if and only if v1, v2 are linear dependent, which in our case holds if and only if
v1 = ±v2, strict inequality holds. Define w := −(v1 + v2) 6= 0. Then

〈v1, w〉 = −〈v1, v1〉 − 〈v1, v2〉 = −1− 〈v1, v2〉 < 0

and similar 〈v2, w〉 < 0.
Step 2: Now let σ :] − ε, ε[→ M be a smooth curve satisfying σ(0) = q, σ̇(0) = w. Since q is not
conjugate to p along c and c̄, expp is locally invertible in t0ċ(0) and t0 ˙̄c(t0). Thus there exists 0 < δ ≤ ε
and smooth curves v, v̄ :]− δ, δ[→ TpM , such that

∀s ∈]− δ, δ[: expp(v(s)) = expp(v̄(s)) = σ(s).

By construction v(0) = t0ċ(0) and v̄(0) = t0 ˙̄c(0). We define geodesic variations H, H̄ :]− δ, δ[×[0, 1] →
M by

H(s, t) := expp(tv(s)) H̄(s, t) := expp(tv̄(s)).

By definition

H(0, t) = expp(tv(0)) = expp(tt0ċ(0)) = ctt0ċ(0)(1) = cċ(0)(tt0) = c(tt0)

and similar H̄(0, t) = c̄(tt0).
Step 3: We claim, that the first variation formula implies

L(H(s,_)) < L(H(0,_)) L(H̄(s,_) < L(H̄(0,_))

for any s > 0 sufficiently small. Since H is a variation of the geodesic c(tt0) and since the variation is
constant at the left, all terms in the variation formula vanish except

∂sL(H(s,_))|s=0 = 〈∂sH(s, 1)|s=0, ∂
−
t (c(tt0))|t=1)〉 = 〈∂s(expp(v(s)))|s=0, ċ(t0)t0〉

= t0〈σ̇(0), ċ(t0)〉 = t0〈w, ċ(t0)〉 < 0.

Here the last inequality holds by construction of w. Thus s 7→ L(H(s,_)) is strictly decreasing in a
neighbourhood of 0. Analogously this also holds for H̄.
Furthermore

L(H(0,_)) =
∫ 1

0
‖∂tH(0, t)‖dt =

∫ 1

0
‖∂t(c(tt0))‖dt =

∫ 1

0
‖ċ(tt0)t0‖dt = t0

and

L(H(s,_)) =
∫ 1

0
‖∂t expp(tv(s))‖dt =

∫ 1

0
‖∂tctv(s)(1)‖dt =

∫ 1

0
‖∂tcv(s)(t)‖dt = ‖v(s)‖

and by the same token L(H̄(s,_)) = ‖v̄(s)‖.
Alltogether this implies

‖v(s)‖ = L(H(s,_)) < L(H(0,_)) = t0 = i(p)

and similar for ‖v̄(s)‖. But expp(v(s)) = expp(v̄(s)), so expp is not injective on the ball with radius
i(p). Contradiction!

4.4 Corollary. Let p 6= q ∈M such that d(p, q) = diam(M). Then one of the following is true:
(i) q is conjugate to p along a minimizing geodesic;
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(ii) There exists a closed unit speed geodesic c through p and q satisfying c(0) = c(2t0) = p, c(t0) = q.
We have ċ(2t0) = ċ(0) by definition.

These statements motivate to look for bounds for the first conjugate locus along geodesics from below.
We will show, that curvature bounds from above yield those estimates.

4.5 Lemma. Let c : [0, b] → M be a unit speed geodesic, let κ : [0, b] → R be continuous and for all
t ∈ [0, b] and all tangential 2-planes σ ∈ Tc(t)M satisfying ċ(t) ∈ σ let

K(σ) ≤ κ(t).

Let 0 6= J ∈ T (c⊥) be a Jacobi field and let f : [0, b] → R satisfy

f ′′ + κf = 0 f(0) = ‖J(0)‖ f ′(0) = ‖J‖′(0) := lim
t↘0

‖J‖′(t).

If f > 0 on ]0, a], a ≤ b, then for any t ∈]0, a]

(i) ‖J‖′
‖J‖ (t) = 〈J,J ′〉

〈J,J〉 (t) ≥
f ′

f (t).

(ii) For any 0 < s < t: ‖J‖
f (s) ≤ ‖J‖

f (t).
(iii) ‖J(t)‖ ≥ f(t), so there are no conjugate points on c|[0,a].

Proof. First assume, that J has no zeros ]0, t[.
Step 1: Then we may calculate

‖J‖′′ =
(
〈J ′, J〉
‖J‖

)′
=

1
‖J‖2

(
〈J ′′, J〉‖J‖+ 〈J ′, J ′〉‖J‖ − 〈J ′, J〉2

‖J‖

)

=
1

‖J‖3

−Rm(J, ċ, ċ, J)‖J‖2 + ‖J ′‖2‖J‖2 − 〈J ′, J〉2︸ ︷︷ ︸
≥0 ,C.S.

 ≥ −K(J ∧ ċ)‖J‖ ≥ −κ‖J‖.

Thus we obtain on ]0, t[

(‖J‖′f − ‖J‖f ′)′ = ‖J‖′′f + ‖J‖′f ′ − ‖J‖′f ′ − ‖J‖f ′′ = ‖J‖′′f + κ‖J‖f ≥ 0.

So ‖J‖′f − ‖J‖f ′ is monotonously increasing on ]0, t[ and ‖J‖′(0)f(0) − ‖J(0)‖f ′(0) = 0. We have
shown

‖J‖′f − ‖J‖f ′ ≥ 0

on [0, t].
Step 2: This implies (

‖J‖
f

)′
=
‖J‖′f − f ′‖J‖

f2
≥ 0,

and therefore ‖J‖
f is monotonously increasing on [0, t].

Step 3: Since J 6= 0 by hypothesis one of the two following cases must hold.
Case 1: If J(0) 6= 0, there is a small neighbourhood [0, ε], ε > 0, on which J has no zeros. Consequently
all steps above hold on [0, ε] and since

‖J‖(0)
f(0)

=
‖J(0)‖
‖J(0)‖

= 1.

Step 2 implies ‖J‖ ≥ f on [0, ε]. But now this inequality holds on ]0, t[ for all t such that J has no
zeros on ]0, t[. Meaning if ‖J‖(t) = 0 , this implies f(t) ≤ 0 and therefore t > a, which cannot happen
by hypothesis. Alltogether this implies that J has no zeros on ]0, a] and all the steps above imply the
statement.
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Case 2: If J(0) = 0, this implies J ′(0) 6= 0, since we are assuming J 6= 0. By Corollary A.12 we may
write J(t) = tX(t) where J ′(0) = X(0) 6= 0. Therefore

‖J‖′(0) = lim
t↘0

‖J‖′(t) = lim
t↘0

〈J ′(t), J(t)〉
‖J(t)‖

= lim
t↘0

〈X(t) + tX ′(t), tX(t)〉
‖tX(t)‖

= lim
t↘0

〈X(t), X(t)〉+ t〈X(t), X ′(t)〉
‖X(t)‖

= ‖X(0)‖ = ‖J ′(0)‖. (4.1)

Thus we may use l’Hôpital’s rule to calculate

lim
s↘0

‖J‖(s)
f(s)

= lim
s↘0

‖J‖′(s)
f ′(s)

=
‖J‖′(0)
f ′(0)

= 1.

Now we may argue as in the first case.

4.6 Remark. If equality holds in (i) or (iii) for some t > 0 or in (ii) for some pair 0 < s < t, then
J = fE on [0, t], where E is parallel along c satisfying E ⊥ ċ, ‖E‖ = 1 and K(E ∧ ċ) = κ.

The case κ ≡ const is of particular importance.

4.7 Theorem. Employing the same notation and hypothesis of the preceeding Theorem 4.5, we obtain
for any κ ≡ const (c.f. 2.6 and 2.7):

(i) Rauch’s comparison theorem for the curvature bounded from above: If J(0) = 0, J ′(0) ⊥ ċ(0)
and ‖J ′(0)‖ = 1, then

∀t ∈]0, Rκ[: ‖J(t)‖ ≥ snκ(t).

(ii) Berger’s comparison theorem for the curvature bounded from above: If J(0) ⊥ ċ(0), ‖J(0)‖ = 1
and J ′(0) = 0, then

∀t ∈]0, Lκ[: ‖J(t)‖ ≥ csκ(t).

Proof. This is a direct consequence of Theorem 4.5 and Lemma 2.7 since f = snκ resp. f = csκ.

4.8 Corollary. Let all the sectional curvatures K of M satisfy K ≤ κ ≡ const and let p ∈ M . Then
for any w,X ∈ TpM , 0 < ‖w‖ < Rκ, we obtain

X ⊥ w ⇒ ‖(expp)∗|w(X)‖ ≥ snκ(‖w‖)
‖w‖

‖X‖.

Proof. If X = 0, the statement is trivial. If X 6= 0, we apply Lemma A.8 to Y := X
‖X‖ and obtain

(expp)∗|w(X) =
1
‖w‖

J(‖w‖)‖X‖,

where J is the Jacobi field through p satisfying J(0) = 0 and J ′(0) = Y . So the conclusion follows
from comparison theorem 4.7,(i), since ‖J ′(0)‖ = 1.

4.9 Remark. In case K = κ the Jacobi fields may be computed explicitly (c.f. [2, 10.8]) and one may
check that in that case equality holds.

This corollary shows, that manifolds with K ≤ κ are ”larger” in a certain sense, than manifolds with
K ≡ κ. We will make this intuition more precise in the following theorem.
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4.10 Theorem (Volume comparison). Let M0 be a complete Riemannian manifold having constant
sectional curvature κ and let M be complete having sectional curvature K ≤ κ. Let p0 ∈ M0, p ∈ M
and ε ∈]0, Rκ[ sufficiently small such that expp0 : Bε(0p0) → Bε(p0) ⊂ M0 and expp : Bε(0p) → Bε(p)
are both diffeomorphisms. Let I : Tp0M0 → TpM be a linear isometry and let

F := expp ◦I ◦ expp0 |
−1
Bε(p0) : Bε(p0) → Bε(p).

Let q ∈ Bε(p0) and X ∈ TqM0. Then
‖F∗X‖ ≥ ‖X‖

In particular if ε < i(p), then vol(Bε(p0)) ≤ vol(Bε(p)) and equality implies, that F is an isometry. In
that case K ≡ κ on Bε(p).

If we compare volumes, we assume, that ε is sufficiently small, such thatM0 andM are oriented on these
small balls and that I preserves orientation. These hypothesis simplify working with integration.

Proof.
Step 1 (Representation by Jacobi fields): By construction F is a diffeomorphism, so

∃w ∈ Bε(0p0) ⊂ Tp0M0 : q = expp0(w) and ∃Y ∈ Tp0M0 : X = (expp0)∗|w(Y ).

We denote w = ‖w‖v mit ‖v‖ = 1. Then (c.f. A.8)

X = (expp0)∗|w(Y ) =
1
‖w‖

J0(‖w‖),

where J0 is the Jacobi field along cv satisfying J0(0) = 0 and J ′0(0) = Y . By the same token

(expp)∗|I(w)(IY ) =
1
‖w‖

J(‖w‖),

where J is the Jacobi field along cIv in M satisfying J(0) = 0 and J ′(0) = IY . Alltogether

F∗|q(X) = (expp)∗ ◦ I ◦ (expp0 |
−1
Bε(p0))∗((expp0)∗|wY ) = (expp)∗|I(w)(IY ) =

1
‖w‖

J(‖w‖).

Step 2 (Estimate on the norm): If w = 0, we have F∗|q = I and the conclusion follows.
Step 2.1: If w 6= 0 and Y = λw ∈ LinR(w) ⊂ Tp0M0, Gauss’ Lemma (c.f. A.10) implies

‖F∗|q(X)‖ = ‖expp∗|I(w)(I(Y ))‖ = |λ|‖expp∗|I(w)(I(w))‖ A.10= |λ|‖I(w)‖ = |λ|‖w‖
A.10= |λ|‖expp0∗|w(w)‖ = ‖expp0∗|w(λw)‖ = ‖X‖ ≥ ‖X‖.

Step 2.2: Next we consider the case Y ⊥ w, w, Y 6= 0 (if Y = 0 ⇔ X = 0 again the statement is
trivial). Let E be a unit length parallel vector field along cv satisfying E(0) = Y

‖Y ‖ . Then

J0 = snκ ‖Y ‖E,

since M0 has constant sectional curvature κ. So snκ ‖Y ‖E is a Jacobi field (c.f. [2, 10.8]) satisfying
the initial conditions

snκ(0)‖Y ‖E(0) = 0 = J0(0) Dt(snκ ‖Y ‖E)(0) = ˙snκ(0)‖Y ‖E(0) = Y = DtJ0(0)

by construction. Thus

‖X‖ = ‖expp0∗|w(Y )‖ =
1
‖w‖

‖J0(‖w‖)‖ =
1
‖w‖

‖ snκ(‖w‖)‖Y ‖E(‖w‖)‖ =
snκ(‖w‖)
‖w‖

‖Y ‖.

Alltogether we obtain (with J as obove), that

‖F∗|q(X)‖ =
1
‖w‖

‖J(‖w‖)‖ = ‖(expp)∗|I(w)(I(Y ))‖
4.8
≥ snκ(‖w‖)

‖w‖
‖Y ‖ = ‖X‖.
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Step 2.3: In the general case we may orthogonally decompose Y by

Y = Y T + Y ⊥ ∈ LinR(w)⊕ w⊥,

which corresponds to an orthogonal decomposition of X (again by Gauss’ Lemma A.10)

X = XT +X⊥ := expp0∗|w(Y T ) + expp0∗|w(Y ⊥).

Alltogether this implies

‖F∗|q(X)‖2 = ‖F∗|q(XT ) + F∗|q(X⊥)‖2 = ‖F∗|q(X)T + F∗|q(X)⊥‖2 = ‖XT ‖2 + ‖X⊥‖2 = ‖X‖2.

Step 3: Provided ε < i(p), the maps expp0 |
−1
Bε(0p0 ) = x0 and expp ◦I|−1

Bε(0p0 ) = x are charts on
U0 = Bε(p0) rsp. U = Bε(p). With respect to these charts and the first part

det
g

(F (q)) ≥ det
g0

(q),

where g0 and g are the fundamental forms of the metrics with respect to these coordinates.

4.11 Theorem. Let p ∈M , κ ∈ R, 0 < r < R < Rκ, U ⊂ (M \ (C(p) ∪ {p})) ∩BR(p) and K ≤ κ on
U . Let Sr(p) := {q ∈M | d(p, q) = r} and q ∈ Sr(p) ∩ U . We denote by cq the unit speed minimizing
geodesic from p to q and by h the scalar second fundamental from of Sr w.r.t. −ċq(r). Then

∀X ∈ TqSr(p) : h(X,X) ≥ ctκ(r)‖X‖2.

Proof. Let q = expp(rv) and X = (expp)∗|rv(Y ) such that v, Y ∈ TpM , ‖v‖ = 1 and assume ‖Y ‖ = 1
(otherwise one has to replace Y by Y

‖Y ‖ in the following). By Gauss’ Lemma A.10 Y ⊥ v. Define a
geodesic variation H : R× [0, r] →M of cq by

H(s, t) := expp(t(cos(s)v + sin(s)Y ))

Then ∂tH(s, r) is the outward pointing unit normal to H(s, r) ∈ Sr(p). In particular H(0, r) = q,
∂tH(0, t)|t=r = ċq(r) and ∂sH|s=0 =: J is a variation field of a variation through geodesics. Conse-
quently J is a Jacobi field along H(0,_) = cv satisfying J(0) = 0.

DtJ(0) = Dt∂s expp(t(cos(s)v + sin(s)Y ))|s=0|t=0 = Ds∂t expp(t(cos(s)v + sin(s)Y ))|t=0|s=0

= Ds(cos(s)v + sin(s)Y )|s=0 = Y.

Thus ‖J(0)‖ = 0 and ‖DtJ(0)‖ = ‖Y ‖ = 1. We may apply Lemma 4.5,(i) to f = snκ and obtain using
Lemma 2.7, that

〈J(r), DtJ(r)〉
〈J(r), J(r)〉

≥ f ′(r)
f(r)

= ctκ(r).

Notice that

J(r) = ∂sH(s, r)|s=0 = ∂s(expp(r(cos(s)v + sin(s)Y )) = expp∗|rv(Y ) = X

and ċq(r) = ∂tH(0, t)|t=r. Alltogether we obtain

h(X,X) = −〈−∇X ċq(r), X〉 = 〈Ds∂tH(s, t)|t=r|s=0, J(r)〉 = 〈Dt∂sH(s, r)|s=0|t=r, J(r)〉
= 〈J ′(r), J(r)〉 ≥ ctκ(r)‖J(r)‖2.
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4.12 Corollary. We assume the same hyothesis as in Theorem 4.11. Then the geodesic spheres Sr(p)
are level sets of the distance function f = dp = d(p,_) and we obtain

Hess dp(X,X) = h(X,X) ≥ ctκ(r)‖X‖2,

where r := dp(q) and X ⊥ ċq(r). Furthermore

∀X ∈ TqM : Hess dp(X, ċq(r)) = 0.

Proof. By Example 1.2 f is a distance function and we obtain grad f |q = ċq(r). Thus the claim
follows from Theorem 1.5 and 4.11.

Calculating Hess dp using this case differentiation is a bit inconvenient. We will apply ”Karcher’s Trick”,
a modification of dp, in order to obtain a uniform estimate.

4.13 Lemma. For any κ ∈ R we define mκ : R → R

mκ(r) :=
∫ r

0
snκ(t)dt.

(i) We have the explicit formulae

mκ(r) =

{
1
κ(1− csκ(r)) , κ 6= 0
1
2r

2 , κ = 0

and

m′
κ = snκ m′′

κ = csκ .

(ii) The function mκ is monotonously increasing on [0, Rκ].
(iii) We obtain the identity

csκ +κmκ = 1.

Proof.
(i) If κ 6= 0, we have snκ = − 1

κ cs′κ by Lemma 2.7 and thus the statement follows from the funda-
mental theorem of calculus. The case κ = 0 follows similiarly; here snκ(t) = t. By differentiating
again, we obtain the other equalities.

(ii) This is a direct consequence of Lemma 2.7 since snκ > 0 on [0, Rκ].
(iii) If κ 6= 0, we obtain according to (i)

csκ +κmκ = csκ +1− csκ = 1.

In case κ = 0 by Lemma 2.7
csκ +κmκ = csκ = 1.

4.14 Lemma (Karcher’s Trick). Let κ ∈ R, c : I → U ⊂ M be a unit speed geodesic in U , p ∈ M
and dp : M → R, q 7→ d(p, q). Define r, e : I → R and l : M → R by

r := dp ◦ c e := mκ ◦ r l := mκ ◦ dp.

Then
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(i) We always obtain the identity

e′′ + κe = (csκ ◦r)〈grad dp|c, ċ〉2 + (snκ ◦r) Hess dp(ċ, ċ)

(ii) In case we additionally assume the hypothesis of Theorem 4.11, we obtain the estimate

e′′ + κe ≥ 1.

(iii) We obtain the uniform estimate

∀q ∈M : ∀X ∈ TqM : Hess l(X,X) ≥ (1− κl)‖X‖2.

Proof.
(i) Differentiation yields

e′′ = ((m′
κ ◦ r) · r′)′ = (m′′

κ ◦ r)r′2 + (m′
κ ◦ r) · r′′

(i)
= (csκ ◦r)r′2 + (snκ ◦r) · r′′.

By definition
r′(t) = (dp ◦ c)′(t) = 〈grad dp|c(t), ċ(t)〉

and

r′′(t) = 〈grad dp|c(t), ċ(t)〉′ = 〈Dt grad dp|c(t), ċ(t)〉 = 〈∇ċ(t) grad dp|c(t), ċ(t)〉
1.4= Hess dp(ċ(t), ċ(t)).

(ii) In that case we may continue by

r′′(t) = Hess dp(ċ(t), ċ(t))
4.12
≥ (ctκ ◦r)(t)‖ċ(t)⊥‖2,

where ċ⊥ is the component of ċ perpendicular to grad dp and thus tangential to the corresponding
geodesic sphere near p. Denoting by ċT the component tangential to grad dp, we obtain alltogether

e′′ ≥ (csκ ◦r)〈grad dp|c, ċ〉2 + (snκ ◦r) · (ctκ ◦r)‖ċ⊥‖2 = (csκ ◦r)(〈grad dp|c, ċ〉2 + ‖ċ⊥‖2)

= (csκ ◦r)(‖ċT ‖2 + ‖ċ⊥‖2) = (csκ ◦r)‖ċ‖2 = (csκ ◦r).

Thus the claim follows by

e′′ + κe ≥ csκ ◦r + κ ·mκ ◦ r
4.13,(iii)

= 1.

(iii) The inequality is invariant under scaling of X, so we may assume that ‖X‖ = 1. Let c :]− ε, ε[→
M be a unit speed geodesic satisfying c(0) = q, ċ(0) = X. By definition (where the r is taken
w.r.t. this c):

l ◦ c = mκ ◦ dp ◦ c = mκ ◦ r = e.

So by definition
e′(t) = dl|c(t)(ċ(t)) = 〈grad l|c(t), ċ(t)〉

and

e′′(0) = 〈grad l|c(t), ċ(t)〉′(0) = 〈Dt grad l|c(t)(0), X〉 = 〈∇X grad l|q, X〉 = Hess l(X,X).

Thus by (ii)
Hess l(X,X) = e′′(0) ≥ 1− κe(0) = 1− κl(q).
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4.1 Inverse Theorem of Toponogov

4.15 Definition (geodesic triangle). A geodesic triangle ∆ = (c1, c2, c3) consists of three geodesic
segments c1 : [a1, b1] →M , c2 : [a2, b2] →M , c3 : [a3, b3] →M , such that

c1(a1) = c2(a2), c1(b1) = c3(a3), c2(b2) = c3(b3).

If ∆ is a geodesic triangle in M and ∆̄ is a geodesic triangle in M̄ , then ∆̄ is a comparison triangle, if

∀i = 1, 2, 3 : L(ci) = L(c̄i).

Two triangles in M are congruent , if there exists an isometry of M such that one triangle is mapped
to the second.

4.16 Definition (model spaces). Endow Rn with the euclidian metric. For any R > 0 let

SnR := {x ∈ Rn+1 | ‖x‖ = R}

be the sphere of radius R endowed with the restriction of the Euclidean metric of Rn+1. Furthermore
denote by

Hn
R := {(x0, . . . , xn) ∈ Rn+1| − x2

0 + x2
1 + . . .+ x2

n = −R2}

the hyperbolic space of radius R endowed with the restriction of the Minkowski metric of Rn+1.
For any κ ∈ R the Riemannian manifold

Mn
κ :=


Sn( 1√

κ
) := Sn1√

κ

⊂ Rn+1 , κ > 0

Rn , κ = 0
Hn(κ) := Hn

1√
−κ

, κ < 0

is the n-dimensional model space with constant curvature κ. (They are unique in a sense elaborated
later, c.f. 11.15.)

4.17 Lemma. Let ∆ = (c1, c2, c3) be a triangle in M having side lengths li := L(ci) and let κ ∈ R.
Let

l1 + l2 + l3 < Rκ, li + lj ≥ lk,

where (i, j, k) runs through all permutations of (1, 2, 3). Then there exists a comparison trianlge ∆̄ in
M2
κ for ∆, which is unique up to congruence.

4.18 Theorem (”inverse Toponogov’s Theorem”). Let p ∈ M , κ ∈ R, K ≤ κ and R < i(p), Rκ. Let
∆ = (c1, c2, c) be a geodesic triangle in BR(p) consisting of unit speed geodesics c1, c2 and c, such that
c1(0) = c2(0) = p, c1(l1) = c(0) =: q1, c2(l2) = c(l) =: q2 and l1 + l2 + l < Rκ.
Then

l1 + l2 ≥ l, l1 + l ≥ l2, l2 + l ≥ l1,

and the comparison triangle ∆̄ in M2
κ satisfies

(i) d(p, c(t)) ≤ d(p̄, c̄(t)),
(ii) αi ≤ ᾱi, i = 1, 2, where αi rsp. ᾱi is the angle in ∆ rsp. ∆̄ at qi rsp. q̄i.

Proof. Since c1, c2 are both geodesics in BR(p) starting at p, we obtain l1, l2 < R ≤ i(p). Consequently
c1,c2 are minimizing in M , which implies l1 ≤ l + l2, l2 ≤ l + l1.
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Case 1: First we will prove the claims (i) und (ii) under the additional hypothesis

l ≤ l1 + l2.

By Lemma 4.17 there exists a comparison triangle ∆̄ = (c̄1, c̄2, c̄) in M2
κ which is unique up to congru-

ence. Let ē = mκ ◦ d(p̄, c̄) be the modified distance function around p̄ = c̄i(0), i = 1, 2, along c̄ in M2
κ

and again e = mκ ◦ d(p, c). We obtain:

e(0) = mκ(l1) = mκ(l̄1) = ē(0) e(l) = mκ(l2) = mκ(l̄2) = ē(l).

Consequently f := ē− e satisfies f(0) = f(l) = 0 and by Karcher’s trick 4.14, we obtain 7

f̈ + κf = (¨̄e+ κē)︸ ︷︷ ︸
=1

− (ë− κe)︸ ︷︷ ︸
≥1

≤ 0.

This implies f ≥ 0 by Lemma 4.21. Since mκ is monotonous, we have shown (i).
Claim (ii) is a consequence of the first energy variation formula: Denote by γt : [0, 1] → BR(p) the
radial geodesic from p to c(t) and by γ̄t the corresponding geodesic in M2

κ . Then for any t ∈ [0, 1]

E(γt) =
1
2

∫ 1

0
‖γ̇t(s)‖2ds =

1
2
L(γt)2 =

1
2
d(p, γ(t))2

(i)

≤ 1
2
d(p̄, γ̄(t))2 = E(γ̄(t))

and E(γ0) = E(γ̄0). Thus ∂tE(γ0)|t=0 ≤ ∂tE(γ̄0)|t=0 as well. By the first variation formula (admitting
non-proper variations)

∂tE(γ0)|t=0 = 〈∂tγt(1)|t=0, ∂
−
t c1(l1)〉 = 〈∂+

t c(0), ∂−t c1(l1)〉 = α1

and analogously for α2 and ᾱi, i = 1, 2.
Case 2: In case l ≥ l1 + l2 define l′ := l1 + l2, c′ := c|[0,l′] and let c′2 be the minimizing radial
geodesic from p to c(l′). The comparison triangle for ∆′ = (c1, c′2, c

′) in M2
κ is degenerate, because

l′ = l1 + l2 < Rκ. By (i) the triangle ∆′ is itself degenerate and thus l = l′. We have reduced this case
to the first case.

4.19 Remark (omitting the proof). Denote by |∆| the region bounded by ∆. Equality in (i) for some
t ∈]0, l[ or equality in (ii) for some i implies, that there exists a totally geodesic isometric immersion
F : M2

κ ⊃ |∆̄| → BR(p) such that F ◦ c̄ = c and F ◦ c̄i = ci, i = 1, 2.

4.20 Corollary. Let M be simpliy connected having sectional curvature K ≤ 0. The sum of all angles
in a geodesic triangle ∆ is less or equal to π. Equality implies, that there is a totally geodesic isometric
imersion F : |∆̄| ⊂ R2 →M such that F (|∆̄|) = |∆|.

Proof. By the theorem of Hadamard-Cartan M is diffeomorphic to Rn. Thus i(p) = ∞ for any p ∈M .
So the first part follows from 4.18 and the second from Remark 4.19 (which we have not proven here).
Furthermore we are using the face, that the sum of the interior angles of a triangle in M2

κ is always
≤ π provided κ ≤ 0 (this is a consequence of the Gauss-Bonnet Theorem).

4.21 Lemma. Let κ ∈ R and f : [0, l] → R be a solution of

f̈ + κf ≤ 0

satisfying f(0) = f(l) = 0, l < Rκ. Then f ≥ 0. If
7Actually the identity ¨̄e + κē = 1 is not really proven there. One may either check by hand, that if K = κ in 4.14 one

obtains not only ¨̄e + κē ≥ 1, but = 1. Alternatively one may anticipatory use Lemma 7.2, which states that in case
K ≥ κ one obtains ¨̄e + κē ≤ 1, which alltogether shows, that if κ ≤ K ≤ κ we obtain ¨̄e + κē = 1.
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(i) ∃t ∈]0, l[: f(t) = 0 or
(ii) f ′(0) = 0 or
(iii) f ′(l) = 0,

then f ≡ 0.

Proof.
Step 1: Choose ε > 0 such that l < Rκ+ε. There exists a positive solution g of

g̈ + (κ+ ε)g = 0

on [0, l], e.g. g = sκ+ε(t+ δ) for sufficiently small δ > 0. We define h := f
g : [0, l] → R, remark that of

course f = gh, and so the hypothesis implies

0 ≥ f̈ + κf = (ġh+ gḣ)′ + κgh = g̈h+ 2ġḣ+ κgh = (g̈ + κg)h+ 2ġḣ+ gḧ = −εgh+ 2ġḣ+ gḧ.

Suppose there exists t ∈]0, l[ such that f(t) < 0. Then h(t) < 0 as well (since g ≥ 0), so h has
a negative minimum at some t0 ∈]0, l[ (since [0,l] is compact and f(0) = f(l) = 0). This implies
h(t0) < 0, ḣ(t0) = 0 and ḧ(t0) ≥ 0, which contradicts the estimate above. This proves the first
statement.
Step 2: We discuss the various cases
Step 2.1 (f ′(0) = 0): By what we have proven so far f ≥ 0. Assume there exists t0 ∈]0, l[, such that
f(t0) > 0. Let k be a solution of

k̈ + κk = 0

satisfying k(0) = 0, k(t0) = f(t0), i.e. k = f(t0)
snκ(t0) snκ. Then

(f − k)′′ + κ(f − k) = f̈ + κf − (k̈ + κk) ≤ 0

and thus f − k ≥ 0 on [0, t0] by what we have proven so far. Thus ḟ(0) ≥ k̇(0) = f(t0)
sκ(t0) > 0 as well.

This contradicts our choice of t0.
Step 2.2 (f ′(l) = 0): We proceed in a similar fashion: Assume there exists t0 ∈]0, l[, such that
f(t0) > 0. Again let k be the solution of k̈ + κk = 0, but now satisfying k(t0) = f(t0) and k(l) = 0,
i.e. k(t) = f(t0)

snκ(l−t0) snκ(l− t). In a similar fashion k− f ≥ 0 on [t0, l]. This implies f − k ≤ 0 on [t0, l]

and (f − k)(l) = 0. Thus ḟ(l) ≤ k̇(l) = − f(t0)
snκ(l−t0) sn′κ(0) < 0. Contradiction!

Step 2.3 (f(t) = 0): If f(t) = 0, then ḟ(t) = 0 as well since f has a minimum at t. By what we have
proven so far, we obtain on the one hand f |[0,t] ≡ 0 and on the other hand f |[t,l] ≡ 0, thus f ≡ 0.
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5 Growth of Fundamental Group and Volume

In this section M is a compact connected Riemannian manifold and π : M̃ → M is a universal
Riemannian covering (,which implies that both are complete).

5.1 Definition. Let G be a finitely generated group and let S ⊂ G be a finite generating system. For
any g ∈ G, g 6= e, define

‖g‖S := min{m ≥ 0 | ∃s1, . . . , sm ∈ S : g = s±1
1 . . . s±1

m } ∈ N.

For the neutral element e ∈ G we will employ the convention ‖e‖S := 0.
For any R ≥ 0 define

NS(R) := #
{
g ∈ G

∣∣ ‖g‖S ≤ R
}
.

5.2 Lemma. Let G be a finitely generated group and let S, T ⊂ G be two finite generating systems.
Then there exists a constant k ≥ 1 such that

∀g ∈ G :
1
k
‖g‖T ≤ ‖g‖S ≤ k‖g‖T .

Furthermore for any R ≥ 0

NT

(R
k

)
≤ NS(R) ≤ NT (kR).

Proof. First of all we remark, that for any g, h ∈ G we always have

‖gh‖S ≤ ‖g‖S + ‖h‖S

(in general equality does not hold). Define

k := max
{

max{‖s‖T | s ∈ S},max{‖t‖S | t ∈ T}
}
.

Let ‖g‖S = m and
g = s±1

1 . . . s±1
m

be a representation of g as a product of (maybe inverse) elements of S. Now any si, 1 ≤ i ≤ m can be
written as a product of at most k (maybe inverse) elements of T . Therefore

‖g‖T = ‖s±1
1 . . . s±1

m ‖T ≤ ‖s±1
1 ‖T . . . ‖s±1

m ‖T ≤ km = k‖g‖S .

The other inequality is obtained by interchanging the roles of S and T .
This implies the second statement via

‖g‖T ≤
R

k
=⇒ ‖g‖S ≤ k‖g‖T ≤ k

R

k
= R

‖g‖S ≤ R =⇒ ‖g‖T ≤ k‖g‖S ≤ kR.

5.3 Definition (Growth of a function). Let f : R+ → R be a function. We say f has
(i) exponential growth, if

lim inf
R→∞

1
R

ln(f(R)) > 0,

(ii) at least polynomial growth of degree n, if

lim inf
R→∞

f(R)
Rn

> 0,
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(iii) at most polynomial growth of degree n, if

lim sup
R→∞

f(R)
Rn

<∞.

5.4 Definition (Growth of a group). Let G be a finitely generated group and let S ⊂ G be a finite
generating systems. Then G has exponential growth rsp. at least polynomial growth of degree n rsp. at
most polynomial growth of degree n, if the function f := NS has these growth properties.

5.5 Remark. By Lemma 5.2 these properties are independent of the choice of generators and thus
growth is a well-defined property of the group. By the way, it is shown in [5, 1-7], that 1

R ln(NS(R))
converges as R→∞.

Our aim in this section is to establish a relationship between the growth of the fundamental group of
M and the growth of the volume in M . Before we start, we remind you of the following result from
Differential Geometry I:

5.6 Lemma. Let p ∈M and r ≤ i(p). Then for any p̃, q̃ ∈ π−1(p)

Br(p̃) ∩Br(q̃) = ∅

and π : Br(p̃) → B̃r(p) is an isometric diffeomorphism.

In addition to that, we remind the following classical result from Topology

5.7 Theorem. Let π : X̂ → X be a covering, x ∈ X, x̂ ∈ π−1(x) and let ∆π be the group of
covering transformations of. Then the map Ψ : N (π#(π1(X̂, x̂)) → ∆π, sending a homotopy class
[c] ∈ N (π#(π1(X̂, x̂)) ⊂ π1(X,x) to the unique covering transformation D ∈ ∆π, which sends the
point x̂ to [c].x̂, is well-defined and surjective with kernel π#(π1(X̂, x̂)).

Here N is the normalisator and [c].x̂ is the monodromy action. You can find more about this theorem
in [4, 11.30].

In our case π : M̃ → M , the base space M̃ is simply connected and therefore for any fixed p ∈ M ,
p̃ ∈ π−1(p) the map Ψ : π1(M,p) → G, G := ∆π, is an isomorphism. Its inverse is given by
Φ : G → π1(M,p), which is defined as follows: For any g ∈ G we obtain a point q̃ := g(p̃) ∈ π−1(p).
Since M̃ is simply connected, there exists a path c̃ from p̃ to q̃ which is unique up to homotopy. In
this situation Φ(g) = [π ◦ c̃].
Provided c̃ is piecewise smooth, L(c̃) = L(π ◦ c) since π is a local isometry.

5.8 Lemma. In our situation π : M̃ →M we denote for any g ∈ G and p̃ ∈ M̃

‖g‖p̃ := d(p̃, g(p̃)).

Then for any g, h ∈ G
‖gh‖p̃ ≤ ‖g‖p̃ + ‖h‖p̃.

Proof. Since g is an isometry of M̃ , we obtain

‖gh‖p̃ = d(p̃, ghp̃) ≤ d(p̃, gp̃) + d(gp̃, ghp̃) = d(p̃, gp̃) + d(p̃, hp̃) = ‖g‖p̃ + ‖h‖p̃.

We may think of ‖g‖p̃ as the length of the shortest geodesic loop in the homotopy class of loops based
at p̃, which are determined by g.
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5.9 Theorem (Growth of deck transformations). Remind that M is compact, π : M̃ → M is a
universal covering and p̃ ∈ M̃ . For any r ≥ 0 define

Sr := Sr(p̃) :=
{
g ∈ G

∣∣ ‖g‖p̃ ≤ r
}

and d := diamM . Then
(i) S2d is a finite generating system of G.
(ii) For S = S3d and g ∈ G we obtain d(‖g‖S − 1) ≤ ‖g‖p̃ ≤ 3d‖g‖S .

Proof.
Step 1 (Finiteness): By Lemma 5.6 the set

X = {g(p) | g ∈ G} = π−1(p)

is discrete in M̃ . Thus for any r ≥ 0 the set X ∩ B̄r(p̃) is discrete and compact, hence finite. Since
g ∈ Sr(p̃) ⇔ g(p̃) ⊂ B̄r(p̃), we obtain that

|Sr(p̃)| = |X ∩ B̄r(p̃)|

is finite as well. It remains to show, that S2d generates G.
Step 2 (Premilinaries): Let q̃ ∈ M̃ be arbitary. We claim, there exists g ∈ G such that

d(q̃, g(p̃)) ≤ d.

This can be seen as follows: Define q := π(q̃). Since M is complete, there exists a minimizing geodesic
c : [0, 1] →M satisfying c(0) = q, c(1) = p. Thus

L(c) ≤ d(q, p) ≤ diam(M) = d.

Let c̃ be the lift of c at q̃. Then L(c̃) = L(c) and π(c̃(1)) = c(1) = p, thus c̃(1) ∈ π−1(p). Consequently
there exists g ∈ G such that c̃(1) = g(p̃). Alltogether we obtain

d(q̃, g(p̃)) ≤ L(c̃) = L(c) ≤ d.

Step 3 (Generating system): Let g ∈ G be arbitrary, r := d(p̃, g(p̃)) and c̃ : [0, r] → M̃ be a unit speed
minimizing geodesic from p̃ to g(p̃). Let ε > 0 be arbitrary and let k ∈ N, such that kε ≤ r < (k+1)ε.
For any 1 ≤ i ≤ k there exists gi ∈ G such that

d(c̃(iε), gi(p̃)) ≤ d

by step 1. Thus
‖g1‖p̃ = d(p̃, g1(p̃)) ≤ d(p̃, c̃(ε)) + d(c(ε), g1(p̃))) ≤ ε+ d.

For any 2 ≤ i ≤ k we obtain

‖g−1
i−1gi‖p̃ = d(p̃, g−1

i−1gi(p̃)) = d(gi−1(p̃), gi(p̃))

≤ d(gi−1(p̃), c̃((i− 1)ε)) + d(c̃(i− 1)ε, c̃(iε)) + d(c̃(iε), gi(p̃)) ≤ d+ ε+ d = 2d+ ε,

since gi−1 is an isometry. Furthermore

‖g−1
k g‖p̃ = d(p̃, g−1

k g(p̃)) = d(gk(p̃), g(p̃)) ≤ d(gk(p̃), c(kε)) + d(c(kε), g(p̃)) ≤ d+ ε,

by choice of r. Alltogether we obtain

g = g1(g−1
1 g2 · g−1

2 g3 . . . g
−1
k−1gk)g

−1
k g

and
g1, g

−1
1 g2, g

−1
2 g3, . . . , g

−1
k−1gk, g

−1
k g ∈ S2d+ε.

Thus S2d+ε is a generating system of G, where ε > 0 was arbitrary. By step 1 |Sr(p̃)| = |X ∩ B̄r(p̃)|.
Thus if ε is sufficiently small S2d = S2d+ε. This proves (i).
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Step 4 (Estimate): Again let c̃ : [0, r] → M̃ be as in step 2 and let k ∈ N, such that

kd ≤ r < (k + 1)d.

Again by step 1 choose gi ∈ G, 1 ≤ i ≤ k, such that

d(c̃(id), gi(p̃)) ≤ d

and as in step 3 (replacing ε with d) obtain analogously

‖g1‖, ‖g−1
1 g2‖, . . . , ‖g−1

k−1gk‖, ‖g
−1
k g‖ ≤ 3d.

Thus if S = S3d, we obtain

‖g‖S ≤ k + 1 ≤ 1
d
‖g‖p̃ + 1

by choice of k and r = ‖g‖p̃. This establishes the left inequality.
To prove the right one we remark, that by (i) applied to S = S3d there exsits a representation g =
g±1
1 . . . g±1

l , with gi ∈ S and l minimal. This implies

‖g‖p̃ = ‖g±1
1 . . . g±1

l ‖p̃ ≤ ‖g1‖p̃ + . . .+ ‖g1‖p̃ ≤ 3dl = 3d‖g‖S .

We would like formulate step 2 of the preceeding proof as a corollary.

5.10 Corollary. For any p̃, q̃ ∈ M̃ ther exists g ∈ G, such that

d(q̃, g(p̃)) ≤ d.

5.11 Corollary. We assume the same hypothesis as in the preceeding Theorem 5.9 and define

Np̃(R) := #{g ∈ G | ‖g‖p̃ ≤ R} = |SR|,

where R ≥ 0 and S := S3d. Then

NS

(
R

3d

)
≤ Np̃(R) ≤ NS

(
R

d
+ 1
)
.

In particular the growth of NS equals the growth of Np̃.

Proof. By Theorem 5.9 we have the implications

‖g‖S ≤
R

3d
=⇒ ‖g‖p̃ ≤ 3d‖g‖S ≤ R ‖g‖p̃ ≤ R =⇒ ‖g‖S ≤

1
d
‖g‖p̃ + 1 ≤ R

d
+ 1.

We are now able to compare the growth of Np̃ with the volume in M̃ .

5.12 Theorem (Volume comparison). Remind that M is compact, π : M̃ →M is a universal covering,
and let d := diam(M), p ∈M , r = i(p), v := vol(Br(p̃)) = vol(Br(p)), V := vol(Bd(p̃)). Then

1
v

vol(BR+r(p̃)) ≥ Np̃(R) ≥ 1
V

vol(BR−d(p̃)),

where we require R ≥ 0 for the left inequality and R ≥ d > 0 for the right one.

Proof.

32



Step 1: For any g 6= h ∈ G we have g(p) 6= g(h) and by Lemma 5.6 Br(g(p̃)) ∩ Br(h(p̃)) = ∅. Since
π|Br(p̃) is an isometry, we obtain vol(Br(g(p̃))) = vol(Br(p)). Provided ‖g‖p̃ ≤ R, we obtain

q̃ ∈ Br(g(p̃)) =⇒ d(q̃, g(p̃)) < r =⇒ d(q̃, p̃) ≤ d(q̃, g(p̃)) + d(g(p̃), p̃) < r +R =⇒ q̃ ∈ BR+r(p̃)

thus Br(g(p̃)) ⊂ BR+r(p̃). So we obtain

vol(BR+r(p̃)) ≥ vol

 ⋃
g∈SR(p̃)

Br(g(p̃))

 = Np̃(R) vol(Br(p)),

since the balls are pairwise disjoint. This proves the left inequality.

Conversely by Corollary 5.10 for any q̃ ∈ M̃ there exists g ∈ G, such that d(q̃, g(p̃)) ≤ d. If q̃ ∈ BR−d(p̃),
we even have

‖g‖p̃ = d(p̃, g(p̃)) ≤ d(p̃, q̃) + d(q̃, g(p̃)) ≤ R− d+ d = R⇒ g ∈ SR.

Thus
BR−d(p̃) ⊂

⋃
g∈SR(p̃)

B̄d(g(p̃)),

which imlies
vol(BR−d(p̃)) ≤ Np̃(R) vol(B̄d(p̃)).

5.13 Theorem. Let M be compact and denote by K the sectional curvatures. Then
(i) If K ≤ −a2, a > 0, then π1(M) grows exponentially.
(ii) If K ≤ 0, then π1(M) has at least polynomial growth.

Proof.
(i) We may assume a = 1, since otherwise we may rescale the metric (c.f. Theorem A.15).8 By

Theorem 5.7 the fundmental group π1(M) is isomorphic to G, where G is the group of covering
transformations on the universal Riemannian covering π : M̃ → M . By Theorem 5.9 the set
S := S3d, where d := diamM , is a finite generating system for G. By Corllary 5.10 the growth
of NS equals the growth of Np̃. By Theorem 5.12 the growth of Np̃ equals the growth of BR(p̃).
By Theorem 4.10, we obtain

vol(BR(p̃)) ≥ vol(BR(p̂)),

where p̂ ∈ Mn
−1 is a point in hyperbolic n space with constant curvature −1. Finally these

volumes will be analysed in more detail in the following chapter and we will show in Corollary
6.8 that BR(p̂) growths exponentially.

(ii) This follows by the same token and the well known growth of volume in Euclidean space.

8This causes no problem since the conclusion of the theorem does not invole the metric explicitely. The topology of M
is merely required to admit a metric of such curvature.
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6 Volume and Ricci Curvature

In this section let M be a connected complete Riemannian manifold of dimension m.

6.1 Definition (measure zero). A set A ⊂ M is a set of measure zero, if there exists and index set
I ∼= N and charts ϕi : Ui → U ′i , such that A ⊂

⋃
i∈I Ui, and for any i ∈ I: ϕi(A ∩ Ui) ⊂ Rn is a set of

measure zero w.r.t. the Lebesgue measure.

We remark, that the following results from classical calculus also hold on manifolds:

6.2 Lemma. Let N be a manifold and let F : M → N be smooth. If A ⊂M is a set of measure zero,
then F (A) ⊂ N is a set of measure zero as well. If f : M → R is integrable and A ⊂ M is a set of
measure zero ∫

M
f =

∫
M\A

f.

6.3 Corollary. Let p ∈ M . Then CT (p) ⊂ TpM and C(p) = expp(CT (p)) ⊂ M are sets of measure
zero. Define

U := Up := {(v, t) ∈ SpM × R | 0 < t < t0(v)} V := M \ ({p} ∪ C(p)).

Then F : U → V , F (v, t) := expp(tv), is a diffeomorphism and

vol(BR(p)) = vol(BR(p) ∩ V ).

We want to calculate The later using F .

Proof. The first statement is a direct consequence of Lemma 6.2 above, since exp is smooth and CT (p)
is a set of measure zero. By Theorem 3.11 F is a diffeomorphism. The equality of the volumes is also
a consequence of the Lemma above.

We enlist some general remarks concerning the tranformation of integrals.

6.4 Definition. Let X1, . . . , Xm ∈ TpM be a basis. We denote by

X1 ∧ . . . ∧Xm :=
{ m∑
i=1

tiXi | t1, . . . , tm ∈ [0, 1]
}

the parallelepiped spanned by X1, . . . , Xm.
Let M and N be Riemannian manifolds, F : M → N be a diffeomorphism and p ∈M . Then

JacF (p) :=
vol(F∗|p(X1|p) ∧ . . . ∧ F∗|p(Xm|p))

vol(X1|p ∧ . . . ∧Xm|p)

is the Jacobian of F .

6.5 Lemma. Under this hypothesis

vol(X1 ∧ . . . ∧Xm) =
√

det(〈Xi, Xj〉)

and Jac(p) does not depend on the choice of basis X = (X1, . . . , Xm).
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Proof. Since for any permutation σ ∈ Sm

Xσ(1) ∧ . . . ∧Xσ(m) = X1 ∧ . . . ∧Xm

as equality of sets, we may assume that the map defined by Xj 7→ ej , 1 ≤ j ≤ m, is an orientation-
preserving isomorphism ϕ : TpM → Rm and a global chart of the Riemannian manifold (TpM, g). Let
P := X1 ∧ . . . ∧Xm and Q := e1 ∧ . . . ∧ em ⊂ Rm. By definition of the Riemannian metric on TpM

vol(X1 . . . Xm) = vol(P ) =
∫
P

1dV =
∫
P

√
det (gij)dϕi ∧ . . . ∧ dϕm

=
∫
Q

(ϕ−1)∗(
√

det (gij)dϕi ∧ . . . ∧ dϕm) =
∫
Q

√
det (〈Xi, Xj〉)dx =

√
det (〈Xi, Xj〉).

This implies the second statement: If Y = (Y1, . . . , Ym) is another basis of TpM , there exists an auto-
morphism A of TpM , Xi 7→ AXi := Yi. Denote by cX(A) its coordinate matrix as an endomorphism
w.r.t. the basis X. The matrices cY (g) := (〈Yi, Yj〉) and cX(g) := (〈Xi, Xj〉) are the coordinate
matrices of g, which transform by elementary linear algebra as

det(cY (g)) = det(cX(A)tcX(g)cX(A)) = det(cX(A))2 det(cX(g)).

A similar result holds for the bases F∗X and F∗Y : The automorphism F∗AF
−1
∗ of TF (p)N transforms

F∗(Xj) into F∗(Yj) and therefore

F∗AF
−1
∗ (F∗Xj) = F∗(Yj) = F∗

( n∑
i=1

AijXi

)
=

n∑
i=1

AijF∗(Xi),

i.e. cF∗X(F∗AF−1
∗ ) = cX(A). The factor det(cX(A))2 cancels in the fraction of JacF .

6.6 Theorem (Transformation theorem for Riemannian manifolds). Let M,N be Riemannian mani-
folds, F : M → N be a diffeomorphism and let f : N → R be integrabel. Then (f ◦F ) ·JacF : M → R
is integrabel and ∫

M
(f ◦ F ) JacF =

∫
N
f.

Proof. Let ψ : V → V ′ ⊂ Rn be a chart for N . Since F is a diffeomorhpism, U := F−1(V ) ⊂ M is
open and ϕ := ψ ◦F : U → U ′ = V ′ is a chart for M . In these charts F is represented by id : V ′ → V ′,
i.e.

ψ ◦ F ◦ ϕ−1 = id .

Let ∂ϕi, ∂ψi, 1 ≤ i ≤ n, be the corresponding coordinate frame on U rsp. V . Then F∗(∂ϕi) = ∂ψi
since by construction

∀q ∈ N : ∀α ∈ C∞(N) : (F∗(∂ϕi))|q(α) = F∗|F−1(q)(∂ϕi))(α) = ∂ϕ|F−1(q)(α ◦ F )

= ∂i(α ◦ F ◦ ϕ−1)|(ϕ◦F−1)(q) = ∂i(α ◦ F ◦ F−1 ◦ ψ−1)|ψ(q) = ∂ψi|q(α).

Let B ⊂ U be measurable (i.e. ϕ(B) ⊂ Rn is measurable). Then∫
B

(f ◦ F ) JacF =
∫
ϕ(B)

(f ◦ F ◦ ϕ−1) JacF ◦ ϕ−1
√

det gij ◦ ϕ−1dL n

=
∫
ϕ(B)

(f ◦ ψ−1)

√
det (〈F∗(∂ϕi), F∗(∂ϕj)〉) ◦ ϕ−1√

det (〈∂ϕi, ∂ϕj〉) ◦ ϕ−1

√
det (〈∂ϕi, ∂ϕj〉) ◦ ϕ−1dL n

=
∫
ϕ(B)

(f ◦ ψ−1)
√

det (〈∂ψi, ∂ψj〉) ◦ F ◦ ϕ−1dL n

=
∫
ψ(F ((B))

(f ◦ ψ−1)
√

det (〈∂ψi, ∂ψj〉) ◦ ψ−1dL n =
∫
F (B)

f.
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Thus the transformation rule holds for any measurable subset, which is contained in a single coordinate
domain. Now the general case follows directly from the definition of the integral.

6.7 Theorem. Let R ≥ 0, p ∈M , v ∈ SpM and let cv be the geodesic through p with initial velocity
v. Let J2, . . . , Jn ∈ T (c|[0,t0(v)]) be the Jacobi fields along cv satisfying Ji(0) = 0 and J ′i(0) = Ei,
2 ≤ i ≤ n, where E1 := v, E2, . . . , En is a parallel ON frame along cv. If we define

jv : [0, t0(v)] → R, jv(t) := vol(J2(t) ∧ . . . ∧ Jn(t)),

then

vol(BR(p)) =
∫

SpM

∫ min(R,t0(v))

0
jv(t)dtdv. (6.1)

Proof. The set Up from 6.3 is open in the Riemannian product SpM × R and F : U → V (as in
Corollary 6.3) is a diffeomorphism. Thus by Theorem 6.6

vol(BR(p)) =
∫

SpM

∫ t0(v)

0
χ]0,R[(t) JacF (v, t)dtdv =

∫
SpM

∫ min(R,t0(v))

0
JacF (v, t)dtdv.

So we have to calculate JacF (v, t). Now SpM is the round sphere with radius 1 in TpM , i.e.

∀v ∈ SpM : TvSp ∼= {X ∈ TpM | X ⊥ v}.

We have
T(v,t)U = TvSpM ⊕ TtR

and this sum is orthogonal (w.r.t. the product metric). 9 We analyse F∗ on both summands: For any
α ∈ C∞(V ):

F∗|(v,t)(∂s)(α) = ∂s(α ◦ F )|(v,t) = ∂s(α ◦ expp(sv))|s=t = ċv(t)(α)

thus F∗|(v,t)(∂s) = ċv(t). For any X ∈ TvSpM ⊂ T(v,t)U we have analogously

F∗|(v,t)(X) = ∂s(expp(t(v + sX)))|s=0 =: J(t),

where J is the Jacobi field along cv satisfying J(0) = 0 and J ′(0) = X.
Now let E1 := v,E2, . . . , En be an ONB of TpM . Then ∂t, E2, . . . , En is an ONB of T(v,t)U) and
consequently

JacF (v, t) =
vol(F∗∂s(t) ∧ F∗E2(t) ∧ . . . ∧ F∗En(t))

vol(∂t ∧ E2(t) ∧ . . . ∧ En(t))
= vol(ċv(t) ∧ J2(t) ∧ . . . ∧ Jn(t)),

where Ji(t) if the Jacobi field along cv satisfying Ji(0) = 0, J ′i(0) = Ei. By Lemma A.9 the fields
J2, . . . , Jn are perpendicular to ċv(t) and in addition ċv(t) has unit length. Thus

JacF (v, t) = vol(J2(t) ∧ . . . ∧ Jn(t)) = jv(t),

where this volume is the one of an (n− 1)-dimenisonal parallelepiped. Thus alltogether

vol(BR(p)) =
∫

SpM

∫ min(R,t0(v))

0
jv(t)dtdv.

9We always employ the following convention: Let (M1, g1), (M2, g2) be two Riemannian manifolds. Then M1 ×M2 is
canonically a manifold and we identify T(p1,p2)(M1×M2) ∼= Tp1M1⊕Tp2M2. We obtain a product metric g := g1⊕g2

by
∀X = X1 + X2, Y = Y1 + Y2 ∈ Tp1M1 ⊕ Tp2M2 : g(X, Y ) := g1(X1, Y1) + g2(X2, Y2).

In this metric Tp1M1 ⊥ Tp2M2.
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6.8 Corollary. Let M have constant curvature κ and let E1 = ċv, E2, . . . , En be a parallel ONB along
cv. Then Ji(t) = snκ(t)Ei(t), so jv(t) = snn−1

κ (t). In particular, we obtain for our model spaces Mn
κ

and R < Rκ, that

vol(BR(p)) = vol(Sn−1)
∫ R

0
snκ(t)n−1dt.

In particular if κ = −1, then

lim
R→∞

1
R

ln(vol(BR(p))) = n− 1.

Proof. To prove the first statement we use Theorem 6.7 above and the characterization of Jacobi
fields on manifolds of constant curvature (c.f. [2, 10.8]). In addition using the representation of the
metric on constant curvature manifolds (c.f. [2, 19.9]), we see, that the g-volume of the g-unit-sphere
Sp ⊂ TpM is indeed the same as the Euclidean volume of the Euclidean unit sphere.
If κ = −1, then snκ = sinh by Lemma 2.7. So by the first part:

lim
R→∞

1
R

ln(vol(BR(p))) = lim
R→∞

1
R

ln
(

vol(Sn−1)
∫ R

0
sinh(t)n−1dt

)
(6.2)

= lim
R→∞

ln(vol(Sn−1))
R

+ lim
R→∞

1
R

ln
(∫ R

0
sinh(t)n−1dt

)
= lim

R→∞

1
R

ln
(∫ R

0
sinh(t)n−1dt

)
.

Now notice, that

∀t ∈ R≥0 : sinh(t) =
1
2

(
et − e−t

)
≤ 1

2
et, ∃t0 ∈ R≥0 : ∀t ≥ t0 : sinh(t) ≥ 1

4
et

and for any λ, t1 ∈ R>0

lim
R→∞

1
R

ln
(∫ R

0
(λet)n−1dt

)
= lim

R→∞

1
R

ln
(
λn−1 1

n− 1
et(n−1)

∣∣∣R
t1

= lim
R→∞

1
R

ln
(
eR(n−1) − et1(n−1)︸ ︷︷ ︸

=:µ

)
(6.3)

= lim
R→∞

1
R

ln
(
eR(n−1) − µ

)
.

Clearly there exists R0 ∈ R>0 such that for all R ≥ R0 : eR(n−1) − µ ≥ 1
2e
R(n−1). Thus

n− 1 = lim
R→∞

1
R

ln(
1
2
eR(n−1)) ≤ lim

R→∞

1
R

ln
(
eR(n−1) − µ

)
≤ lim

R→∞

1
R

ln(eR(n−1)) = n− 1.

Therefore we may continue (6.3) by limR→∞
1
R ln

(
eR(n−1) − et1(n−1)

)
= n− 1. By the same token we

may now estimate (6.2) to prove the claim.

6.1 Bishop-Gromov Inequality

In this section we will discuss the celebrated Bishop-Gromov Inequality. Before we start let’s discuss
some preleminaries.

6.9 Convention. In the following we will assume a bounded Ricci curvature and employ the notation

RicM ≥ (n− 1)κ :⇔ ∀V ∈ T (M) : RicM (V, V ) ≥ (n− 1)κ|V |2
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Under this assumption one may we calculate for uv = 1
n−1 ln(jv)′, that

u′v ≤ −u2 − κ (6.4)

see 2.3. Equality in this equation implies, that the second fundamental form Uv(t) of the geodesic
sphere of radius t around p with respect to the inward pointing unit normal −ċv, satisfies

tr(Uv(t)2) =
1

n− 1
(tr(Uv(t)))2.

Since Uv is symmetric, this implies

Uv(t) = u(t)Iv(t), (6.5)

where Iv(t) is the identity on ċ(t)⊥. The comparison theory (c.f. Lemma 2.9) states that

u ≤ ctκ, (6.6)

since if E1 = ċv, E2, . . . , En is a parallel ON frame along cv and Ji, 2 ≤ i ≤ n, are the Jacobi fields
along cv satisfying Ji(0) = 0,J ′i(0) = Ei, we obtain

Ji(t) = tEi(t) + t2Xi(t), (6.7)

where the Xi are smooth along cv (one can reduce this to the corresponding statement of basic calculus
by expressing the Ji as a linear combination of the Ej). This implies

jv(t) = tn−1 + ϕ(t)tn, (6.8)

where ϕ is smooth. Therefore

ln(jv)′(t) =
j′v
jv

= (n− 1)uv ∼
n− 1
t

, t→ 0. (6.9)

Furthermore we obtain

lim
t↘0

jv(t)
snn−1
κ (t)

= 1 (6.10)

uniformly in v. Now let’s get back to (6.1). Define

f(v, t) :=

{
jv(t)

snn−1
κ (t)

, 0 < t < t0(v)

0 , t > t0(v)

and obtain for any p ∈M , that

Vp(R) := vol(BR(p)) =
∫

Sp

∫ R

0
f(v, t) snn−1

κ (t)dtdv. (6.11)

6.10 Theorem (Bishop-Gromov Inequality). Let M be complete, connected, p ∈M , RicM ≥ (n−1)κ,
κ ∈ R, 0 ≤ r ≤ R ≤ Rκ, Vp(R) := vol(BR(p)), and let Vκ(R) be the volume of a ball with radius R in
Mn
κ . Then

Vp(R)
Vκ(R)

≤ Vp(r)
Vκ(r)

and equality for one pair 0 < r < R < Rκ implies, that Bp(R) is isometric to a ball of radius R in Mn
κ .

Furthermore
lim
R↘0

Vp(R)
Vκ(R)

= 1.
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6.11 Remark. Equality implies in particular that the sectional curvature on BR(p) is constant and
equal to κ.

Proof. Let jv as in Theorem 6.7. We obtain:

Vp(R)
Vκ(R)

=

∫
SpM

∫ R
0 f(v, t) snκ(t)n−1dtdv

vol(Sn−1)
∫ R
0 snκ(t)n−1dt

. (6.12)

Step 1 (Inequality): We start with

ln
( jv

snn−1
κ

)′
=

snn−1
κ

jv

j′v snn−1
κ −(n− 1) snn−2

κ csκ jv
sn2(n−1)
κ

=
1
jv

(uv(n− 1)jv) snn−1
κ −(n− 1) snn−2

κ jv csκ
snn−1
κ

=
uv(n− 1) snn−1

κ −(n− 1) snn−2
κ csκ

snn−1
κ

= (n− 1)(uv − ctκ)
(6.6)
≤ 0.

Thus ln( jv
snn−1

κ
) is monotonously decreasing. Since ln is strictly monotonously increasing , jv

snn−1
κ

is
monotonously decreasing as well. Thus the function t 7→ f(v, t) is monotonously decreasing on ]0, t0(v)[.
Since the integral is monotonous as well, we obtain∫ R

0
f(v,R) snκ(t)n−1dt ≤

∫ R

0
f(v, t) snκ(t)n−1dt. (6.13)

Thus

∂R

(∫ R
0 f(v, t) snκ(t)n−1dt∫ R

0 snκ(t)n−1dt

)
=
f(v,R) snκ(R)n−1dt

∫ R
0 snκ(t)n−1dt− snκ(R)n−1

∫ R
0 f(v, t) snκ(t)n−1dt(∫ R

0 snκ(t)n−1dt
)2

=
snκ(R)n−1(∫ R

0 snκ(t)n−1dt
)2

(∫ R

0
f(v,R) snκ(t)n−1dt−

∫ R

0
f(v, t) snκ(t)n−1dt

)
(6.13)
≤ 0.

Substituting this back into (6.12), we obtain

∂R

(
Vp(R)
Vκ(R)

)
=
∫

SpM

1
vol(Sn−1)

∂R

∫ R
0 f(v, t) snκ(t)n−1dt∫ R

0 snκ(t)n−1dt
dv ≤ 0

and thus the function R 7→ Vp(R)
Vκ(R) is monotonously decreasing.

Step 2 (Limit): Choose an antiderivative F of f(v,_) snκ(_)n−1 and an antiderivativeG of snκ(_)n−1.
By de l’Hospital:

lim
R↘0

∫ R
0 f(v, t) snκ(t)n−1dt∫ R

0 snκ(t)n−1(t)dt
= lim

R↘0

F (R)− F (0)
G(R)−G(0)

= lim
R↘0

F ′(R)
G′(R)

= lim
R↘0

f(v, t) snκ(t)n−1

snκ(t)n−1
= lim

R↘0
f(v, t)

(6.10)
= 1.

Step 3 (Equality): The hypothesis implies f(v, t) = 1 for any v ∈ SpM and 0 < t < R, thus u = ctκ
for any v ∈ Sp (on ]0, R[) and t0(v) ≥ R. This implies Uv = uvIv as pointed out in (6.5). Now I ′v = 0
and therefore

R(_, ċv)ċv = −U ′v − U2
v = −(u′v + u2

v)Iv = κIv.

Thus the curvature tensor along cv is the same as the curvature tensor in the case of constant curvature
κ. If E is a parallel unit normal field along cv. then snκE is a Jacobi field along cv. This holds for
any v ∈ Sp. Thus for any q ∈Mn

κ , the map

expp ◦A ◦ exp−1
q : BR(q) → BR(p),

where A : TqMn
κ → TqM is an isometry, is a Riemannian isometry.
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6.12 Corollary. Let M be complete, connected and let RicM ≥ (n − 1)κ, κ > 0. Then vol(M) ≤
vol(Mn

κ ). If vol(M) = vol(Mn
κ ), then M is isometric to Mn

κ .

Proof. Remember that Rκ := π/
√
κ.

Step 1 (Inequality): By the (strong) Theorem of Bonnet-Myers diam(M) ≤ Rκ. Therefore

M = B̄p(Rκ)

and we obtain
vol(M) = lim

R↗Rκ

vol(Bp(R)).

The same holds for Mn
κ . Now R 7→ Vp(R)

Vκ(R) is monotonously decreasing by 6.10 and ≤ 1. Thus

vol(M)
vol(Mn

κ )
= lim

R→Rκ

Vp(R)
Vκ(R)

≤ 1.

This shows the first statement.
Step 2 (Preliminaries): Now let vol(M) = vol(Mn

κ ). Then

Vκ(Rκ) = vol(Mn
κ ) = vol(M) = vol(B̄p(Rκ) = Vp(Rκ)

and thus for any 0 < r < Rκ

1 =
Vp(Rκ)
Vκ(Rκ)

≤ Vp(r)
Vκ(r)

≤ 1.

Consequently for any 0 < R < Rκ the ball BR(p) ⊂M is isometric to BR(q) ⊂Mn
κ by Theorem 6.10.

An isometry is given by expp ◦A ◦ exp−1
q : Mn

κ ⊃ BR(q) → BR(p) ⊂M (as in the proof of 6.10), where
A : TqM → TpM is an isometry.
Step 3 (Constructing the isometry): We would like to show, that for reasons of continuity this map
extends to a map F : B̄Rκ(q) = Mn

κ → M = B̄Rκ(q), which preserves distances and is an isometry on
the open ball of radius R. First of all

BRκ(q) =
⋃

R<Rκ

BR(q),

thus F is well-defined and isometric on BRκ(q). In addition Mn
κ \BRκ(q) = {q̂}, where q̂ is antipodal

to q ist (since we are assuming κ > 0 Mn
κ is a sphere of radius 1/

√
κ). For any q1, q2 ∈ BRκ(q) the

number d(q1, q2) equals the infimum of all lengths of paths from q1 to q2, that are contained in BRκ(q).
Since F is isometric there, is preserves these lengths and therefore

d(F (q1), F (q2)) ≤ d(q1, q2),

since the infimum of all lenghts of paths inM connecting F (q1) and F (q2) is less or equal to the infimum
of all lengths of paths, which connect F (q1) and F (q2) in the image of F . Thus F is continuous on
BRκ(q) with Lipschitz constant = 1. Of course BRκ(q) ⊂ B̄Rκ(q) is dense, thus we may extend F to a
continuous map F : Mn

κ →M .
Step 4 (Surjectivity): We will now show that M \ BRκ(p) = {p̂} for some point p̂ ∈ M and that
F (q̂) = p̂. For any v ∈ SpM we have t0(v) ≥ Rκ by what we have proven so far (due to the isometry
of the open balls). Since κ > 0 we have t0(v) ≤ Rκ anyway (since the first conjugate point certainly
occurs there) and thus t0(v) = Rκ for any v ∈ SpM . Thus d(p, C(p)) = Rκ and

C(p) = {p̂ ∈M | d(p, p̂) = Rκ}.
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Now let p̂ ∈ C(p). Then there is a unit speed minimizing geodesic c from p to p̂. Let v := ċ(0),
thus c = cv. Then c|[0,Rκ[ is the image under F of a unit speed geodesic c̃, starting at q with velocity
˙̃c(0) = A−1v. Thus

F (q̂) = lim
R↗Rκ

F (c̃)(R) = lim
R↗Rκ

c(R) = p̂,

therefore F surjective and M \BRκ(q) = {p̂} as claimed.
Step 5 (Global isometry): Thus F not only has Lipschitz constant = 1, but also preserves distances:
For p1, p2 ∈ M \ {p̂} one may calculate d(p1, p2) as the infimum of all lengths of paths from p1 to p2,
which do not touch p̂.
Step 6 (Smoothness): All unit speed geodesics c1, c2 starting from q satisfy

∀i = 1, 2 : F (ci(Rκ)) = F (q̂) = p̂

and
〈(F ◦ c1)′(Rκ), (F ◦ c2)′(Rκ)〉 = 〈ċ1(Rκ), ċ2(Rκ)〉

since F ◦ ci, i = 1, 2, is a geodesic on [0, Rκ] (since it is minimizing hence in particular smooth), so:

‖(F ◦ c1)′(Rκ)− (F ◦ c2)′(Rκ)‖ = lim
R↗Rκ

d(F (c1(R)), F (c2(R)))
Rκ −R

= lim
R↗Rκ

d(c1(R), c2(R))
Rκ −R

= ‖ċ1(Rκ)− ċ2(Rκ)‖

Thus F is smooth in q̂ with push-forward F∗(ċi(Rκ)) = (F ◦ ci)′(Rκ).

6.13 Theorem (Cheng). Let M be an n-dimensional, complete, connected manifold with curvature
RicM ≥ (n− 1)κ, κ > 0. If diamM = Rκ, then M is isometric to Mn

κ .

Proof. By the Theorem of Myers [2, 11.8] M is compact. The continuous function M ×M → R,
(p, q) 7→ d(p, q) attains its supremum. So let p, q ∈M , such that d(p, q) = π√

κ
= Rκ. By Theorem 6.10

Vp(Rκ)
Vκ(Rκ)

≤ Vp(Rκ/2)
Vκ(Rκ/2))

⇒ Vp(Rκ)
Vp(Rκ/2)

≤ Vκ(Rκ)
Vκ(Rκ/2)

= 2, (6.14)

where the last equality holds since Mn
κ is a round sphere of radius 1/

√
κ and the volume of a hemisphere

is exactly half the volume of a sphere. Of course the same holds for q:

Vq(Rκ)
Vq(Rκ/2)

≤ 2 (6.15)

Now Vp(Rκ) = Vq(Rκ) = vol(M), so together with the first two inequalities above:

Vp(Rκ/2) + Vq(Rκ/2)) ≥ 1
2
(Vp(Rκ)) + Vq(Rκ)) = vol(M)

On the other hand we have by construction Bp(Rκ/2)) ∩Bq(Rκ/2)) = ∅, thus

Vp(Rκ/2) + Vq(Rκ/2)) = vol(M).

We have archieved:

Vp(Rκ/2) ≥ 1
2

vol(M) Vq(Rκ/2) ≥ 1
2

vol(M) Vp(Rκ/2) + Vq(Rκ/2) = vol(M)
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This implies

Vp(Rκ/2) =
1
2

vol(M) = Vq(Rκ/2). (6.16)

Substituting this into the very first inequality, we obtain

1 =
vol(M)

2Vp(Rκ/2)
≤ vol(Mn

κ )
2Vκ(Rκ/2)

≤ 1,

thus equality. Therefore the equality statement of the Bishop-Gromov inequality 6.10 implies that the
open balls are isometric. Since their boundary is a set of measure zero, this implies vol(M) = vol(Mn

κ ).
Now the statement follows from Corollary 6.12.

42



7 Toponogov’s Theorem

The Theorem of Alexandrov-Toponogov compares triangles in a manifold, whose sectional curvature is
bounded from below by a constant κ, with triangles in M2

κ . It is a counterpart of Theorem 4.18, which
requires the sectional curvature to be bounded from above. There is another important difference:
Theorem 4.18 is a statement concerning ”small” triangles, where Toponogov’s Theorem concerns the
global geometry of M .

7.1 Preparation

7.1 Remark. In this section M is a Riemannian manifold, which is complete, connected and has
sectional curvatures K ≥ κ, κ ∈ R.

We will need some preparation, before we can start. Let p ∈ M and for any v ∈ SpM let cv be the
geodesic satisfying ċv(0) = v and let Uv(t), 0 < t < t0(v), be the second fundamental form of the
geodesic sphere of radius t around p at cv(t) with respect to the inward pointing unit normal −ċv(t) .
Let J be a Jacobi field along cv satisfying J(0) = 0, J ⊥ ċv. Then J ′ = UvJ on ]0, t0(v)[ (see section
1). Thus

〈J ′, J〉 = 〈UvJ, J〉 ≤ ‖Uv‖‖J‖2 (7.1)

and therefore estimates on Uv yield estimates on J . Now let E be a parallel unit normal field long cv and
let J be the Jacobi field along cv satisfying J(0) = 0, J ′(0) = E(0). This implies J(t) = tE(t) + o(t),
t→ 0. Furthermore

lim
t↘0

〈J ′, J〉
‖J‖

= ‖J‖′(0) = ‖J ′(0)‖ = 1,

(this was discussed in another context already, c.f. (4.1)). By Lemma 2.2 and Lemma 2.9, we obtain

〈UvE,E〉 ≤ ctκ on ]0, t0(v)[. (7.2)

This implies

lim
t↘0

t
〈J ′, J〉
〈J, J〉

(t) = lim
t↘0

t〈UvE,E〉 = 1 (7.3)

and

〈J ′, J〉
〈J, J〉

≤ ctκ on ]0, t0(v)[. (7.4)

7.2 Lemma. Let c be a unit speed geodesic in U := M \ ({p} ∪ C(p)). Define r := d(p, c(_)) and
e := mκ ◦ r. Then

e′′ + κe ≤ 1.

Proof. Using the definition of mκ and 4.13, we calculate

e′′ = (m′
κ ◦ r) · r′)′ = (m′′

κ ◦ r)(r′)2 + (m′
κ ◦ r) · r′′ = (csκ ◦r)(r′)2 + (snκ ◦r)r′′.

Now
r′(t) = 〈ċ(t), grad dp|c(t)〉,
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where dp := d(p,_). Denote by ct the unit speed minimizing geodesic from p to c(t) and by ċ⊥ the
component of ċ(t) perpendicular to ċt = grad dp|ct(r(_)). We calculate

r′′(t) = 〈c̈(t), grad dp|c(t)〉+ 〈ċ(t),∇ċ(t) grad dp|c(t)〉
1.4= Hess dp(ċ(t), ċ(t))

1.5= Hess dp(ċ⊥(t), ċ⊥(t))
[2, p.140]

= 〈Uċt(0)(ċ
⊥(t)), ċ⊥(t)) = 〈J ′(r(t)), J(r(t))〉,

where J is the normal Jacobi field along ct from p to c(t) satisfying J(0) = 0, J(r(t)) = ċ⊥(t) (existence
is guaranteed by [2, Exc. 10.2]). This implies

〈J ′, J〉|c(t) ≤ ctκ(r(t))‖ċ(t)⊥‖2.

Alltogether we obtain

e′′(t) ≤ (csκ ◦r)〈ċ(t), grad dp|c(t)〉2 + (snκ ◦r)(ctκ ◦r)(t)‖ċ⊥(t)‖2 = (csκ ◦r)(t)‖ċ(t)‖ = (csκ ◦r)(t).

This implies
e′′ + κe ≤ csκ ◦r + κ ·mκ ◦ r

4.13= 1.

7.3 Lemma. Let c1 : [0, l1] →M2
κ and c̄[0, l] →M2

κ be unit speed geodesics satisfying c̄1(l1) = c̄(0) =:
p̄1 and let ᾱ be their angle in p̄1. Let l1, l < Rκ and define f(ᾱ1) := d(c̄1(0)c̄(l)). Then f , seen as a
function of ᾱ1 on [0, π] satisfies

mκ(f(ᾱ1)) = mκ(|l1 − l|) + snκ(l1) snκ(l)(1− cos(α1)),

is strictly monotonously increasing and

f(0) = |l1 − l| f(π) = min{l1 + l, 2Rκ − (l1 + l2).}

Proof. Applying the law of cosines (c.f. Theorem A.13) in this situation, we obtain

csκ(f(α1)) = csκ(l1) csκ(l) + κ snκ(l1) snκ(l) cos(ᾱ1).

By Lemma 4.13 csκ +κmκ = 1 and therefore we may restate this formula as

1− κmκ(f(ᾱ1)) = csκ(l1) csκ(l) + κ snκ(l1) snκ(l) cos(ᾱ1)

⇔mκ(f(ᾱ1)) =
1
κ
− 1
κ

csκ(l1) csκ(l)− snκ(l1) snκ(l) cos(ᾱ1)

Using die angle sum identity (c.f. Theorem A.14) we obtain

mκ(l1 − l) =
1
κ

(1− csκ(l1 − l))

=
1
κ

(1− (csκ(l1) csκ(l) + κ snκ(l1) snκ(l)))

=
1
κ
− 1
κ

csκ(l1) csκ(l)− snκ(l1) snκ(l)

and since this is symmetric in l1,l the same holds for mκ(l − l1) and thus for mκ(|l1 − l|). Alltogether
we obtain

mκ(|l1 − l|) + snκ(l1) snκ(l)(1− cos(α1))

=
1
κ
− 1
κ

csκ(l1) csκ(l)− snκ(l1) snκ(l) + snκ(l1) snκ(l)(1− cos(α1))

=
1
κ
− 1
κ

csκ(l1) csκ(l)− snκ(l1) snκ(l) cos(α1) = mκ(f(ᾱ1)).

The other statements follow from the monotonicity of mκ and this representation.
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7.2 Statement and Proof

7.4 Theorem (Alexandrov-Toponogov). Let M be a complete connected n-manifold with sectional
curvatures K ≥ κ, κ ∈ R. In case κ > 0 let M not be isometric to Sn(1/

√
κ). Then the following

equivalent statements hold:
(i) Let ∆ = (c1, c2, c) be a geodesic triangle consisting of unit speed minimizing geodesics ci : [0, li] →

M , i = 1, 2, c1(0) = c2(0) =: p and a unit speed geodesic c : [0, l] → M , c(0) = c1(l1) =: p1,
c(l) = c2(l2) =: p2. Let l ≤ l1 + l2 and in case κ > 0 let l < Rκ. Then l1 + l2 + l < 2Rκ and the
corresponding comparison triangle ∆̄ in M2

κ satisfies

d(p̄, c̄(t)) ≤ d(p, c(t)).

(ii) Let ∆ be as in 2 and denote by αi the angle of ∆ in pi, i = 1, 2. Then l1 + l2 + l < 2Rκ and the
comparison triangle ∆̄ in M2

κ satisfies

ᾱi ≤ αi , i = 1, 2.

(iii) Let c1 : [0, l1] → M and c : [0, l] → M be unit speed geodesics where c1 is minimizing, l ≤ Rκ,
c(0) = c1(l1) =: p1 and let α1 be the angle between c1 and c in p1. Let c̄1, c̄ be corresponding
geodesics in M2

κ with angle ᾱ1 := α1 in p̄1 = c̄1(l1) = c̄(0). Then

d(c1(0), c(l)) ≤ d(c̄1(0), c̄(l)).

7.5 Remark.
(i) We will prove the first statement and then show, that it implies the second, which implies the

third. We leave it as an exercise to close the circle.
(ii) In the first and in the second statement existence and uniqueness (up to congruence) of ∆̄ is at

first only clear in case κ ≤ 0: Since c1 and c2 are minimizing l1 ≤ l+ l2 and l2 ≤ l1 + l. But then
in case κ > 0 the inequality l1 + l2 + l < 2Rκ implies existence of ∆̄.

(iii) In case κ > 0, we obtain l1, l2 ≤ diamM < Rκ (by Cheng’s Theorem 6.13) sinceM is required not
to be isometric to Sn(1/

√
κ). This implies uniqueness (up to congruence) of ∆̄ by Lemma 7.3. The

somewhat strange hypothesis that M shall not be isometric to Sn(1/
√
κ) avoids complications

in the formulation of the theorem.
(iv) Let c1 : [0, l1] → M , c2 : [0, l2] → M be unit speed minimizing geodesics satisfying c1(0) =

c2(0) =: p and let c : [0, l] → M be a unit speed geodesic satisfying c(0) = c1(l1), c(l) = c2(l2)
and l = Rκ = π/

√
κ, κ > 0. Then

l1 + l2 ≤ Rκ.

This can be seen as follows: Suppose to the contrary that l1 + l2 = l1 + d(p, c(l)) > Rκ = l. By
Bonnet/Myer’s Theorem [2, 11.7] l1, l2 ≤ Rκ and by Cheng’s Theorem 6.13 and by hypothesis
l1, l2 < Rκ. Consider the continuous function [0, l] → R, t 7→ l1 + d(p, c(t)) + t. Evauluated at
t = 0 we obtain

l1 + d(p, c(0)) + 0 = 2l1 < 2Rκ

and evaluated at t = l we obtain by hypothesis

l1 + d(p, c(l)) + l > Rκ + l = 2Rκ.

Thus by the intermediate value theorem there exists a smallest t > 0 such that t < l = Rκ and
l1 + d(p, c(t)) + t = 2Rκ. Denote by ct a unit speed minimizing geodesic from p to c(t). Since
t < l = Rκ, we obtain

l1 + d(p, c(t)) = 2Rκ − t > Rκ = l > t

and therefore the triangle ∆ = (c1, ct, c|[0, t]) satisfies the hypothesis of the first statement. This
is a contradiction since the perimeter of ∆ is 2Rκ.
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Proof.
Step 1: By Remark 7.5,(iii) we obtain l1, l2 < Rκ. We first assume l1 + l2 + l < 2Rκ. By Lemma 7.3
there exists a comparison triangle ∆̄ in M2

κ , which is unique up to congruence.
The case l1 + l2 = l is trivial: In that case ∆̄ is degenerate and

d(p̄, c̄(t)) =

{
l1 − t , 0 ≤ t ≤ l1

t− l1 , l1 ≤ t ≤ l
≤ d(p, c(t)),

where in the last step we used the triangle inequality. Therefore we will assume l1 + l2 > l in the
following. This implies p /∈ im c.
Step 2: In case c does not intersect the cut locus of p, we may argue completely analogously as in the
proof of 4.18: Define r := d(p, c(_)), e := mκ ◦ r and analogously r̄, ē. We obtain ē+ κr̄ = 1 and by
Lemma 7.2

e′′ + κe ≤ 1.

Define f := e− ē, we obtain

f ′′ + κf ≤ 0 f(0) = f(l) = 0,

thus f ≥ 0 on [0, l] by Lemma 4.21 and thus the statement.
Step 3: If c intersects the cut locus of p we cannot derive e′′ + κe ≤ 1 like this, because grad dp is not
well-defined in the cut locus. Nevertheless define r and e as above and suppose to the contrary, that
f has a negative minimum in ]0, l[. Since l < 0 there exists α > 0 such that l < Rκ+α. There exists a
fuction j : [0, l] → R such that

j > 0 j′′ + (κ+ α)j = 0, (7.5)

for example take j = snκ+α(δ + _) for a sufficiently small δ > 0. Define

g :=
f

j
: [0, l] → R,

i.e. f = gj. Then g has a negative minimum in some t0 ∈]0, l[.
Let σ be a unit speed minimizing geodesic from p = σ(0) to c(t0). For sufficiently small η > 0 the
point c(t0) is not a cut point of σ(η) along σ since otherwise σ(η) were a cut point of c(t0) along σ−1

and σ−1 could not be a minimizing geodesic from c(t0) to p. That obviously contradicts the fact that
σ is a minimizing geodesic from p to c(t0). Define

rη := η + d(σ(η), c(_)) : [0, l] → R (7.6)

and observe, that

r(t) = d(p, c(t)) ≤ d(p, σ(η)) + d(σ(η), c(t)) = η + d(σ(η), c(t)) = rη(t) (7.7)
rη(t0) = η + d(σ(η), c(t0)) = d(p, c(t0)) = r(t0), (7.8)

since σ is minimizing. Now define

eη := mκ ◦ rη : [0, l] → R (7.9)
fη := eη − ē : [0, l] → R (7.10)

and observe, that due to (7.7) and the monotonicity of mκ, we obtain

fη = eη − ē ≥ e− ē = f, (7.11)

fη(t0) = eη(t0)− ē(t0) = mκ(rη(t0))− ē(t0)
(7.8)
= mκ(r(t0))− ē(t0) = f(t0). (7.12)
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Therefore the function

gη :=
fη
j

: [0, l] → R (7.13)

has a negative minimum in t0 and we obtain

gη(t0) =
fη(t0)
j(t0)

=
f(t0)
j(t0)

= g(t0) < 0.

We may now modify 4.13 used in the proof of 4.18 in order to obtain

r′η = 〈ċ, graddσ(η)
〉 (7.14)

r̈η = Hess dσ(η)(ċ, ċ) ≤ ctκ(rη − η)‖ċ⊥‖2 (7.15)

and again

ṙ2η + ‖ċ⊥‖2 = ‖ċ‖2 = 1 ⇒ ‖ċ⊥‖2 = 1− ṙ2η. (7.16)

In particular we obtain

(r′η)
2 = 1− ‖ċ⊥‖2 ≤ 1 r′η ≤ 1. (7.17)

Therfore the derivatives satisfy:

e′′η
(7.9)
= (mκ ◦ rη)′′ = (m′′

κ ◦ rη)(r′η)2 +m′
κ ◦ rη · r′′η (7.18)

4.13= (csκ ◦rη)(r′η)2 + snκ ◦rη · r′′η
(7.15)
≤ (csκ ◦rη)(r′η)2 + snκ ◦rη · ctκ(rη − η)‖ċ⊥‖2

(7.16)
= (csκ ◦rη)(r′η)2 + snκ ◦rη · ctκ(rη − η)(1− (r′η)

2)

= csκ ◦rη + (csκ ◦rη)((r′η)2 − 1) + snκ ◦rη · ctκ(rη − η)(1− (r′η)
2)

= csκ ◦rη + (snκ ◦rη)(1− (r′η)
2)(ctκ(rη − η)− (ctκ ◦rη))

4.13= 1− κ mκ ◦ rη + (snκ ◦rη)(1− (r′η)
2)(ctκ(rη − η)− (ctκ ◦rη))

We would like to bound this expression at t0 and therefore choose a small ε > 0, such that

∀t ∈ [0, l] : d(p, c(t)) ≥ 2ε (7.19)
∀t ∈ [0, l] : d(p, c(t)) + ε < Rκ (7.20)
η < ε (7.21)

where the last condition is assured by shrinking η if necessary. This implies

∀t ∈ [0, l] : 2ε
(7.19)
≤ d(p, c(t)) ≤ d(p, σ(η)) + d(σ(η), c(t)) = η + d(σ(η), c(t))

(7.6)
= rη (7.22)

≤ η + d(σ(η), p) + d(p, c(t)) ≤ 2η + max
0≤s≤l

d(p, c(s))
(7.21)
≤ max

0≤s≤l
d(p, c(s)) + 2ε.

Define:

m1 := max{snκ(t) | 0 ≤ t ≤ max
0≤s≤l

d(p, c(s)) + 2ε} (7.23)

m2 := max{ct′κ(t) | ε ≤ t ≤ max
0≤s≤l

d(p, c(s)) + 2ε} (7.24)
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Equation (7.22) together with definition (7.23) implies that

∀t ∈ [0, l] : (snκ ◦rη)(t) ≤ m1. (7.25)

By the mean value theorem and definition (7.24)

ctκ(rη − η)− ctκ(rη) ≤ m2η. (7.26)

Therefore we can bound (7.18) by

e′′η ≤ 1− κ mκ ◦ rη + (snκ ◦rη)︸ ︷︷ ︸
≤m1 ,by (7.25)

(1− (r′η)
2)︸ ︷︷ ︸

≤1 by, (7.17)

(ctκ(rη − η)− (ctκ ◦rη))︸ ︷︷ ︸
≤m2η ,by (7.26)

≤ 1− κ mκ ◦ rη +m1m2η.

(7.27)

We obtain

g′′η(t0)j(t0) + 2 g′η(t0)︸ ︷︷ ︸
=0

j′(t0) + gη(t0)j′′(t0) + κgη(t0)j(t0) = (g′ηj + gηj
′)′(t0) + κgη(t0)j(t0)

= (gηj)′′(t0) + κgη(t0)j(t0)
(7.13)
= f ′′η (t0) + κfη(t0)

(7.10)
= (e′′η − e′′)(t0) + κeη(t0)− κeη(t0)

= e′′η(t0) + κeη(t0)− (e′′ − κeη)(t0)︸ ︷︷ ︸
=1

(7.27)
≤ 1− κmκ ◦ rη(t0) +m1m2η + κeη(t0)− 1

(7.9)
= m1m2η

and therefore

g′′η(t0)j0(t0) ≤ m1m2η − gη(t0)(j′′(t0) + κj(t0))
(7.5)
= m1m2η + αgη(t0)j(t0)

(7.13)
= m1m2η + αfη(t0)

(7.12)
= m1m2η + αf(t0).

This implies g′′η(t0) < 0 for small η > 0, which contradicts the hypothesis that g has a minimum in t0.
This proves the first statement under the hypothesis l1 + l2 + l < 2Rκ and thus in particular for κ ≤ 0.
Step 4: In case κ > 0 remember the hypothesis l1 + l2 ≥ l. Define

t0 := sup{t ∈ [0, l] | l1 + d(p, c(t)) + t < 2Rκ} > 0

and for any t ∈]0, t0[ let ct : [0, d(p, c(t))] → M be a minimizing geodesic from p to c(t). The triangle
∆t = (c1, ct, c|[0, t]) satisfies the hypothesis of the first statement and we obtain

l1 + l2 + t < 2Rκ

by definition of t0. Now t ≤ l < Rκ and thus

lim
t→t0

max
0≤s≤t

d(p, c(s)) = Rκ.

Thus diam(M) = Rκ and so M is isometric to Sn(1/
√
κ) by Cheng’s Theorem 6.13. Contradiction!

Step 5 (”(i)⇒(ii)”): Choose a variation H of σ(t) = c1(l1t), 0 ≤ t ≤ 1, such that H(s, 0) = p and
H(s, 1) = c(s), s ≥ 0. We obtain

− cos(α1) = 〈ċ1(l), ċ(0)〉 = ∂sE(H(s,_))|s=0.

Choose a corresponding variation H̄ ind M2
κ , where H̄(s,_) is the unique minimizing geodesic from p̄

to c̄(s) (notic that c̄(s) is not antipodal to p since l1 + l2 + l < 2Rκ). We obtain

− cos(ᾱ1) = 〈 ˙̄c(l1), ˙̄c(0)〉 = ∂sE(H̄(s,_))|s=0.
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By (i) and since H̄(s,_) as constant speed, we obtain

E(H̄(s,_)) =
1
2
L(H̄(s,_))2 =

1
2
d(p̄, c̄(s)) ≤ 1

2
d(p, c(s))2 ≤ 1

2
L(H(s,_))2 ≤ E(H(s,_)),

thus cos(α1) ≤ cos(ᾱ1) and therefore (ii).
Step 6 (”(ii)⇒(iii)”): First assume l < Rκ. Since l1 < Rκ the curves c̄1 and c̄ are minimal in M2

κ .
Die inequality is a direct consequence of the triangle inequality provided d(c1(0), c(l)) ≤ l − l1. In
case l(α1) = d(c1(0), c(l)) > l − l1 apply (ii) to the triangle (c1, c2, c), where c2 : [0, l(α1)] → M is a
minimizing geodesic from c1(0) = p to c(l). By (ii) we obtain ᾱ1 ≤ α1 for the corresponding comparison
triangle. By definition l(α1) = f(α1) and thus the statement follows from Lemma 7.3. We have proven
(iii) in case l < Rκ. The case l = Rκ follows by taking limits.

7.3 Application: Gromov’s Theorem

We would like to discuss an application of Toponogov’s Theorem to the Fundamental Group. Therefore
it is necessary to introduce the concept of a short basis. As usual let M be a complete connected
Riemannian n-manifold and denote by π : M̃ → M a universal covering. Choose any p̃ ∈ M̃ and
define p := π(p̃) ∈ M . As usual we identify π1(M,p) with the group G of deck transformations of π.
Remember (c.f. 5.6), that

X = {gp̃ | g ∈ G}

is a discrete set. In case 0 < ε < i(p) we obtain

Bε(dp̃) ∩Bε(hp̃) 6= ∅ =⇒ g = h.

Also remember (c.f. 5.8), that ‖g‖p̃ = d(p̃, gp̃) and

‖g‖p̃ = ‖g−1‖p̃ ‖gh‖p̃ ≤ ‖g‖p̃ + ‖h‖p̃.

7.6 Definition (short basis). Define subsets Bi ⊂ G, i ∈ N, inductively defined as follows:
(i) Define g0 := e, B0 := {g0}.
(ii) Assume Bi = {g0, . . . , gi} has been defined. Denote by Gi ⊂ G the subgroup generated by Bi.

We distinguish two cases:
Case 1 (Gi 6= G): Define Xi := {gp̃ | g ∈ Gi}. The set X \Xi is discrete and not empty. Thus
there exists at least one element q̃ ∈ X \Xi having minimal distance to p̃ (notice that q̃ does not
have to be unique). There exists a unique gi+1 ∈ G such that gi+1p̃ = q̃. Notice that

‖gi+1‖p̃ = min
g∈G\Gi

‖g‖p̃.

Define Bi+1 := Bi ∪ {gi+1}.
Case 2 (Gi = G): Define Bi+1 := Bi.

Any
B :=

⋃
i∈N

Bi ⊂ G

obtained in that way is a short basis of G. We call the procedure above the short basis algorithm.

7.7 Lemma (Properties of a short basis). Let B = {g0, g1, g2, . . .} be a short basis of G.
(i) For any i < j

‖gi‖p̃ ≤ ‖gj‖p̃ ≤ ‖g−1
i gj‖p̃.
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(ii) B is a finite or at least countable generating system for G.
(iii) Let M be compact and d := diamM . Then any gi ∈ B satisfies ‖gi‖ ≤ 2d and furthermore

|B| <∞.

Proof.
(i) The first inequality holds by construction. To see the second, notice that i < j implies

gi ∈ Gj−1 gj /∈ Gj−1.

Together this implies g−1
i gj /∈ Gj−1, since otherwise there exists h ∈ Gj−1 such that g−1

i gj = h,
which implies gj = gih ∈ Gj−1. So by construction

‖gj‖p̃ ≤ ‖g−1
i gj‖p̃.

(ii) If in the definition of a short basis the case 2 occurs one time, then B is a finite generating system
of G by definition. If this does not happen, B is at least a countable set. Let g ∈ G be arbitrary.
Clearly there exists R > 0 such that ‖g‖p̃ ≤ R. The set

X ∩ B̄R(p̃)

is compact and discrete, hence finite. Thus the short basis algorithm treats g after finitely many
steps: Either there exists some i such that g = gi or g ∈ Gi.

(iii) We have shown in Theorem 5.9,(i), that the elements g ∈ G satisfying ‖g‖p̃ ≤ 2d already generate
G. Since X ∩ B̄2d(p̃) is again finite, the statement follows.

7.8 Theorem (Gromov). Let M be a complete connected Riemannian n-manifold.
(i) If all the sectional curvatures K of M satisfy K ≥ 0, then π1(M) has a finite generating system

B, such that
|B| ≤ 5

n
2 .

(ii) If M is compact and if all the sectional curvatures K of M satisfy K ≥ −λ2 for some λ ∈ R,
then π1(M) has a finite generating system B, such that

|B| ≤ (3 + 2 cosh(2λd))
n
2 ,

where d := diamM .

Proof.
(i) Choose a universal Riemannian covering π : M̃ → M , p̃ ∈ M̃ , and let B be a short basis of M

(we employ all the notation from Definition 7.6). Denote by vi ∈ Sp̃M̃ the unit vector pointing
in the direction of gip̃, i.e. expp̃(‖gi‖p̃vi) = gip̃.
Step 1: We claim, that for any i < j, we obtain

αij := ](vi, vj) ≥
π

3
.

This can be seen as follows: Consider the triangle in M̃ obtained by joining p, gip̃, gj p̃ by
minimizing geodesics. We would like to apply Toponogov’s Theorem 7.4,(ii) to this triangle and
compare it with a triangle in Euclidean space. Therefore we remark that its geodesics have
lengths d(p̃, gip̃) = ‖gi‖p̃, d(p̃, gj p̃) = ‖gj‖p̃ and since gi is an isometry of M̃

d(gip̃, gj p̃) = d(p̃, g−1
i gj p̃) = ‖g−1

i gj‖p̃
5.8
≤ ‖g−1

i ‖p̃ + ‖gj‖p̃ = ‖gi‖p̃ + ‖gj‖p̃.
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So we may apply 7.4,(ii) and obtain
αij ≥ ᾱij ,

where ᾱij is the corresponding angle in the comparison triangle in Euclidean space. By Lemma
7.7 the side with length ‖g−1

i gj‖ is the longest. By basic Euclidean geometry, the angle in the
vertex opposite to the longest side is āij ≥ π

3 .
Step 2: This shows, that the various B1/2(vi) ⊂ B3/2(0p̃) ⊂ Tp̃M̃ are all disjoint. Denoting by
ωn the volume of the n-dimensional unit sphere, we calculate:

vol
( ⋃̇

0≤i≤|B|−1

B1/2(vi)
)
≤ vol(B3/2(0p̃)) ⇒ |B| 1

2n
ωn ≤

3n

2n
ωn ⇒ |B| ≤ 3n.

Step 3: This is almost the statement we want to prove. The bound can be sharpened by us-
ing both of the following optimizations: First denote by wi ∈ Sp̃M̃ the unit vector poining in
direction g−1

i p̃. By the same reasoning as in the previous step ](wi, wj) ≥ π
3 , i < j, so the

various B 1
2
(wi) are disjoint from one another as well. By replacing gi with g−1

i we obtain, that
](wi, vj) ≥ π

3 , i < j, as well.
Second we may replace the fulls balls B1/2(vi) by their inner halfs B̂1/2(vi). These satisfy
B̂1/2(vi) ⊂ B√5/2(0p̃). Now we obtain:

vol
( ⋃̇

0≤i≤|B|−1

B̂1/2(vi) ∪
⋃̇

0≤i≤|B|−1

B̂1/2(wi)

)
≤ vol(B√5/2(0p̃)) ⇒ 2 · 1

2
|B| 1

2n
ωn ≤

5
n
2

2n
ωn ⇒ |B| ≤ 5

n
2 .

(ii) We may assume λ ≥ 0.
Step 1: Again consider the triangle of the geodesics joining the points p̃, gip̃, gj p̃. These geodesics
have lengths li := ‖gi‖p̃, lj := ‖gj‖p̃, lij := ‖g−1

i gj‖p̃. Again we may compare the angle αij to an
angle ᾱij in a corresponding comparison triangle but now inM2

−λ2 and obtain cos(αij) ≤ cos(ᾱij).
In M2

−λ2 the law of cosines (c.f. A.13 and 2.7) takes the form

cosh(λlij) = cosh(λli) cosh(λlj) + sinh(λli) sinh(λlj) cos(ᾱij).

Alltogether we obtain

cos(αij) ≤ cos(ᾱij) =
cosh(λli) cosh(λlj)− cosh(λlij)

sinh(λli) sinh(λlj)

Step 2: We claim, that the expression on the right hand side is monotonously increasing in li
on ]0, 2d] and therefore define a := cosh(λlj), b := cosh(λlij), c := sinh(λlj) and calculate(cosh(λt)a− b

sinh(λt)c

)′
=
acλ sinh(λt) sinh(λt)− cλ cosh(λt)(cosh(λt)a− b)

sinh(λt)2c2

=
acλ sinh(λt)2 − acλ cosh(λt)2 + bcλ cosh(λt)

sinh(λt)2c2

=
acλ sinh(λt)2 − acλ(1 + sinh(λt)2) + bcλ cosh(λt)

sinh(λt)2c2
= λ

−ac+ bc cosh(λt)
sinh(λt)2c2

.

We have to show that the last expression is ≥ 0. Therefore it suffices to show, that −ac +
bc cosh(λt) ≥ 0. We assume t > 0 (⇒ c 6= 0) and transform:

− ac+ bc cosh(λt) ≥ 0 ⇐⇒ bc cosh(λt) ≥ ac⇐⇒ b cosh(λt) ≥ a

Finally, to show that the last inequality holds, consider:

b cosh(λt) = cosh(λlij) cosh(λt) ≥ cosh(λlj)
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Step 3: Since li ≤ lj ≤ lij ≤ 2d by Lemma 7.7, the monotonicity and cosh2− sinh2 = 1 implies:

cos(αij) ≤
cosh(λli)2 − cosh(λlij)

sinh(λlj)2
≤ cosh(λlj)2 − cosh(λlj)

sinh(λlj)2
=

cosh(λlj)2 − cosh(λlj)
cosh(λlj)2 − 12

=
cosh(λlj)(cosh(λlj)− 1)

(cosh(λlj)− 1)(cosh(λlj) + 1)
=

cosh(λlj)
cosh(λlj) + 1

(1)
≤ cosh(2λd)

cosh(2λd) + 1
,

where the last inequality (1) is due to the fact, that the expression in monotonously increasing
in lj as can be seen via( cosh(λt)

cosh(λt) + 1

)′
=
λ sinh(λt)(cosh(λt) + 1)− λ sinh(λt) cosh(λt)

(cosh(λt) + 1)2
=

1
(cosh(λt) + 1)2

> 0.

Step 4: Define
α := arccos

( cosh(2λd)
cosh(2λd) + 1

)
≤ αij

and proceed as in the proof of the first statement: Now the Bsin(α/2)(vi) ⊂ Tp̃M̃ are pairwise
disjont. Notice that cos(2α) = cos(α)2 − sin(α)2 = 1− 2 sin(α)2 and therefore by definition of α

sin
(α

2

)2
=

1− cos(α)
2

=
1− cosh(2λd)

cosh(2λd)+1

2
=

1
2 cosh(2λd) + 2

.

Now we obtain Ci := B̂sin(α/2)(vi) ⊂ B√
1+sin(α/2)2

(0p̃) and therefore

|B| ≤
(1 + sin(α/2)2)n2

sin(α/2)n
=
(
1 +

1
sin(α/2)2

)n
2 = (1 + 2 cos(2λd) + 2))

n
2 = (3 + 2 cos(2λd)))

n
2 .
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8 Synge’s Theorem

Before we discuss further applications of Toponogovs theorem, let’s discuss Synge’s theorem first. Its
proof motivates an estimate on the injectivity radius by Klingenberg.
First of all we discuss some basic facts regarding parallel transport and orientations and remind some
elementary concepts from homotopy theory.

8.1 Theorem. Let M be an oriented Riemannian manifold and let c : [a, b] → M be a piecewise
smooth curve. Let Pc : Tc(a)M → Tc(b)M be the parallel transport along c. Then Pc is orientation-
preserving.

Proof. Since composing paths corresponds to composing parallel transports, we may assume, that c
is smooth and that im c ⊂ U , where ϕ : U → U ′ ⊂ Rn is a chart for M . Let Pt, a ≤ t ≤ b, be the
parallel transport along c|[a, t]. Denote by Xi the parallel translates of ∂ϕi along c, i.e.

Xi(a) = ∂ϕi|c(a) Pt(∂ϕi|c(a)) = Xi(t).

We may expand Xi = Aji∂ϕj . Then the Aji are solutions of an ODE satisfying Aji (a) = δji and hence
smooth in t. The matrix (Aji (t)) is a coordinate representation of Pt with respect to the ∂ϕi, 1 ≤ i ≤ n,
and Pt is invertible. This implies det(Aji (t)) 6= 0 for all t ∈ [a, b]. Since det(Aji (a)) = 1 this implies
det(Aji (t)) > 0 for all t.

8.2 Definition (free homotopy classes). Let c : [0, 1] → M be a continuous curve. Then c is a loop,
if c(0) = c(1). A free homotopy between two loops c and c′ is a continuos map H : [0, 1]× [0, 1] →M
such that

∀t ∈ [0, 1] : H(0, t) = c(t) ∀t ∈ [0, 1] : H(1, t) = c′(t) ∀s ∈ [0, 1] : H(s, 0) = H(s, 1).

In that case c and c′ are freely homotopic. The free homotopy class of c is denoted by [c]Z . The set of
all free homotopy classes of curves in M is denoted by Z(M).

8.3 Remark. Notice that this concept is weaker than path homopy. If c and c′ are two loops based
at a certain point p ∈ M , i.e. c(0) = c(1) = p = c′(0) = c′(1), then c and c′ are path homotopic, if
there exists path homotopy, i.e. a free homotopy H : [0, 1] × [0, 1] → M which additionally satisfies
∀s ∈ [0, 1] : H(s, 0) = p. The path homotopy class of c is denoted by [c]π.

8.4 Lemma. Any two path homotopic loops in M based at any point p ∈ M are freely homotopic.
The canonical inclusion f : π1(M,p) → Z(M) is surjective and in addition

∀[c]π, [c′]π ∈ π1(M,p) : f([c]π) = f([c′]π) ⇐⇒ [c]π is conjugate to [c′]π in π1(M,p)

Proof.
Step 1 (Surjectivity): Let [c]Z ∈ Z(M) be arbitrary. Since M is path connected there exists a path
σ : [0, 1] → M such that σ(0) = p and σ(1) = c(0) = c(1). Clearly the composite σ ∗ c ∗ σ−1 is a loop
based at p, so [σ ∗ c ∗ σ−1]π ∈ π1(M,p). Furthermore f([σ ∗ c ∗ σ−1]π) = [c]Z . A free homotopy can
be constructed as follows: For s ∈ [0, 1] let H(s,_) be the path from σ(s) to σ(1) (traversing σ at
threefold speed), then from σ(1) = c(0) traversing c at threefold speed to c(1) = σ(1) and then from
σ(1) again at threefold speed back to σ(s).
Step 2 (Conjugacy):

8.5 Corollary (null-homotopy). A loop c is null-homotopic in π1(M,p) if and only if it is freely
null-homotopic.
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Proof.
”⇒”: Follows directly from the fact that every path homotopy is a free homotopy.
”⇐”: By the Lemma 8.4 above, [c]Z = [cp]Z (where cp is the constant curve at p) implies, that there
exists [σ] ∈ π1(M,p) such that

[c]π = [σ]π[cp]π[σ]−1
π = [cp]π.

8.6 Lemma. Let M be compact and let c0 : [0, 1] → M be a loop in M , which is not freely null-
homotopic. Then

L0 := inf{L(c′) | c′ : [0, 1] →M is freely homotopic to c0} > 0

and there exists a closed geodesic c : [0, 1] →M , which is freely homotopic to c0 and has length L0.

Proof.
Step 1 (Existence of c): Let (cn) be a sequence of loops freely homotopic to c0 such that L(cn) → L0

as n→∞. Since reparametrization changes neither the homotopy class nor the length, we may assume,
that all the cn have constant speed parametrizations. 10 Since every convergent sequence is bounded,
we may assume L(cn) ≤ L0 + 1. We calculate for any n ∈ N and any t, t′ ∈ [0, 1]

d(cn(t), cn(t′)) ≤ L(cn|[t, t′]) =
∫ t′

t
‖ċn(t)‖dt = L(cn)|t− t′| ≤ (L0 + 1)|t− t′|

and thus cn is Lipschitz continuous with Lipschitz constant Lip(cn) ≤ L0 + 1 independent of n. Con-
sequently the theorem of Arzelá-Ascoli implies, that there exists a subsequence converging uniformly
to a loop c : [0, 1] → M . We assume that this sequence is cn itself and claim that this loop has the
desired properties.
Step 2 (free homotopy): Let i(M) > ε > 0 (this is possible due to the compactness of M). Uniform
convergence implies in particular

∃n ∈ N : ∀t ∈ [0, 1] : d(cn(t), c(t)) ≤ ε.

Denote by ct : [0, 1] →M the unique geodesic from cn(t) to c(t), 0 ≤ t ≤ 1. ThenH : [0, 1]×[0, 1] →M ,
(s, t) 7→ ct(s) is a free homotopy from cn to c (smoothness follows from the smoothness of exp and the
hypothesis ε < i(M)). Consequently c is freely homotopic to cn and thus to c0.
Step 3 (Length): By definition and step 2 we have L(c) ≥ L0. For any ε > 0 there exists N ∈ N such
that for all n ≥ N the curve cn also has Lipschitz constant Lip(cn) ≤ L0 + ε

3 . Since cn → c uniformly,
there exists N ′ ≥ N such that d(cn, c) ≤ ε

3 . Thus

∀[t, t′] ∈ [0, 1] : d(c(t), c(t′)) ≤ d(c(t), cn(t)) + d(cn(t), cn(t′)) + d(cn(t′), c(t′)) ≤ L0 + ε

which implies Lip(c) ≤ L0. In particular since c has constant speed as well

L(c) =
∫ 1

0
‖ċ(t)‖dt = ‖ċ(0)‖ = lim

t↘0

d(c(0), c(t))
t

≤ lim
t↘0

Lip(c)t
t

≤ L0.

Alltogether, this implies L(c) = L0 and therefore c has constant speed L0.
Since c is freely homotopic to c0 and c0 is not null-homotopic, c is not null-homotopic as well and in
particular not itself a constant map. Thus L0 = L(c) > 0.

10These can be obtained by first reparametrzing the curves by arclength and then scaling them back to [0, 1] by a
constant factor. This factor equals the length of the curve.
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Step 4 (Geodesic): Suppose to the contrary, that c is not a closed geodesic. Then there exists a
t0 ∈ [0, 1], such that for arbitrariliy small t0 > ε > 0 the curve c|[t0 − ε, t0 + ε] is not minimizing from
c(t0 − ε) to c(t0 + ε) 11. If we replace this segment by a minimizing segment, we obtain a closed curve
c′ which is freely homotopic to c (and thus to c0) having length < L0. Contradiction!

8.7 Theorem (Synge). Let M be a compact connected orientable Riemannian manifold of even
dimension. If M has strictly positive sectional curvature everywhere, then M is simply connected.

Proof. Suppose π1(M) 6= 0. Then there exists a non-trivial path homotopy class [c] ∈ π1(M).
By Corollary 8.5 this class is also not freely null-homotopic. By Lemma 8.6 it has a representative
c : [0, 1] →M , which is a non-trivial closed geodesic minimizing the length over its own free homotopy
class.
By Lemma 8.9 proven below there exists a periodic parallel unit length vector field X along c. Define
H :]− ε, ε[×[0, 1] → M by (s, t) 7→ expc(t)(sX(t)). Then cs := H(s,_) is freely homotopic to c (since
H itself is a free homotopy). Now consider the index form (c.f. [2, 10.14] along c and calculate

∂2
s (L(cs))|s=0 = I(X,X) = −

∫ 1

0
D2
tX +Rm(X, ċ, ċ, X)dt = −

∫ 1

0
K(X, ċ)dt < 0

by hypothesis. This contradicts the fact, that c is length minimizing (c.f. [2, 10.13]).

8.8 Remark. With a similar argumentation one can show a converse: If M is compact, connected of
odd dimension and has strictly positive sectional curvature, then M is orientable. Argueing as in 8.1
one shows, that it does not depend on the free homotopy class of the closed curve c whether or not Pc
preserves the orientation. If M is not orientable, there exists a geodesic c as in the proof of 8.7, such
that Pc does not preserve the orientation.

8.9 Lemma. Let M be oriented and of even dimension. Let c be a nontrivial closed geodesic in M .
Then there exists a periodic unit length parallel normal vector field along c.

Proof. We may assume c : [0, 1] → M has constant speed. Denote by Pc : TpM → TpM , p := c(0),
the parallel transport along c. By Theorem 8.1 Pc is orientation-preserving, i.e. det(Pc) > 0. Since c
is a closed geodesic Pc(ċ(0)) = ċ(1) = ċ(0) by uniqueness of geodesics (the parallel translate of ċ(0) is
ċ(t)). This implies alltogether, that Pc restricts to an orientation-perserving isometry on V := ċ(0)⊥.
By hypothesis dimV is odd. Basic linear algebra 12 implies the existence of a unit vector X0 ∈ V
satisfying Pc(X0) = X0. Let X be the parallel translate of X0 along c satisfying X(0) = X0. Then

X(1) = Pc(X0) = X0 = X(0).

11In case t0 ∈ {0, 1} one may periodically extend c to all of R.
12More precisely: By choosing any positive ONB, we may consider a coordinate representation A of Pc acting as an

isometry on Rn. Since n is odd, there exists at least one real eigenvalue λ. Since A is an isometry, for any unit
eigenvector v

|λ| = |λ||v| = |λv| = |Av| = |v| = 1,

thus λ = ±1. It may be possible, that A is not diagonalizable over R and may have complex eigenvalues. But for
a complex eigenvalue µ, its conjugate µ̄ is also a zero of the characteristic polynomial. So the number of complex
eigenvalues is even and its product is positive since µµ̄ = |µ|2. Therefore the product of real eigenvalues must also
equal 1, since otherwise the determinant of A was negative, which contradicts our assumption, that A is orientation
preserving. Therefore at least one real eigenvalue λ must equal +1.
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9 The Sphere Theorem

The Sphere Theorem by Rauch, Klingenberg and Berger is one of the most celebrated theorems in
global Riemannian geometry (aside from the theorem of Gauss-Bonnet for surfaces).

9.1 Theorem (Sphere Theorem). Let M be an n-dimensional compact simply connected manifold.
If there exists a δ ∈ R such that all sectional curvatures K of M satisfy

1
4
< δ ≤ K ≤ 1,

then M is homeomorphic to Sn.

9.2 Remark.
(i) The bounds for the curvature are optimal, i.e. the theorem is wrong for δ = 1

4 . Up to normaliza-
tion the standard metric on C Pn is a counterexample (c.f. chapter 10). This is the reason why
C Pn is sometimes called ”the roundest space which is not a sphere”.

(ii) The question wether or not M is also diffeomorphic to Sn had been subject to much research
for a long time. The problem was the existence of exotic spheres proven by Milnor. These are
spaces which equal Sn topologically, but have a different smooth structure. In 2007 Brendle and
Schoen were able to prove, that M is in fact always diffeomorphic to Sn with its standard smooth
structure. Their result is known as the ”Differentiable Sphere Theorem” and uses the Ricci flow.

Before we are able to prove this theorem we require some preparation.

9.3 Lemma. Let M be compact with sectional curvature K ≤ κ, κ ∈ R. Then

i(M) ≥ min{Rκ,
l

2
},

where l is the length of a shortest non-trivial geodesic in M .

Proof. Since M is compact, there exists p ∈M and v ∈ SpM such that

i(M) = i(p) = t0(v).

Define q := expp(t0(v)v). By Corollary 4.4 there are two possibilities:
Case 1: If p is conjugate to q along a minimizing geodesic, there exists a Jacobi field J along c such
that J(0) = 0 = J(t0(v)). By Theorem 4.7, this implies t0(v) ≥ Rκ.
Case 2: If there exists a closed geodesic c through p and q such that c(0) = c(2t0(v)) = p, c(t0(v)) = q,
then L(c) = 2t0(v).

9.4 Lemma (Klingenberg, even dimensional). Let M be compact, oriented, of even dimension and
let all the sectional curvatures K satisfy 0 < K ≤ κ. Then

i(M) ≥ Rκ.

Proof. Suppose to the contrary that i(M) < Rκ. By Lemma 9.3 there exists a shortest closed geodesic
c on M with length l = 2i(M) < 2Rκ. By Lemma 8.9 there exist a periodic parallel normal unit length
vector field X along c. The map ]− ε, ε[×[0, 1] →M

(s, t) 7→ cs(t) := expc(t)(sX(t))
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is a free homotopy and a smooth variation of the geodesic c. As in the proof of Synge’s Theorem 8.7,
the hypothesis K > 0 implies, that I(X,X) < 0 and therefore s 7→ L(cs) as a local maximum at s = 0.
So for small s > 0

L(cs) < L(c) = l = 2i(M) < 2Rκ

and
d(cs(t), cs(0)) ≤ 1

2
L(cs) < i(M),

since cs is a closed curve. Thus there exists a unique minimizing geodesic σs,t : [0, 1] → M joining
cs(0) and cs(t), 0 ≤ t ≤ 1. The map [0, 1]3 → M , (s, t, r) 7→ σs,t(r) is smooth. For any fixed s there
exists t(s) such that ∀t ∈ [0, 1] : L(σs,t(s)) ≥ L(σs,t) due to the compactness of [0, 1]. By construction
c is not a trivial one-point curve. Hence cs is non trivial, so by construction σs,t(s) is nontrivial, thus
0 < t(s) < 1. Now fix s and define the variation H : [0, 1]2 → M , (t, r) 7→ σs,t(r). The length of this
variation has a maximum at t = t(s) by definition and thus the first variation formula implies

0 = ∂tL(Ht)|t=t(s) = 〈∂tH(t, 1)|t=t(s), σ̇s,t(s)(1)〉 = 〈∂tcs(t)|t=t(s), σ̇s,t(s)(1)〉

and therefore
σ̇s,t(s)(1) ⊥ ċs(t(s)).

Since c is a closed geodesic ∀t ∈ [0, 1] : d(c(0), c(t)) = min{t, 1− t} and therefore

lim
s→0

t(s) =
1
2
.

Any accumulation point of (σs,t(s))s as s→ 0 is a minimizing geodesic σ : [0, 1] →M joining c(0) and
c(1

2) which satisfies

σ̇(1) ⊥ c(
1
2
).

So we have found three different minimizing geodesics joining p := c(0) and q := c(1
2). By Theorem

4.3 p and q are conjugate, which contradicts d(p, q) < Rκ.

9.5 Lemma (Klingenberg). Let M be a compact simply connected manifold with sectional curvatures
K satisfying

1
4
< K ≤ 1.

Then
i(M) ≥ π.

9.6 Remark. The proof of this lemma is rather extensive. In odd dimensions it requires Morse theory,
which is beyond the scope of this script to cover and we will therefore go without it.
In even dimensions we argue, that Lemma 9.4 for κ = 1 implies

i(M) ≥ Rκ =
π√
κ

= π.

9.7 Lemma (Berger). Let M be complete and connected, p ∈M . Let the function dp := d(p,_) have
a local maximum in q. Then for every v ∈ TqM , v 6= 0, there exists a minimizing geodesic c from q to
p such that

](ċ(0), v) ≤ π

2
.

Proof. Let σ be the geodesic through q with initial velocity v and let ‖v‖ = 1. We distinguish two
cases.
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Case 1: There exists a sequence of reals ti ↘ 0 corresponding to a sequence ci of minimizing geodesics
from σ(ti) to p such that

](ċi(0), σ̇(ti)) ≤
π

2
.

We may identify the sequence ci with a sequence in TM by ci 7→ ċi(0). This sequence is contained in a
compact subset and therefore has an accumulation point, which corresponds to a minimizing geodesic
c from q to p satisfying

](ċ(0), v) ≤ π

2
.

Case 2: Since M is complete the only way how this can fail is, that there exists ε > 0, such that for
all t ∈]0, ε[ all minimizing geodesics (there exists at least one such geodesic ct) from σ(t) to p satisfy

](ċt(0), σ̇(t)) >
π

2
.

We may assume that ct has a constant speed parametrization ct : [0, 1] →M and remark that (t, r) 7→
ct(r) is eventually discontinuous in t. Nevertheless for any fixed t we may choose a smooth variation
H :] − δ, δ[×[0, 1] → M , (s, r) 7→ ct,s(r), satisfying ct,s(0) = σ(t − s) and ct,s(1) = p. By the first
variation formula

∂s(Lct,s)|s=0 = −〈∂sH(s, r)|(s,r)=(0,0), ċt(0)〉 = −〈∂sσ(t− s)|s=0, ċt(0)〉
= 〈σ̇(t), ċt(0)〉 = ‖σ̇(t)‖‖ċt(0)‖ cos(](σ̇(t), ċt(0))) < 0

by hypothesis. Thus for small s > 0, we obtain L(ct,s) < L(ct). But this implies for such s

d(p, σ(t− s)) ≤ L(ct,s) < L(ct) = d(p, σ(s))

so d(p, σ(t)) is monotonously decreasing as t↘ 0. This is absurd since dp has a local maximum in q.

In the following we will explain Bergers construction of a homeomorphism Sn →M if M satisfies the
hypothesis of the sphere theorem.

9.8 Lemma (Existence of hemispheres). Let M be compact, connected, let all the sectional curvatures
K satisfy K ≥ δ > 0 and let diam(M) ≥ π

2
√
δ
. Let p, q ∈M such that d(p, q) = diam(M). Then

B̄ π

2
√

δ
(p) ∪ B̄ π

2
√

δ
(q) = M.

Proof. We may assume δ = 1 (since otherwise we may scale the metric, c.f. A.15). Let x ∈ M
and assume x /∈ B̄π

2
(q), i.e. d(x, q) ≥ π

2 . Let c1 be a minimizing geodesic from q to x. By Berger’s
Lemma 9.7 there exists a minimizing geodesic c from q to p such that α := ](ċ(0), ċ1(0)) ≤ π

2 . Now
the statement follows from Toponogov’s Theorem 7.4,(iii): If M is isometric to a sphere the statement
is trivial anyway. By the Theorem of Bonnet/Myers we obtain l := L(c), l1 := L(c1) ≤ π. Therefore
Toponogov’s Theorem is applicable and we obtain

d(p, x) ≤ d(c̄(l), c̄1(l1)).

Now c̄, c̄1 are geodesics in the sphere Sn having lengths l,l1. Connecting the points c̄(l), c̄1(l1) with a
minimizing geodesic c̄2 of length l2 we obtain a spherical triangle and therefore by the law of cosines
(c.f. A.13)

cos(l2) = cos(l) cos(l1) + sin(l) sin(l1) cos(α) ≥ 0,

since l, l1 ≥ π
2 by construction. Alltogether

d(p, x) ≤ d(c̄(l), c̄1(l1)) = l2 ≤
π

2
.
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9.9 Lemma (Existence of an equator). Let M be compact, connected and simply connected and let
all the sectional curvatures K of M satisfy 1

4 < δ ≤ K ≤ 1. Then diam(M) ≥ π. If p, q ∈ M such
that d(p, q) = diam(M), for any unit speed minimizing geodesic c starting at p there exists a unique
t ∈]0, π

2
√
δ
] such that d(p, c(t)) = d(q, c(t)).

Proof. By Klingenberg’s Lemma we obtain

diam(M) ≥ i(M)
9.5
≥ π.

Now let p, q ∈M such that d(p, q) = diam(M) and define tδ := π
2
√
δ
.

Step 1 (Existence of t): Define f : [0, tδ] → R by

t 7→ d(p, c(t))− d(q, c(t)).

It is clear, that this function is continuous. We obtain

f(0) = d(p, c(0))− d(q, c(0)) = −d(q, p) < 0.

Since tδ < π, we obtain that c|[0, tδ] is minimizing and therefore x := c(tδ) ∈ ∂Btδ(p).
We claim that x ∈ B̄tδ(q): Otherwise x /∈ B̄tδ(q), so there exists an open neighbourhood U near x such
that U ∩ B̄tδ(q) = ∅. But by construction x ∈ ∂B̄tδ(p) and so by Lemma 9.8 and the definition of the
topological boundary U ∩ B̄tδ(q) 6= ∅, which is a contradiction.
Thus we obtain

f(tδ) = d(p, c(tδ))− d(q, c(tδ)) ≥ tδ − tδ = 0.

By the intermediate value theorem there exists t ∈]0, tδ] such that f(t) = 0.
Step 2 (Uniqueness): Assume there are 0 < t0 < t1 ≤ tδ < π with the desired property, i.e.

t0 = d(p, c(t0)) = d(q, c(t0)), t1 = d(p, c(t1)) = d(p, c(t1)).

Let c0 be a unit speed minimizing geodesic from q to c(t0). The composite curve σ := c0 ∗ c|[t0, t1] has
length

L(σ) = L(c0) + L(c|[t0, t1]) = t0 + (t1 − t0) = t1

and joins q and c(t1). By hypothesis σ is minimizing and therefore a geodesic. Thus σ is smooth and
therefore ċ0(t0) = ċ(t0). Since c0(t0) = c(t0) by construction the geodesics c and c0 are equal on their
common domain of definition. In particular

p = c(0) = c0(0) = q,

which implies diam(M) = d(p, q) = 0 < π. Contradiction!

9.10 Remark. The uniqueness of t in the previous Theorem 9.9 implies, that we can interpret this
as a continuous function t : SpM →]0, π

2
√
δ
]. Since the roles of p and q may be interchanged, we also

obtain a continuous function t : SqM →]0, π
2
√
δ
].

Proof. (of the Sphere Theorem) Following Berger we construct a homeomorphism h : Sn →M .
Step 1 (Construction of h): Since M is compact there exist p, q ∈M such that

d(p, q) = diam(M) ≥ i(M)
9.5
≥ π.
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With t defined as in the Remark 9.10 above, define f : TpM \ {0} → B̄ π

2
√

δ
(0p) ⊂ TpM by

v 7→ t
( v

‖v‖

) v

‖v‖
.

For any α > 0, this function satisfies f(αv) = f(v) and

d(expp(f(v)), p) = d(expp(f(v)), q)

by construction. Choose an isometry I : Tp̄Sn → TpM , for some p̄ ∈ Sn. Denote by q̄ := −p̄ the
antipodal point of p̄. Define h : Sn →M by

x 7→


p , x = p̄

expp
(
d(x,p̄)
π/2 · (f ◦ I ◦ exp−1

p̄ )(x)
)

, d(x, p̄) ≤ π
2

expq
(
d(x,q̄)
π/2 · (exp−1

q ◦ expp ◦f ◦ I ◦ exp−1
p̄ )(x)

)
, d(x, q̄) ≤ π

2

q , x = q̄

Step 2 (Continuity of h): Define M+ := B̄ π

2
√

δ
(p) and M− := B̄ π

2
√

δ
(q). First of all notice, that if

x = p̄ obviously d(x, p̄) = 0 and therefore the two upper cases in the definition of h agree and define a
continuous function h+ : H+ →M+ ⊂M from the upper hemisphere of Sn to an upper hemisphere of
M . Analogously the lower two cases define a continuous function h− : H− → B π

2
√

δ
(q) ⊂ M . On the

equator H+ ∩H−, we have d(x, p̄) = d(x, q̄) = π/2 and therefore h+|H+∩H− = h−|H+∩H− and thus h
is continuous.
Step 3: Careful analysis of the definition of h reveals that it is injective and surjective. Since Sn is
compact and M is hausdorff, this automatically implies, that h−1 is continuous (c.f. [4, 4.25]) and thus
h is a homeomorphism.
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10 Complex Projective Space

10.1 Preliminaries

10.1 Remark. We denote by 〈_,_〉h : C n × C n → C

〈u, v〉h :=
n∑
i=1

uiv̄i

the canonical hermitian form on C n. Since C n is canonically isomorphic to R2n, we can also use the
Euclidean scalar product 〈_,_〉e → R : Rn × Rn

〈x, y〉e :=
n∑
i=1

xiyi

for 2n, i.e.
∀u, v ∈ C n : 〈u, v〉e := 〈Re(u),Re(v)〉e + 〈Im(u), Im(v)〉e.

For any u, v ∈ C n remember the following relations from Linear Algebra:
(i) 〈u, v〉h = 〈Re(u),Re(v)〉e + 〈Im(u), Im(v)〉e + i(〈Im(u),Re(v)〉e − 〈Re(u), Im(v)〉e)
(ii) Re〈u, v〉h = 〈u, v〉e
(iii) u ⊥h v ⇒ u ⊥e v
(iv) u ⊥e v and u ⊥e iv =⇒ u ⊥h v.
(v) ‖u‖ := ‖u‖e = ‖u‖h.

We will constantly index expressions with e resp. h to indicate dependence on the euclidean or
hermitian form unless it is clear that the expression is independent on that index. For example if
U ⊂ R2n is a complex subspace and x ∈ R2n, we denote x ⊥ U to express, that x is perpendicular to
U , since x ⊥e U ⇔ x ⊥h U .

10.2 Definition (Complex projective space). The n-dimensional complex projective space is the set
of all lines in C n+1, i.e.

C Pn := {z ∈ C n \ {0}}/ ∼,

where z1 ∼ z2 :⇔ ∃λ ∈ C : z2 = λz1.
We may also write C Pn = S2n+1/ ∼, where z1 ∼ z2 :⇔ ∃r ∈ S1 ⊂ C : z2 = rz1. In both cases the
equivalence class of a point (z0, . . . , zn) ∈ C n+1 is denoted by [z0 : . . . : zn].

10.3 Remark (Complex structure). Remember that C Pn is a manifold in a canonical way: For
any 0 ≤ i ≤ n + 1 define Ui := {[z0, . . . , zn]|zi 6= 0} (this is well-defined) and ϕi : Ui → C n,
[z0, . . . , zn] 7→ ( 1

zi
(z0, . . . , ẑi, . . . , zn)) (this is also well-defined). These maps determine an atlas: Define

ψi : C n → Ui, (z1, . . . , zn) 7→ [z0 : . . . : 1 : . . . : zn] (where the 1 is at position i). We obtain:

ψi(ϕi([z0 : . . . : zn])) = ψi(
1
zi

(z0, . . . , ẑi, . . . , zn)) = [
z0
zi

: . . . :
1
zi

: . . . :
zn
zi

] = [z0 : . . . : zn]

ϕi(ψi(z1, . . . , zn)) = ψi([z1 : . . . : 1 : . . . : zn]) = (z1, . . . , zn)

thus ψi = ϕ−1
i . If i 6= j, then the transition map on ϕj(Uj) is given by

ϕj(ψi(z1, . . . , zn)) = ϕj([z1 : . . . : 1 : . . . : zn]) =
1
zj

(z1, . . . , ẑj , . . . , 1, . . . , zn)

This is biholomorphic, so we have defined a complex structure on C Pn. In particular C Pn is a real
manifold and dimR C Pn = 2 dimC C Pn = 2n. Throughout this chapter we will usually think of C Pn
as S2n+1/ ∼ and as a real manifold.
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10.4 Definition (Hopf circles). The projection π : S2n+1 → C Pn is called Hopf map. Its fibres are
called Hopf circles, i.e. for any p ∈ C Pn we call π−1(p) a Hopf circle. Since π is surjective, we may
also think of C Pn as the set of all Hopf circles.

10.5 Lemma. For any x ∈ S2n+1 let H(x) be the Hopf circle through x, i.e. H(x) := π−1({π(x)}).
Then

H(x) = {eiϕx | ϕ ∈ R} TxH(x) ∼= Rix.

Proof. The first equation holds by definition. Notice that R → H(x), ϕ 7→ H(x)(ϕ) := eiϕx is a curve
in H(x) through x. We have

Ḣ(x)(0) = ix 6= 0

and since H(x) is a 1-dimensional manifold, we obtain the statement concerning the tangential space.

10.6 Lemma. The Hopf map π : S2n+1 → C Pn is a smooth submersion. For any x ∈ Sn

kerπ∗|x ∼= Cx =: Lx.

Consequently the restriction of π∗|x to any complement of Lx is an isomorphism.

Proof. By construction π is smooth. Let c : I → S2n+1 be a smooth curve such that c(0) = x. In case
c(I) ⊂ H(x), the curve π ◦ c is constant and therefore

0 = (π ◦ c)′(0) = π∗|x(ċ(0)) =⇒ ċ(0) ∈ kerπ∗|x.

So TxH(x) ⊂ kerπ∗|x and dim kerπ∗|x ≥ 1.
On the other hand, there exists 0 ≤ i ≤ n such that xi 6= 0, where we think here of x as x ∈ S2n+1 ⊂
C n+1. By composing with the chart we obtain

ϕi ◦ π ◦ c =
1
ci

(c0, . . . , ĉi, . . . , cn).

If we set ci := xi we still have n complex parameters left which generate 2n real linear independent
vectors. So dim imπ∗|x = 2n and now the statement follows for dimensional reasons.

10.7 Definition (distance). We define a distance on C Pn by

d(p, q) := inf{dS(x, y)|x ∈ p, y ∈ q},

where dS is the distance on S2n+1.

10.8 Lemma. This distance has the following properties:
(i) The infimum is allways attained, i.e. there exist x ∈ p, y ∈ q such that d(p, q) = dS(x, y).
(ii) The value dS(x, y) is the angle between x and y.
(iii) The distance satisfies d(p, q) ≤ π

2 , so in particular

diam C Pn ≤ π

2
.

Proof.
(i) This is a direct consequence of the compactness of π−1(p)× π−1(q) ⊂ S2n+1.
(ii) Since x, y are contained in a plane, we can apply a suitable rotation and may as well assume that

x, y ∈ S1 ⊂ C and that x = 1. In that case the curve c : [0, arg(y)] → S1, t 7→ eit, is a minimizing
geodesic joining x and y. Therefore dS(x, y) = L(c) = arg(y) = arccos(〈x, y〉) = ](x, y).
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(iii) This is due to the simple fact, that x ∈ p implies −x ∈ p by definition.

We would like to construct a Riemannian metric on C Pn, such that the induced distance is d.

10.9 Lemma. Let c : I → S2n+1 be a geodesic, i.e. a great circle traversed with constant speed. If
there exists t0 ∈ I, such that c is perpendicular to H(c(t0)) in c(t0), then for all t ∈ I, c is perpendicular
to H(c(t)) in c(t).

Proof. We may write c as c(t) = cos(t)x + sin(t)v, where x, v ∈ S2n+1. Thus c̈(t) = −c(t) and we
obtain

∂t〈ic(t), ċ(t)〉h = 〈iċ(t), ċ(t)〉h + 〈iċ(t), c̈(t)〉h = i‖c(t)‖ − i‖c(t)‖ = 0.

Thus t 7→ 〈ic(t), ċ(t)〉e = Re〈ic(t), ċ(t)〉h is constant, zero at one point, and hence identically zero.

10.10 Lemma. Let p, q ∈ C Pn and x ∈ p, y ∈ q such that dS(x, y) = d(p, q) =: δ > 0. Let
c : [0, δ] → S2n+1 the unique (δ ≤ π/2) unit speed geodesic from x to y . Then c is perpendicular to
the Hopf circles, i.e.

∀t ∈ [0, δ] : ċ(t) ⊥ Tc(t)H(c(t)).

Proof. Let cϕ : [0, δ] → S2n+1 be the minimizing geodesic from x to eiϕy, −ε < ϕ < ε. Since
δ < π = i(S2n+1) the map H : [−ε, ε] × [0, δ] → S2n+1, (s, t) 7→ cϕ(t) is smooth in ϕ und t (since we
could express this in terms of the exponential map). By the first variation formula and our choice of
x ∈ p and y ∈ q, we obtain (since eiϕ ∈ q):

0 = ∂ϕL(cϕ)|ϕ=0 = 〈ċ(δ), ∂ϕH(0, δ)|ϕ=0〉e = 〈ċ(δ), (ieiϕy)|ϕ=0〉e = 〈ċ(δ), iy〉e.

Thus ċ(δ) ⊥e iy and therefore it is perpendicular to Riy = TyH(y). Using Lemma 10.9, we obtain the
statement.

10.11 Remark. The curve R → S2n+1, ϕ 7→ eiϕc, is a geodesic of length δ from eiϕx ∈ p to eiϕy.
Together with Lemma 10.10 we have reason to strongly suspect, that π ◦ c will be a geodesic in C Pn
w.r.t. the Riemannian metric we have yet to construct.

Before we construct this Riemannian metric on C Pn, we can already guess the cut locus.

10.12 Lemma. Let p ∈ C Pn, x ∈ p, y, z ⊥ Cx, ‖x‖ = ‖y‖ = 1, and let ϕ,ψ ∈ R. Define the curves
c1, c2 : R → S2n+1 by

c1(s) := eiψ(cos(s)x+ sin(s)y) c2(t) := cos(t)eiϕx+ sin(t)z.

Then π ◦ c1,π ◦ c2 are both curves in C Pn starting at p. If there exists 0 < s0, t0 ≤ π
2 such that

c1(s0) = c2(t0), we obtain s0 = t0 and eiψy = z. In case s0, t0 < π
2 , we have eiψ = eiϕ. (If s0, t0 = π/2,

there exists no additional condition for ψ.)

Proof. By definition π(c1(0)) = π(eiψx) = p = eiϕx = c2(0). Analysing

cos(s0)eiψx︸ ︷︷ ︸
∈Cx

+sin(s0)eiψy︸ ︷︷ ︸
∈(Cx)⊥

= c1(s0) = c2(t0) = cos(t0)eiϕx︸ ︷︷ ︸
∈Cx

+sin(t0)z︸ ︷︷ ︸
∈(Cx)⊥

we deduce

cos(s0)eiψx = cos(t0)eiϕx sin(s0)eiψy = sin(t0)z.

Since s0, t0 > 0 and |eiψ| = ‖y‖ = ‖z‖ = 1 the second equality implies s0 = t0. In case s0, ts < π
2 , we

obtain cos(s0), cos(t0) 6= 0 and thus the first equality implies eiψ = eiϕ.
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10.2 Fubini-Study Metric

Now we will construct the Riemannian metric on C Pn.

10.13 Definition. Let
H(n) := {A ∈ C n×n | A∗ = A},

where A∗ = Āt. This is an R vector space (of dimension 2 (n+1)n
2 −n = n2), which we now endow with

the scalar product 13

〈〈A,B〉〉 :=
1
2

Re tr(AB) =
1
2

Re
n∑

i,j=1

aij b̄ij .

If e1, . . . , en ∈ C n is a hermitian basis w.r.t. 〈_,_〉h (i.e. 〈ei, ej〉h = δij), then (since A∗ = A):

〈〈A,B〉〉 =
1
2

Re
n∑
i=1

〈ABei, ei〉h =
1
2

Re
n∑
i=1

〈Bei, Aei〉h.

10.14 Definition. Define the map U : S2n+1 → H(n+ 1) by

x 7→ 〈_, x〉hx,

where we think of x as an element of C n+1 and of 〈_, x〉hx as the matrix of this map w.r.t. the
canonical basis of C n+1.

10.15 Lemma. The map U has the following properties.
(i) Written as a system of columns the matrix U(x) is given by (x̄0x, . . . , x̄nx).
(ii) We have indeed U(x) ∈ H(n+ 1).
(iii) For any x ∈ S2n+1 the map U(x) is the 〈_,_〉h-orthogonal projection C n+1 → Cx.
(iv) U is smooth.
(v) We have ∀x ∈ S2n+1 : ∀ϕ ∈ R : U(eiϕx) = U(x).

Proof.
(i) By definition

U(x)(ei) = 〈ei, x〉hx = x̄ix.

(ii) We calculate
(U(x)∗)ij = (Ū(x))ji = x̄ixj = xix̄j = U(x)ij .

(iii) By definition.
(iv) Follows from (i).
(v) For any z ∈ C n+1:

U(eiϕx)(z) = 〈z, eiϕx〉heiϕx = e−iϕ〈z, x〉heiϕx = U(x)(z).

10.16 Definition (Veronese map). The map V : C Pn → H(n + 1), V (p) := U(x), where x ∈ p is
arbitrary, is called Veronese map.

10.17 Lemma. The Veronese map has the following properties.
(i) V is well-defined.

13Notice that tr(AB) = tr(BA) and tr(AA) = (AA)i
i = Ai

kAk
i =

P
i,k Ai

kĀi
k =

P
i,k |A

i
k|2.

64



(ii) V is smooth.
(iii) For any p ∈ C Pn we have ‖V (p)‖2 = 1

2 . The image of V (=image of U) is contained in the
sphere Sn(n+2)(1/

√
2) ⊂ H(n+ 1).

Proof. The first two properties follow immediately from 10.15.
To see (iii), first notice that V (p) is an orthogonal projection onto a subspce of (complex) dimension
one. So V (p) has eigenvalue 1 with onefold multiplicity and the eigenvalue 0 whith n-fold multiplicity.
By the spectral theorem there exists a hermitian ONB v0, . . . , vn of eigenvector to these eigenvalues
and therefore

‖V (p)‖2 = 〈〈V (p), V (p)〉〉 =
1
2

Re
n∑
i=0

〈V (p)(vi), V (p)(vi)〉 =
1
2
.

10.18 Lemma. Let x ∈ p ∈ C Pn and y ⊥ Cx.
(i) The push-forward is given by

U∗|x(y) = 〈_, y〉hx+ 〈_, x〉hy

and in particular ‖U∗|x(y)‖ = ‖y‖.
(ii) The map π∗|x : Lx → TpC Pn, Lx := (Cx)⊥, is an isomorphism.
(iii) The map V∗|π(x) = U∗|x is of maximal rank 2n.
(iv) We have

im(V∗|π(x)) = im(U∗|x).

Proof.
(i) Let c : R → S2n+1 be the geodesic satisfying c(0) = x, ċ(0) = y. Then for all z ∈ C n+1, we

obtain

(U∗|x(y))(z) = ∂t(U(c(t))(z)|t=0 = ∂t〈z, c(t)〉hc(t)|t=0 = 〈z, y〉hx+ 〈z, x〉hy.

Let e0, . . . , en be an hermitian ONB of C n+1. Since y ⊥ Cx and 〈x, x〉h = 1, we obtain

‖U∗|x(y)‖2 =
1
2

Re
( n∑
i=0

〈〈ei, y〉hx+ 〈ei, x〉hy, 〈ei, y〉hx+ 〈ei, x〉hy〉h
)

=
1
2

Re
( n∑
i=0

〈ei, y〉h〈ei, y〉h + 〈ei, x〉h〈eix〉h〈y, y〉h
)

=
1
2

n∑
i=0

ȳiyi +
〈y, y〉h

2

n∑
i=0

x̄ixi = ‖y‖2.

(ii) By construction of C Pn, c.f. Lemma 10.6.
(iii) Follows from dim C Pn = 2n ≤ dimH(n+ 1).
(iv) By definition of V .

10.19 Definition (Fubini-Study metric). We consider H(n+1) as a Riemannian manifold. The metric
on C Pn obtained by pulling back this metric along V : C Pn → H(n+ 1) is the Fubini-Study metric.
From now on we will assume, that C Pn is endowed with this Riemannian metric.

10.20 Remark. Notice, that the tensor field obtained by pulling back the metric in H(n + 1) along
V is indeed a Riemannian metric, because V has full rank by Lemma 10.18. With this additional
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structure we may now state, that π : S2n+1 → C Pn is a Riemannian submersion14 (c.f. Lemma 10.18)
and V : C Pn → H(n+ 1) is Riemannian immersion, i.e. an isometric immersion.
In fact V is a bit more: First of all, it is a an injective immersion since if x, x′ ∈ S2n+1 ⊂ C n+1 there
exists 0 ≤ i ≤ n such xi 6= 0. Therefore

U(x) = U(x′) ⇒ x̄ix = x̄′ix
′ ⇒ x =

x̄′i
x̄i
x′ ⇒ π(x) = π(x′).

Since S2n+1 is compact and π is smooth, C Pn = π(S2n+1) is compact as well. This implies altogether
that V is a smooth embedding with closed image (c.f. [3, 7.4]).

10.21 Remark. Unwinding all the definitions and canonical identifications, the situation is the fol-
lowing:

S2n+1

π

��

U // H(n+ 1)

id
��

C Pn V // H(n+ 1)

One should bear in mind that V is an isometry onto its image and by definition a vector space isometry
H(n+ 1) → H(n+ 1) is an isometry as a map between Riemannian manifolds.
Let x ∈ p ∈ C Pn. The situation at the tangent spaces is the following:

R2n+2 ⊃ (Rx)⊥e

��

∼ // TxS2n+1

π∗|x
��

U∗|x
// TU(x)H(n+ 1)

��

// H(n+ 1) ⊂ C (n+1)×(n+1)

��

R2n+1 ⊃ (Cx)⊥h
∼ // TpC Pn

V∗|p
// TV (p)H(n+ 1) // H(n+ 1) ⊂ C (n+1)×(n+1)

10.22 Theorem. Let c : R → S2n+1 be a unit speed geodesic, which is perpendicular to the Hopf
circles. Then c̄ := π ◦ c is a geodesic in C Pn.

Proof. First consider the curve V ◦ c̄ = V ◦ π ◦ c = U ◦ c : R → H(n + 1) ⊂ R(n+1)2 . Its ordinary
acceleration is given by:

(U ◦ c)′′(t) = ∂t(U∗|c(t)(ċ(t)))
10.18= ∂t(〈_, ċ(t)〉hc(t) + 〈_, c(t)〉hċ(t))

= 〈_, c̈(t)〉hc(t) + 〈_, ċ(t)〉hċ(t) + 〈_, ċ(t)〉hċ(t)) + 〈_, c(t)〉hc̈(t) = −2〈_, c(t)〉hc(t) + 2〈_, ċ(t)〉hċ(t),

where in the last step, we have used c̈(t) = −c(t) (which follows from the fact that c is a great circle).
Now we compute the part tangential to U(S2n+1) = V (C Pn) ⊂ H(n + 1). To that end let e0, . . . , en
be a hermitian ONB of C n+1, x := c(t), y := ċ(t) and z ∈ (Cx)⊥ = Tπ(x)C Pn. So 〈x, z〉h = 0 by
construction and 〈x, y〉h = 0, since on the one hand 〈x, y〉e = 〈c(t), ċ(t)〉e = 0 by construction of the
tangent bundle and 〈y, ix〉e = 0, since c is perpendicular to the Hopf circles. Thus

〈〈(U ◦ c)′′(t), U∗|x(z)〉〉 =
1
2

Re
n∑
i=0

〈−2〈ei, x〉hx+ 2〈ei, y〉hy, 〈ei, z〉hx+ 〈ei, x〉hz〉h

= Re
n∑
i=0

−〈ei, x〉h〈ei, z〉h〈x, x〉h + 〈ei, y〉h〈ei, x〉h〈y, z〉h = Re(〈−x, z〉h + 〈y, x〉h〈y, z〉h) = 0.

Since V is an isometry onto its image, this implies that c̄ is an isometry in C Pn.

14Reminder: A submersion f : (M, g) → (N, h) is a Riemannian submersion, provided f∗ : (ker f∗)
⊥ → TN is an

isometry.
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10.23 Theorem. The geodesics of C Pn satisfy:
(i) All geodesics in C Pn are of type π ◦ c, where c is a geodesic in S2n+1, which is perpendicular to

the Hopf circles.
(ii) The metric d from 10.7 is the distance induced by the Fubini-Study metric.
(iii) All geodesics in C Pn having length ≤ π/2 are minimizing.
(iv) Diameter and injectivity radius satisfy

diam(C Pn) = i(C Pn) =
π

2
.

Proof.
(i) Let x ∈ p ∈ C Pn and let c̄ : I → C Pn be a geodesic. Then ˙̄c(0) ∈ TpC Pn. Since π∗|x : Lx →

Tπ(x)C Pn is an isomorphism, there exists a unique geodesic c : I → S2n+1 satisfying c(0) = x,
ċ(0) ∈ Lx, π∗|x(ċ(0)) = ˙̄c(0). This geodesic is perpendicular to the Hopf circle through x at x
and therefore by Lemma 10.9 it is perpendicular to the Hopf circles everywhere. By the previous
Theorem 10.22 π ◦ c is a geodesic in C Pn and therefore c = π ◦ c̄.

(ii) Denote by dg the metric induced by the Fubini-Study metric on C Pn for a moment. Since
C Pn = π(S2n+1) is compact, it is complete in particular. So for any p, q ∈ C Pn there exists
a geodesic c̄ : [0, 1] → C Pn joining p and q such that dg(p, q) = L(c̄). Now take x ∈ p, y ∈ q
such that d(p, q) = dS(x, y) and a geodesic c : [0, 1] → R joining x and y. By Lemma 10.10 this
geodesic is perpendicular to the Hopf circles. Consequently π ◦ c is a geodesic in C Pn joining
p and q. On the other hand let c̃ : [0, 1] → S2n+1 be the unique geodesic lift of c̄. Since π is a
Riemannian submersion and the length of a geodesic from [0, 1] equals the length of its initial
velocity, we obtain

L(c̄) ≤ L(π ◦ c) = L(c) ≤ L(c̃) = L(c̄)

and thus alltogether L(c̄) = L(π ◦ c). Therefore

dg(p, q) = L(c̄) = L(π ◦ c) = L(c) = dS(x, y) = d(p, q).

(iii) This follows from (i), (ii) and Lemma 10.12.
(iv) Follows from what we have proven so far.

10.3 Isometries

We denote by
U(n) := {C ∈ C n | C−1 = C̄t}

the unitary group.

10.24 Theorem (Isometries).
(i) The conjugation U(n + 1) × H(n + 1) → H(n + 1), (C,A) 7→ CAC−1 is a well-defined group

action of U(n+ 1) on H(n+ 1) by isometries.
(ii) The group U(n+ 1) acts as U(n+ 1)× C Pn → C Pn, (C, p) 7→ C(p) on C Pn by isometries.
(iii) Let e0, . . . , en be a hermitian ONB of C n+1. Then complex conjugation on C n+1 w.r.t. that

basis induces an isometry on C Pn.

Proof.
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(i) Let A,B ∈ H(n+ 1), C ∈ U(n+ 1). On the one hand

(CAC−1)∗ = (C̄−1)tĀtC̄t = CAC−1

and thus CAC−1 ∈ H(n+ 1). On the other hand

〈〈CAC−1, CBC−1〉〉 =
1
2

Re tr(CAC−1CBC−1) =
1
2

Re tr(AB) = 〈〈A,B〉〉.

(ii) First of all

∀C ∈ U(n+ 1) : ∀x ∈ S2n+1 : ‖Cx‖2 = 〈Cx,Cx〉h = 〈C̄tCx, x〉h = 〈x, x〉h = ‖x‖2

and thus C restricts to a map S2n+1 → S2n+1. If y = eiϕx ∈ S2n+1, we have (since C is C -linear),
that C(y) = eiϕC(x). Thus C induces a well-defined map C Pn → C Pn. The differential of C
(as a map C n+1 → C n+1) is C itself and we claim, that

∀p ∈ C Pn : CV (p)C−1 = V (C(p)).

By (i) and the definition of the Fubini-Study metric, this shows that C is an isometry of C Pn.
To show this claim, notice that by definition of V it suffices to verify the equation CU(x)C−1 =
U(C(x)) for one x ∈ p. Since this implies that the right arrow in the commutative diagram

C Pn

C

��

V // H(n+ 1)

��

C Pn V // H(n+ 1)

is the conjugation with C, which is an isometry by (i). By hypothesis C ∈ U(n+ 1) and thus

(CU(x)C−1)ij = (CU(x)C̄t)ij = (CU(x))ik(C̄
t)kj = CilU(x)lk(C̄

t)kj = CilU(x)lkC̄
j
k

= Cil x̄lxkC̄
j
k = C̄jkx̄kC

i
lxl = Cxj(Cx)i = U(C(x))ij

(we always sum over all indices but i and j).
(iii) We proceed in a similar fashion. First we verify that complex conjugation with respect to the

canonical basis is an isometry. Therefore we will show, that

C Pn

−

��

V // H(n+ 1)

−

��

C Pn V // H(n+ 1)

,

i.e. V (p̄) = V (p). Choose x ∈ p and calculate

V (p̄) = U(x̄) = (x0, x̄, . . . , xnx̄) = (x̄0x, . . . , x̄nx) = U(x) = V (p).

Clearly any two matrices A,B ∈ H(n+ 1) satisfy

〈〈Ā, B̄〉〉 =
1
2

Re tr(ĀB̄) =
1
2

Re tr(ABt) = 〈〈A,B〉〉.

and therefore complex conjugation is an isometry.
If B = (b0, . . . , bn) is any other hermitian basis of C n+1 and cB(x) is the coordinate vector of x
w.r.t. B, we obtain x = BcB(x). Denote by ΨB : C n+1 → C n+1 the complex conjugation wr.t.
B. Then

ΨB(x) = BcB(x) = BB−1(x) = BB̄tx = BBtx̄.

Since B ∈ U(n+ 1), we obtain C := BBt ∈ U(n+ 1) as well and therefore

V (ΨB(p)) = CV (p)C−1

and the statement follows from (ii) and what we have proven so far.
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10.4 Curvature

10.25 Lemma. Let x ∈ p ∈ C Pn and Y, Z ∈ TpC Pn, Y = π∗|x(y), Z = π∗|x(z), where y, z ∈ Lx =
(Cx)⊥, ‖Y ‖ = 1.

(i) If z ∈ (C y)⊥, then
R(Z, Y )Y = Z.

(ii) If z ∈ Riy, then
R(Z, Y )Y = 4Z.

(If z ∈ Ry, then R(Z, Y )Y = 0.)

Proof.
(i) In that case we may choose an hermitian ONB e0 = x, e1 = y, e2 = z, e3 . . . , en of C n+1. Then

Rn+1 := LinR(e0, . . . , en) is a real subspace of dimension n + 1 and we obtain an inclusion of
its unit sphere Sn ↪→ S2n+1. Obviously this Sn is totally geodesic in S2n+1: A great circle in
S2n+1 tangential to Sn at one point is contained in Sn. We claim iRn+1 ⊥e Rn+1: Since for any
0 ≤ k, l ≤ n either k 6= l, i.e. iek ⊥h el ⇒ iek ⊥e el or k = l, in which case

〈iek, ek〉e = 〈Re(iek),Re(ek)〉e+〈Im(iek), Im(ek)〉e = −〈Im(ek),Re(ek)〉e+〈Re(ek), Im(ek)〉e = 0.

Thus the great circles of this Sn are perpendicular to the Hopf circles of S2n+1, since for any
x ∈ Sn we have TxS

n ⊂ Rn+1 ⊥e iRn+1 ⊃ TxH(x). So the restriction π : Sn → C Pn is
an isometric immersion and together with 10.22 we obtain, that π induces a totally geodesic
isometric embedding RPn → C Pn, where RPn = Sn/ ∼, x ∼ −x here. We assume that RPn

is endowed with the canonical metric obtained from Sn. 15 By hypothesis the vectors Y, Z are
tangential in p = π(x) to that RPn. Thus we may calculate the curvature inside RPn and use
the formulas for its metric of constant sectional curvature +1 to obtain (c.f. [2, 8.10])

R(Z, Y )(Y ) = 〈Y, Y 〉Z − 〈Z, Y 〉Y = Z.

(ii) Now we consider the case Z = π∗|x(iy). For e0, . . . , en as in (i), we now obtain C2 := LinC (e1, e2) ∼=
C 2 ⊂ C n+1. As above the corresponding CP 1 ⊂ C Pn is totally geodesic and isometrically em-
bedded. Now for any p, q ∈ C P1 there exists an isometry mapping p to q (take one from U(2) for
example), thus the surface CP 1 has constant sectional curvature (since the curvature tensor is
natural). Since CP 1 is diffeomorphic to S2, the curvature has to be positive (otherwise we could
pull back the metric of CP 1 to S2 and we would have constructed a metric of nonpositive sec-
tional curvature on S2, which would imply that S2 would be diffeomorphic to R2 by the Theorem
of Cartan-Hadamard, which is obviously impossible). Since diam(C P1) = π

2 , the curvature is 4.
(This can be seen by comparing the pullback metric from CP 1 on S2 with the standard metric
using Theorem A.15.) Therfore (again c.f. [2, 8.10]), we obtain

R(Z, Y )(Y ) = 4Z.

10.26 Theorem. Let p ∈ C Pn be arbitrary. The endomorphism Ip : TpC Pn → TpC Pn, Ip(Y ) :=
π∗|x(iy), where x ∈ p and y ∈ Lx such that π|x(y) = Y is well-defined and I2

p = − idTpC Pn .

15Since R Pn is obtained from Sn by factoring out the antipodal action, the projection Sn → R Pn is a local diffeomor-
phism, which we declare to be a local isometry. With respect to this metric R Pn has constant sectional curvature
+1 exactly like Sn.
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In the canonical coordinates of C Pn the tensor field I corresponds to the multiplication with i. Allto-
gether we obtain:

R(Z, Y )(Y ) = 〈Y, Y 〉Z − 〈Z, Y 〉Y + 3〈Z, IY 〉IY

R(X,Y )(Z) = 〈Y, Z〉X + 〈IY, Z〉IX − 〈X,Z〉Y − 〈IX,Z〉IY + 2〈X, IY 〉IZ

This completely determines the curvature tensor. For the sectional curvature K we obtain

1 ≤ K ≤ 4

Both bounds are sharp for n ≥ 2.

We have identified two types of totally geodesic submanifolds. Somewhat more general one can show:

10.27 Theorem (totally geodesic submanifolds). If L ⊂ C n+1 is a totally real subspace, i.e. iL ⊥e L,
of dimension k ≤ n+ 1, then π(L ∩ S2n+1) is a totally geodesic R Pk−1 with canonical metric.
If L ⊂ C n+1 is a complex subspace with complex dimension k, then π(L∩S2n+1) is a totally geodesic
C Pk−1 with Fubini-Study metric.

10.28 Theorem (symmetric space). C Pn endowed with Fubini-Study metric is a symmetric space:
For every p ∈ C Pn there exists an isometry Sp, the reflection at p, such that Sp(p) = p and Sp∗|p = − id.

Proof. Let x ∈ p and Lx = (Cx)⊥. Let C ∈ U(n + 1) be a matrix satisfying Cx = x and C|Lx =
− idLx . Then the isometry induced by C has the desired properties: First of all C ∈ U(n + 1), since
any vector in Cn+1 has a unique representation λx+ u ∈ (Cx)⊕ (Cx)⊥ and for any two such vectors

〈C(λx+ u), C(λ′x+ u′)〉h = 〈λCx+ Cu, λ′Cx+ Cu′〉h = 〈λx− u, λ′x− u′〉h
= λλ̄′〈u, u′〉h = 〈λx+ u, λ′x+ u′〉h

Thus C acts as an isometry by 10.24 and has the desired properties.

10.29 Theorem. We have

∀Y ∈ TpC Pn : ∀C ∈ U(n+ 1) : C∗|p(IpY ) = IC(p)C∗(Y ),

where C is identified with its action as an isometry on C Pn.

10.30 Theorem. Furthermore

∀Y, Z ∈ TpC Pn : C∗|p(DI)p(Y, Z) = (DI)C(p)(C∗Y,C∗Z)

DI(Y, Z) := DY I(Z)− I(DY z)

If we substitute the isometry Sp for C, we obtain

−(DIp)(Y, Z) = (DI)p(−Y,−Z) = (DI)p(Y, Z)

thus DI = 0. The tensor field I is parallel and therefore C Pn is a Kähler manifold. One can also show
DR = 0, c.f. next section.
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11 Locally symmetric Spaces

11.1 Remark. Remember that for any v ∈ TpM , cv denotes the geodesic satisfying cv(0) = p and
ċv(0) = v. Also remember that the curvature tensor R = Rv along cv is defined by

Rv(X) = R(X, ċv)ċv

and is a smooth field of endomorphisms along cv.

11.2 Lemma. The covariant derivative R′v of the curvature tensor along cv vanishes if and only if for
all parallel vector fields X,Y ∈ T (cv), the map (X,Y ) 7→ 〈R(X), Y 〉 is constant.

Proof. Since R′v is a tensor field it vanishes if and only if it vanishes on a parallel ONB. Notice, that
for parallel vector fields X,Y

∂t〈R(X), Y 〉 = 〈Dt(R(X)), Y 〉+ 〈R(X), DtY 〉 = 〈(DtR)(X), Y 〉+ 〈R(DtX), Y 〉 = 〈(DtR)(X), Y 〉.

This implies the statement.

11.3 Definition (locally symmetric space). Let M be a connected Riemannian manifold. Then M is
a locally symmetric space, provided that for any p ∈M there exists a neighbourhood U near p and an
isometry Sp : U → U , such that

Sp(p) = p (Sp)∗|p = − idTpM .

We say M is a symmetric space , in case we may choose U = M for all p ∈M . We call Sp the geodesic
reflection .

11.4 Remark.
(i) Isometries map geodesics to geodesics. Therefore Sp reflects the geodesics through p to geodesics

through p in the opposite direction. Therefore Sp is called the geodesic reflection.
(ii) By shrinking U if necessary we may always assume U = Bε(p) for a sufficiently small ε > 0.
(iii) Geodesic reflections are unique, if they exist (c.f. [2, 5-7]). Therefore the notion of a (globally)

symmetric space is well-defined and does not depend on a particular choice of geodesic reflection,
since there is only one.

11.5 Theorem (Characterization of locally symmetric spaces). Let M be a connected Riemannian
manifold. The following are equivalent.

(i) M is a locally symmetric space.
(ii) The covariant differential ∇R of the Riemannian curvature R satisfies ∇R = 0.
(iii) For all v ∈ SM : R′v = 0.

Proof.
”(i)⇒(ii)”: Since Sp is a local isometry and the connection as well as the curvature respect local
isometries, we obtain

−∇R(W,X, Y, Z)|p = (Sp)∗|p(∇R(W,X, Y, Z)) = ∇R((Sp)∗|pW, (Sp)∗|pX, (Sp)∗|pY, (Sp)∗|p, Z)
= ∇R(−W,−X,−Y,−Z)|p = ∇R(W,X, Y, Z)|p

and therefore ∇R(W,X, Y, Z) = 0.
”(ii)⇒(iii)”: This is clear since R′v(X) = ∇R(X, ċv, ċv, ċv) (c.f. Lemma A.5 and A.7).
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”(iii)⇒(i)”: This direction will require Lemma 11.6 below, the proof of which is done seperately after-
wards.
Let p ∈M and ε ≤ i(p). Then expp : Bε(0p) → Bε(p) is a diffeomorphism. Define Sp : Bε(0) :→ Bε(p)

q 7→ expp(− exp−1
p (q)).

Obviously Sp is a diffeomorphism satisfying Sp(p) = p and (Sp)∗|p = − idTpM .
The decicive point is to show, that Sp is an isometry. To that end we will describe its differential
using Jacobi fields (c.f. Lemma A.8). Let p 6= q ∈ Bε(p), 0 < r = d(p, q) < ε, v ∈ SpM , such that
q = expp(rv) (the case p = q is trivial). Let X ∈ TqM be arbitrary and let J be the Jacobi field along
cv satisfying

J(0) = 0 J(r) = X.

(c.f. [2, Exc. 10.2]). Since

X = expp∗|rv
(
r
1
r

exp−1
p ∗

|q(X)
)

this implies

J ′(0) =
1
r
(exp−1

p )∗|q(X)

by uniqueness of Jacobi fields and again A.8. In a similiar fashion, we obtain

(Sp)∗|q(X) = (expp∗|−rv ◦ I∗|rv ◦ expp
−1
∗ |q)(X) = expp∗|−rv(r

−1
r

exp−1
p ∗|q(X)) = J̄(r),

where J̄ is the Jacobi field along along c−v satisfying

J̄(0) = 0 J̄ ′(0) = −1
r
exp−1

p ∗|q(X) = −J ′(0)

and I := − idTpM . Since t 7→ J(−t) is a Jacobi field as well, this implies J̄(r) = J(−r). Thus all that
remains to show is ‖J(−r)‖ = ‖J(r)‖, since this implies

‖(Sp)∗|q(X)‖ = ‖J̄(r)‖ = ‖J(−r)‖ = ‖J(r)‖ = ‖X‖.

In order to prove ‖J(−r)‖ = ‖J(r)‖, we finally use Lemma 11.6 to represent J as stated there. Since
J(0) = 0, we obtain a1 = 0 and ∀ 2 ≤ i ≤ n : bi = 0. Thus

‖J(r)‖2 = b21r
2 +

n∑
i=2

α2
i snαi(r)

2 = ‖J(−r)‖

as one can see using the antisymmetry of snαi proven in Lemma 2.7,(iii).

11.6 Lemma. Let M be a Riemannian manifold, such that for all p ∈M , v ∈ SpM , we have R′v = 0.
Then there exists a parallel ONB E1 = ċv, E2, . . . , En along cv satisfying

〈RvEi, Ej〉 = δijαi,

where αi ∈ R and α1 = 0. With respect to this basis the Jacobi fields along cv are given as linear
combinations

J = (a1 + b1t)ċv +
n∑
j=2

(ai snα1 +bi csαi)Ei,

where ai, bi ∈ R and snαi , csαi are as in Definition 2.6.
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Proof.
Step 1: Start with an arbitrary parallel ONB Sei Ẽ1 = ċv, Ẽ2, . . . , Ẽn along cv. By Lemma 11.2 we
obtain

〈Rv(Ei), Ej〉 = const =: rij ,

where Rv(E1) = 0. Now v⊥ ⊂ TpM and f : v⊥ → v⊥, X 7→ R(X, v)v is a symmetric endomorphism
as can be seen immediately using the symmetries of the curvature tensor (c.f. [2, 7.6]), i.e.

〈R(X, v)v, v〉 = Rm(X, v, v, v) = 0 ⇒ f(X) ∈ v⊥

and

〈f(X), Y 〉 = 〈R(X, v)v, Y 〉 = Rm(X, v, v, Y ) = Rm(v, Y,X, v)
= Rm(Y, v, v,X) = 〈R(Y, v)v,X〉 = 〈X, f(Y )〉

By the spectral theorem there exists an ONB E1(0) = Ẽ1(0) = v,E2(0), . . . , En(0) consisting of
eigenvectors to eigenvalues α1 = 0, α2, . . . , αn of f , which we may extend by parallel translation along
cv to a parallel orthonormal frame {Ei}. This frame satisfies

〈Rv(Ei), Ej〉 = αiδij

and thus we have proven the first statement.
Step 2: To see the second statement we first remarkt, that the fields in question span a space of
dimension 2n. It therefore suffices to verify that they are all Jacobi fields. We just calculate

R(J, ċv)ċv =
n∑
j=2

(ai snαi +bi csαi)Rv(Ei) =
n∑
j=2

(ai snαi +bi csαi)αiEi

and on the other hand

J ′ = b1ċv +
n∑
j=2

(ai ˙snαi + biċsαi)Ei

J ′′ =
n∑
j=2

(ais̈nαi + bic̈sαi)Ei = −
n∑
j=2

αi(ai snαi +bi csαi)Ei.

11.7 Example. Any connected space of constant sectional curvature κ is a locally symmetric space.
Thus all considerations in this chapter apply in particular to the model spaces Mn

κ . To see this, we
remind, that in this case the curvature tensor is given by R(X,Y )Z = κ(〈Y, Z〉X − 〈X,Z〉Y ), c.f. [2,
8.10]. Thus the covariant derivative satisfies:

(∇R)(X,Y, Z,W ) = (∇WR)(X,Y, Z) = ∇W (R(X,Y, Z))−R(∇WX,Y, Z)−R(X,Y,∇WZ)
= κ(〈∇WY, Z〉X + 〈Y,∇WZ〉X + 〈Y, Z〉∇WX − 〈∇WX,Z〉Y − 〈X,∇WZ〉Y − 〈X,Z〉∇WY

− 〈Y, Z〉∇WX + 〈∇WX,Z〉Y − 〈∇WY, Z〉X + 〈X,Z〉∇WY − 〈Y,∇WZ〉X + 〈X,∇WZ〉Y )
= 0.

11.8 Lemma (Parallel transport). Let c : [a, b] → M be a piecewise smooth curve and denote by P
the parallel translation along c. If M is a locally symmetric space, then P commutes with R, i.e.

P (R(X,Y )Z) = R(PX,PY )(PZ).
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Proof. We simply verify, that for parallel vector fields X,Y, Z ∈ T (c) the condition ∇R = 0 ensures,
that

0 = (∇R)(X,Y, Z, ċ) = (∇ċR)(X,Y, Z)
= ∇ċ(R(X,Y, Z))−R(∇ċX,Y, Z)−R(X,∇ċY, Z)−R(X,Y,∇ċZ) = ∇ċ(R(X,Y, Z))

and therefore R(X,Y, Z) is parallel as well.

11.9 Theorem. Let M,M̄ be locally symmetric spaces of dimension n. Let p ∈ M , p̄ ∈ M̄ and let
I : TpM → Tp̄M̄ be an isometry such that

∀X,Y, Z ∈ TpM : I(R(X,Y )(Z)) = R̄(IX, IY )(IZ). (11.1)

Let ε > 0, such that expp : Bε(0p) → Bε(p) is a diffeomorphism and Bε(0p̄) ⊂ Ep. Then the map
F := expp̄ ◦I ◦ exp−1

p : Bε(p) → Bε(p̄) is a local isometry satisfying F (p) = p̄ und F∗|p = I.

Proof. By hypothesis the map F is well defined and satisfies

F (p) = (expp̄(I(exp−1
p (p)) = expp̄((I(0))) = p̄ F∗|p = (expp̄)∗|0 ◦ I∗|0 ◦ (expp)

−1
∗ |p = I.

Thus all that remains to show is that for any q ∈ Bε(p) the map F∗|q is an isometry. For q = p this
holds by hypothesis since F∗|q = I. So let q = expp(rv), ‖v‖ = 1 and 0 < r = d(p, q) < ε. For any
X ∈ TqM there exists a unique Jacobi field J along cv satisfying

J(0) = 0 J(r) = X.

As is the proof of Theorem 11.5 we may apply Lemma A.8 to conclude J ′(0) = 1
r (exp−1

p ∗|q)(X). This
implies

F∗|q(X) = (expp̄)∗|I(rv) ◦ I∗|rv ◦ (expp)
−1
∗ |q(X) = expp̄∗|rI(v)

(
rI(

1
r
(expp)

−1
∗ |q(X))

)
= J̄(r),

where J̄ is the Jacobi field along cIv satisfying

J̄(0) = 0 J̄ ′(0) = I(
1
r
(expp)

−1
∗ |q(X)) = I(J ′(0)).

By Lemma 11.6 there exists a parallel ONB along cv such that

〈Rv(Ei), Ej〉 = δijαi,

where α1 = 0. The parallel translates Ēi of I(Ei(0)) are a parallel ONB along cIv. Denoting by R̄Iv
the curvature tensor along cIv in M̄ , we obtain

〈R̄Iv(Ēi), Ēj〉
11.2= 〈R̄Iv(Ēi(0)), Ēj(0)〉 = 〈R(I(Ei(0)), Iv)(Iv), I(Ej(0))〉

(11.1)
= 〈I(R(Ei(0), v)v), I(Ej(0))〉 = 〈R(Ei(0), v)v,Ej(0)〉 = 〈Rv(Ei(0)), Ej(0)〉 = αiδij .

Thus if we represent J as a linear combination of the {Ei} as in Lemma 11.6, the representation of J̄
with respect to the {Ēi} is the same. Thus

‖F∗|q(X)‖ = ‖J̄(r)‖ = ‖J(r)‖ = ‖X‖

and therefore F is an isometry.

11.10 Remark. In case M and M̄ are complete Ep̄ = Tp̄M and the condition for ε reads 0 < ε ≤ i(p).
In case ε ≤ i(p̄) as well, F is a global isometry.
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11.11 Theorem (Cartan). Let M , M̄ be complete locally symmetric spaces of dimension n and let
M be simply connected. Let p ∈M , p̄ ∈ M̄ and I : TpM → Tp̄M̄ be an isometry satisfying

∀X,Y, Z ∈ TpM : I(R(X,Y )(Z)) = R̄(IX, IY )(IZ). (11.2)

Then there exists a local isometry F : M → M̄ satisfying F (p) = p̄ and F∗|p = I.

Proof.
Step 1 (Strategy): In general the cut locus of M is not empty, i.e. i(p) < ∞ and we cannot argue
that directly as in 11.9. Instead of the exponential map expp we will consider broken geodesics starting
at p. On the space Ω of these curves we will construct a map Φ : Ω → M̄ and show how this induces
the local isometry F : M → M̄ .
Step 2 (Concerning broken geodesics): Let c : [a, b] → M be a broken geodesic. By definition there
exists a subdivision

a = t0 < t1 < . . . < tk = b

of [a, b], such that c|[ti−1, ti], 1 ≤ i ≤ k, is a geodesic. We call this a geodesic subdivision. Define
Xi := P−1

i (ċ+(ti)), where Pi := P |c|[t0,ti] : Tc(a)M → Tc(ti)M , 0 ≤ i ≤ k − 1, is the parallel transport
along c|[t0, ti]. We call the Xi the directions of c. Obviously c is uniquely determined by its directions
X0, . . . , Xk−1 ∈ Tc(a)M and the subdivision t0 < . . . < tk, i.e. for a given geodesic subdivision and
vectors X0, . . . , Xk−1 ∈ Tc(a)M there exists precisely one broken geodesic c : [a, b] → M with these
data.
Step 3 (Definition of Φ): Now we consider our locally symmetric space M and define

Ω := {c : [0, 1] →M | c(0) = p, c is a broken geodesic}.

Let c ∈ Ω and let 0 = t0 < t1 < . . . < tk = 1 be a geodesic subdivision for c. As in step 2, we obtain
vectors

X0 = ċ+(t0), X1, . . . , Xk−1 ∈ TpM.

Define c̄ : [0, 1] → M̄ to be the broken geodesic with respect to the same subdivision 0 = t0 < t1 <
. . . < tk = 1 satisfying c̄(0) = p̄ and having the directions

∀0 ≤ i ≤ k − 1 : X̄i := I(Xi).

Define Φ : Ω → M̄ by
Φ(c) := c̄(1).

Obviously Φ is well-defined since c̄ does not depend on the geodesic subdivision (any two such subdi-
visions have a common refinement.)
Step 4: If ϕ : [0, 1] → [0, 1] is a piecewise affine linear and globally continuous function satisfying
ϕ(0) = 0 und ϕ(1) = 1, then c ◦ ϕ ∈ Ω and c ◦ ϕ(1) = c̄(1).
This is due to the fact, that we may assume the subdivision where ϕ is piecewise affine linear to be a
geodesic subdivision for c. Then ϕ just reparametrizes the various geodesics c|[ti−1, ti].
Step 5 (Main step): We will show the following: Let c0, c1 ∈ Ω and 0 = t0 < . . . < tk = 1 be a
geodesic subdivision for c0 and c1. Assume there exists an i ≤ k − 2, such that

c0|[0,ti] = c1|[0,ti] and c0|[ti+2,tk] = c1|[ti+2,tk].

Define the points

q := c0(ti) = c1(ti) q0 := c0(ti+1) q1 := c1(ti+1) q2 := c0(ti+2) = c1(ti+2)
q̄ := c̄0(ti) = c̄1(ti) q̄0 := c̄0(ti+1) q̄1 := c̄1(ti+1) q̄2 := c̄0(ti+2) = c̄1(ti+2),

assume that 0 < ε ≤ i(q), i(q̄) and that c0|[ti, ti+2] and c1|[ti, ti+2] are both contained in Bε(q). Then

c̄0(1) = c̄1(1).

We prove this in two substeps.
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Step 5.1: To simplify notation let c := c0|[0, ti] and let c̄ be the broken geodesic starting from p̄ with
geodesic subdivision 0 = t0 < t1 . . . < ti and directions X̄0, . . . , X̄i−1, i.e. c̄ = c̄0|[0, ti] = c̄1|[0, ti].
Denote by Pc,Pc̄ the parallel translation along c, c̄ and define

Ic := Pc̄ ◦ I ◦ P−1
c : TqM → Tq̄M̄,

which is an isometry by construction. By Lemma 11.8 and (11.2) it satisfies

Ic(R(X,Y )(Z)) = R̄(IcX, IcY )(IcZ).

By Theorem 11.9 there exists an isometry Fc : Bε(q) → Bε(q̄) satisfying Fc(q) = q̄ and (Fc)∗|q = Ic.
By definition of c̄j , j = 0, 1,

˙̄c+j (ti) = Ic(ċ+j (ti)) = (Fc)∗|q(ċ+j (ti)).

Now cj |[ti, ti+1] is a geodesic and Fc is an isometry. Thus

c̄j |[ti, ti+1] = Fc ◦ (cj |[ti, ti+1]). (11.3)

Step 5.2: Now we calculate

Pc̄j |[0,ti+1] ◦ I ◦ P−1
cj [0,ti+1] = Pc̄j |[ti,ti+1] ◦ Ic ◦ P−1

cj [ti,ti+1] = Pc̄j |[ti,ti+1] ◦ (Fc)∗|q ◦ P−1
cj [ti,ti+1]

(*)
= (Fc)∗|qj ◦ (Pcj [ti,ii+1]) ◦ (Pcj |[ti,ti+1])

−1 = (Fc)∗|qj .

(*): This commutativity holds due to the fact, that Fc is an isometry and the Riemannian connection
is natural (c.f. [2, 5.6]). In particular the push-forward of an isometry preservers parallelity.
As above we conclude for j = 0, 1

˙̄c+j (ti+1) = (Fc)∗|qj (ċ+j (ti+1)) c̄j |[ti+1, ti+2] = Fc ◦ cj |[ti+1, ti+2].

Repeating this procedure for the indices i+ 1,i+ 2, we obtain

Pc̄j |[0,ti+2] ◦ I ◦ P−1
cj |[0,ti+2] = (Fc)∗|q2

and therefore we obtain alltogether c̄0|[ti+2, tk] = c̄1|[ti+2, tk].

This implies c̄0(1) = c̄1(1) and proves this step.
Step 6: Next we will show, that for any c0, c1 ∈ Ω

c0(1) = c1(1) =⇒ c̄0(1) = c̄1(1).

By hypothesis M is simply connected. Thus there exists a path homotopy H : [0, 1]× [0, 1] →M from
c0 to c1. The idea is to successively homotop c1 to c2 in a way such that the previous step guarantees,
that the curves in between are mapped to the same point under Φ.
Since H([0, 1]× [0, 1]) ⊂M is compact, there exists ε such that

{i(q)|q ∈ imH} ≥ ε > 0.

For a sufficiently large k the image of squares in [0, 1]× [0, 1] with edge length 1
k under H is contained

in balls with radius ε
2 centered at the vertices of the squares. By increasing k further if necessary,

we may assume, that dass cj |[ i−1
k , ik ] is a geodesic for any 1 ≤ i ≤ k, j = 0, 1. Let 0 ≤ m ≤ k2 and

0 ≤ l ≤ k, such that lk ≤ m ≤ (l + 1)k. Define a sequence of points x0, . . . , x2k ∈ [0, 1] × [0, 1] as
follows: Let x0 := (0, 0), move l steps to the top til (0, lk ), then to the right til (1− m−lk

k , lk ), one step
to the top again til (1− m−lk

k , l+1
k ), then to the right til (1, l+1

k ) and then to the top until x2k := (1, 1).
Now let σm the broken geodesic joining successively the points H(xi−1) and H(xi). Then

σ0(t) =

{
c0(2t) = H(0, 2t) , 0 ≤ t ≤ 1

2

H(2t− 1, 1) , 1
2 ≤ t ≤ 1,
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which equals the curve c0 up to reparametrization. Now step 4 implies, that σ̄0(1) = c̄0(1) (since
H(s, 1) = const). Using step 5 we obtain σ̄m−1(1) = σ̄m(1), 1 ≤ m ≤ k2. Finally

σk2(t) =

{
c0(2t) = H(2t, 0) , 0 ≤ t ≤ 1

2

c1(2t− 1) = H(1, 2t− 1) , 1
2 ≤ t ≤ 1,

which equals c1 up to reparametrization thus by step 4 σ̄k2(1) = c̄1(1) (since H(s, 0) = const). The
step is proven.
Step 7 (Construction of F ): We claim that Φ induces a local isometry F : M → M̄ satisfying F (p) = p̄
and F∗|p = I.
This can be seen as follows: Let q ∈M and let c ∈ Ω be a broken geodesic from p to q and c ∈ Ω be a
broken geodesic from p to q. Define

F (q) := c̄(1).

By step 6 the map F is well-defined.
We have to show, that it is a local isometry: Let q̄ := F (q), 0 < ε < i(q), i(q̄). For any r ∈ Bε(q) let
cqr : [0, 1] → Bε(q) be the unique minimizing geodesic from q to r. Defining

cr(t) :=

{
c(2t) , 0 ≤ t ≤ 1

2

cqr(2t− 1) , 1
2 ≤ t ≤ 1

we obtain F (r) = c̄r(1). Denote by Fc : Bε(q) → Bε(q̄) the isometry satisfying Fc(q) = q̄ and
(Fc)∗|q = Ic. As in step 5 we see, that

F (r)
(11.3)
= Fc(r),

thus F |Bε(q) = Fc. Therefore F is a local isometry.

11.12 Remark. In case M̄ is simply connected as well, we may interchange the roles of M and M̄ :
We obtain a local isometry F̄ : M̄ → M satisfying F̄ (p̄) = p and F̄∗|p̄ = I−1. Thus F̄ ◦ F is a local
isometry from M to M satisfying (F̄ ◦ F )(p) = p and (F̄ ◦ F )∗|p = idTpM . Thus F̄ ◦ F = idM (c.f. [2,
5-7] and analogously F ◦ F̄ = idM̄ . Thus F is a diffeomorphism, hence a global isometry.

11.13 Remark. F is a Riemannian universal covering (c.f. [2, 11.6]).

11.14 Corollary. Let M be complete, simply connected with constant sectional curvature κ > 0.
Then M is isometric to Sn(1/

√
κ), n = dimM .

11.15 Remark. The corresponding statement in case κ ≤ 0 is already a consequence of Theorem
11.9. This subsequently justifies the notation Mn

κ from Definition 4.16: Any other model space would
be isometric to the spaces we have defined there and would be universally covered by them.
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12 Symmetric Spaces

Remember the Definition 11.3 of a symmetric space: A connected Riemannian manifold M is a sym-
metric space (or just ”symmetric”), if for any p ∈M there exists an isometry Sp of M , called geodesic
reflection, such that Sp(p) = p and Sp∗|p = − idTpM . There are some easy consequences, we may
directly obtain from this definition. As usual M is a connected Riemannian n-manifold.

12.1 Lemma. If M is symmetric, then M is homogenous. If M is homogenous, then M is complete.
Thus any symmetric space is complete.

Proof.
(i) Let M be symmetric and p, q ∈ M be arbitrary. Since M is connected there exists a broken

geodesic c : [0, 1] →M joining p and q. Let 0 = t0 < . . . < tk be a geodesic subdivision of c and
define Fi := S

c(
ti+ti−1

2
)
, 1 ≤ i ≤ k. Then Fi(c(ti−1)) = c(ti). Consequently

(Fk ◦ Fk−1 ◦ . . . ◦ F1)(p) = q.

Thus M is homogenous.
(ii) Let M be homogenous and suppose to the contrary that M is not complete. Then there exists

a maximal unit speed geodesic c : I → M such that I 6= R. We may assume that 0 ∈ I and
t0 := sup I < ∞. Let p := c(0) and 0 < ε < i(p). Then t1 := t0 − ε

2 ∈ I and q := c(t1) is
well-defined. Since M is homogenous there exists an isometry F : M → M such that F (p) = q.
Thus i(q) = i(p) > ε. Therefore the unit speed geodesic c0 through q is defined on at least [0, ε].
Thus σ : [0, t1 + ε] →M

t 7→

{
c(t) , 0 ≤ t ≤ t1,

c0(t− t1) , t1 − ε ≤ t ≤ t1 + ε

is well-defined and extends the maximal geodesic c. Contradiction!

12.2 Definition (Transvection). Let M be symmetric and c : R → M be a geodesic. For any t ∈ R
the isometry

T t := Sc(t/2) ◦ Sc(0) : M →M

is a transvection. The (T t)t∈R are a one-parameter subgroup of isometries of M , which translate c.

Notice that for any s, t ∈ R
Sc(t)(c(s)) = c(2t− s).

12.3 Theorem (Properties of transvections). For any s, t ∈ R the transvections defined above satisfy
(i) T t(c(s)) = c(s+ t),
(ii) T t∗|c(s) : Tc(s)M → Tc(s+t)M is the parallel translation along c|[s, s+ t],
(iii) T t ◦ T s = T t+s.

Proof.
(i) By definition

T t(c(s)) = Sc(t/2)(Sc(0)(c(s))) = Sc(t/2)(c(−s)) = c(t/2 + (t/2− (−s))) = c(t+ s).

(ii) Apply the isometry Sc(s/2) and notice that

Sc(s/2)(c(s)) = c(0) Sc(s/2)(c(s+ t)) = c(−t).
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Since isometries preserve parallelity, it suffices to show that T t∗|c(0)Tc(0)M → Tc(−t)M is the
parallel translation. So let X ∈ T (c) be parallel. Define Y ∈ T (c) by r 7→ T r∗ |c(0)(X(0)). By
definition

Y (0) = T 0
∗ |c(0)(X(0)) = (Sc(0)∗|c(0) ◦ Sc(0)∗|c(0))(X(0)) = X(0),

so both fields argee at 0. Furthermore

T r∗ |c(0)(ċ(0)) = ∂r(T r ◦ c)(0) = ∂r(c(0 + r)) = ċ(r).

Thus we obtain alltogether

Y ′(r) = ∇ċ(r)T
r
∗ |c(0)(X(0)) = ∇T r

∗ |c(0)(ċ(0))T
r
∗ |c(0)(X(0)) = T r∗ |c(0)∇ċ(0)X(0) = 0

and therefore Y is parallel. This implies the statement.
(iii) By construction T t ◦ T s and T t+s are both isometries satisfying

(T t ◦ T s)(c(0)) = c(s+ t) = T s+t(c(0))

Denote by P the parallel translation and notice, that

(T t ◦ T s)∗|c(0) = T t∗|c(s) ◦ T s∗ |c(0)
(ii)
= Pc|[s,s+t] ◦ Pc|[0,s] = Pc|[0,s+t]

(ii)
= T s+t∗ |c(0).

Thus T t ◦ T s = T s+t by uniqueness of Riemannian isometries.

We now give a recipe how to cook up symmetric spaces. In fact one can show that all symmetric spaces
are of this form. We will assume the reader to be familiar with the basic concepts of Lie groups and
Lie algebras. Some of these facts are discussed in more detail in the next chapter (also c.f. [3, 9,20]).

12.4 Theorem (Symmetric Space Construction Theorem). Let M be a connected manifold, G be a
Lie group and ρ : G×M →M be a transitive left action. Let p ∈M and assume there exists a smooth
involutive group automorphism σ : G→ G satisfying

F0 ⊂ H ⊂ F,

where

F := F σ := {g ∈ G | σ(g) = g} H := Gp := {g ∈ G | g(p) = p}

and F0 is the component of F containing the identity e ∈ F0 ⊂ F . Then the following hold:
(i) Let h ⊂ g be the Lie algebra of the subgroup H ⊂ G. Then

h = {X ∈ g | σ∗X = X}

and if we define m := {X ∈ g | σ∗X = −X}, we obtain

g = h⊕m

and

[h, h] ⊂ h [h,m] ⊂ m [m,m] ⊂ h.

(ii) Define ρ : G → Diff(M), ρ(g)(_) := ρ(g,_), and π : G → M , g 7→ ρ(g)(p). Then π is a
submersion satisfying

kerπ∗|g = Lg∗|e(h) π∗|g : Lg∗|e(m) ∼−→ Tπ(g)M

and for any h ∈ H, X ∈ g

π ◦ Lg = ρ(g) = π π∗|e(Adh(X)) = ρ(h)∗|p(π∗|e(X)).
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(iii) The equation
S(ρ(g)(p)) = ρ(σ(g))(p)

defines an involutive diffeomorphism S : M →M satisfying

S ◦ π = π ◦ σ.

(iv) Let 〈_,_〉 be a scalar product on m which is invariant under every Adh, h ∈ H. Then

〈(ρ(g)∗|p ◦ π∗|e)(X), ((ρ(g))∗|p ◦ π∗|e)(Y )〉π(g) := 〈X,Y 〉

defines a G-invariant Riemannian metric on M . With respect to this metric M is a symmetric
space and the geodesic reflections S are given by Sp = S and for any q = ρ(g)(p)

Sq = ρ(g) ◦ S ◦ ρ(g)−1.

(v) For any X ∈ g let X̃ be the Killing field on M defined by

X̃(q) := ∂t(ρ(etX)(q))|t=0.

Then

h = {X ∈ g | X̃(p) = 0} m = {X ∈ g | ∇X̃(p) = 0}.

For any X,Y, Z ∈ m

R(π∗|eX,π∗|eX)(π∗|eZ) = −[Z, [Y,X]].

(vi) For any X ∈ m the map t 7→ γX(t) := π(etX) is the geodesic through p with initial veolcity
π∗|e(X) and etX is the transvection along γX .

(vii) Let A be a tensor on m, which is invariant under all Adh, h ∈ H. Then A induces a G-invariant
parallel tensor field on M via π∗|e.

Proof. We only sketch the proof and leave some of the easy steps as an exercise.
(i) Since σ∗ is involutive, g is the sum of eigenspaces to eigenvalues +1 and −1. Since F0 ⊂ H ⊂ F ,

h is the eigenspace to +1.
(ii) For any k ∈ G

(π ◦ Lg)(k) = π(gk) = ρ(gk)(p) = ρ(g)(ρ(k)(p)) = ρ(g)(π(k)) = (ρ(g) ◦ π)(k).

Furthermore

π∗|e(Adh(X)) = ∂t(π(hetXh−1))|t=0 = ∂t(ρ(h)ρ(etX)ρ(h−1)(p))|t=0

= ∂t(ρ(h)ρ(etX)(p))|t=0 = ρ(h)∗π∗|e(X).

This proves the last two statements from (ii). The rest is left as an exercise.
(iii) We show that S is well-defined: If ρ(g)(p) = ρ(k)(p), then k = gh, where h ∈ H. Since H ⊂ F

ρ(σ(k))(p) = ρ(σ(gh))(p) = ρ(σ(g)h)(p) = ρ(σ(g))σ(h)(p) = ρ(σ(g))(p).

Furthermore
S(π(g)) = S(ρ(g)(p)) = ρ(σ(g))(p) = (π ◦ σ)(g),

thus S ◦ π = π ◦ σ. This implies that S is smooth. Now S is involutive and therefore a
diffeomorphism of M .
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(iv) Since 〈_,_〉 is invariant under every Adh, h ∈ H, the Riemannian metric on M is well-defined.
It is easy to see, that it is smooth and G-invariant as well. We show that S is an isometry: Let
q = π(g) = ρ(g)(p) ∈M and X0 = ρ(g)∗|pπ∗|e(X), Y0 = ρ(g)∗|pπ∗|e(Y ) ∈ TqM , X,Y ∈ m. Since

S ◦ ρ(g) ◦ π = S ◦ π ◦ Lg = π ◦ σ ◦ Lg = π ◦ Lσ(g) ◦ σ = ρ(σ(g)) ◦ π ◦ σ

we obtain

〈S∗|q(X0), S∗|q(Y0)〉S(q) = 〈ρ(σ(g))∗|pπ∗|e(σ∗(X)), ρ(σ(g))|∗|pπ∗|e(σ∗Y )〉S(q)

= 〈σ∗X,σ∗Y 〉 = 〈X,Y 〉 = 〈X0, Y0〉q

by definition of the Riemannian metric.
(v) For any X,Y ∈ g, we obtain

Ỹ (π(etX)) = Ỹ (ρ(etX(p))) = ∂s(ρ(esY )ρ(etX)(p)|s=0 = ∂s(ρ(etX)ρ(e−tXesY )ρ(etX)(p))|s=0

= ρ(etX)∗|pπ∗|e(Ad−1
etX (Y ))|s=0.

For any X,Y, Z ∈ m, we obtain

X̃p〈Ỹ , Z̃〉 = ∂t〈Ỹ (π(etX)), Z̃(π(etX))〉|t=0

= ∂t〈ρ(etX)∗π∗|e(Ad−1
etX )(Y ), ρ(etX)∗π∗|e(Ad−1

etX (Z))〉|t=0

= ∂t〈π∗|e Ad−1
etX (Y ), π∗|e(Ad−1

etX (Z))〉|t=0,

since ρ(etX) is an isometry (G-invariance). Now

Ad−1
etX (Y ) = e−t adX(Y ) = Y − t[X,Y ] +

t2

2
[X, [X,Y ]]− . . .

and the 2k-th term, k ≥ 1, on the right hand side is in h and the others are in m. Therefore

X̃p〈Ỹ , Z̃〉 = ∂t〈Y +
t2

2
· remainder, Z +

t2

2
· remainder〉|t=0 = 0.

This implies DỸ (p) = 0 since [m,m] ⊂ h and h = {X ∈ g|X̃(p) = 0} by definition of H.
(vi) The previous statement implies that c(t) := π(etX), X ∈ m, is geodesic in X. Now

S
π(e

t
2 X)

(π(e−sX)) = π(e(t+s)X),

thus c is geodesic in t as well (the reflections are isometries). Since σ(etX) = e−tX the rest follows
from (iii).

(vii) Exercise, c.f. (iv).

12.5 Example.

(i) M = C Pn, G = U(n + 1), σ is conjugation with
(

1 0
0 −En

)
= A ∈ U(n + 1), p = Hopf circle

through (1, 0, . . . , 0).
(ii) M = Gk(n), the Grassmannian manifold of k-planes in Rn, G = O(n), σ is conjugation with(

Ek 0
0 −En−k

)
= A ∈ O(n), p = linear span of e1, . . . , ek.

Find m in these examples, describe S and look for suitable scalar products on m. Analyse more
examples! If G = SL(n,R), then H = SO(n) for suitable M and σ. Find them!
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13 Lie Groups

In this chapter G is a Lie group with Lie algebra g. We will explain some of the basic notions concerning
Lie theory below, but assume the reader to have at least heard of it before. More on these basics can
be found in [3, 9,20].

13.1 Definition (Lie group). A Lie group is a smooth manifold and a group, such that the group
multiplication

G×G→ G, (gh) 7→ gh

is smooth and the inversion
G→ G, g 7→ g−1

is a smooth diffeomorphism.

13.2 Example.
(i) (Rn,+)
(ii) GLn(R) = {A ∈Mn(R)|det(A) 6= 0}
(iii) O(n) = {A ∈ GLn(R)|AAt = En}
(iv) U(n), SU(n), SLn(C ) and further classical matrix groups.
(v) The Heisenberg group

H2m+1 :=


1 xt z

0 1 y

0
. . . 1

∣∣∣x, y ∈ Rm, z ∈ R

 ⊂ GLm+2(R).

Identifying (x, y, z) ∈ R2m+1 with the matrix from H2m+1 above, then H2m+1 corresponds to
R2m+1 with the non abelian group structure

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + 〈x, y′〉).

Warning: Sometimes other coordinates are used for H2m+1.

13.3 Definition (Translation and conjugation). Let G be a Lie group and g ∈ G.
(i) The map Lg : G → G, h 7→ gh, is the left-translation with g. This is a diffeomorphism with

inverse L−1
g = Lg−1 .

(ii) The map Rg : G → G, h 7→ hg, is the right-translation with g. This is a diffeomorphism with
inverse R−1

g = Rg−1 .
(iii) The map Cg : G → G, h 7→ ghg−1, is the conjugation with g. This is a diffeomorphism with

inverse C−1
g = Cg−1 . Of course

Cg = Lg ◦Rg−1 = Rg−1 ◦ Lg.

13.4 Definition (left-invariance). A vector field X ∈ T (G) is left invariant, if

∀g, h ∈ G : X ◦ Lg = Lg∗ ◦X,

i.e. if it is Lg-related to itself. The space g of all left-invariant vector fields on G is the Lie algebra of
G.
Similar a vector field is right-invariant, if it is Rg-related to itself.
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13.5 Remark.
(i) The vector space g of left invariant vector fields on G can be canonically identified with TeG, i.e.

the map } → TeG, X 7→ Xe, is an isomorphism with inverse TeG → g, Xe 7→ (Lg)∗Xe, (c.f. [3,
4.20]).

(ii) If {X1, . . . , Xn} is a basis of TeG, then {Lg∗X1, . . . Lg∗Xn} is a basis of TgG. Thus there ex-
ists a continuous global frame on G. Therefore the tangential bundle TG is trivial, i.e. G is
parallelizable and orientable. (c.f. [3, 5.15] und [3, 13.5]).

13.6 Lemma. The Lie algebra is closed unter Lie brackets, i.e.

∀X,Y ∈ T (G) : X,Y ∈ g =⇒ [X,Y ] ∈ g,

(c.f. [3, 4.18]).

Proof. By hypothesis Y is left invariant. Thus for all g, p ∈ G, f ∈ C∞(G)

(Y (f) ◦ Lg)(p) = Y |gp(f) = Lg∗(Y |p)(f) = Y |p(f ◦ Lg)

and therefore
X|g(Y (f)) = Lg∗(Xe)(Y (f)) = X|e(Y (f) ◦ Lg) = X|e(Y (f ◦ Lg)).

Alltogether

[X,Y ]|g(f) = X|g(Y (f))− Y |g(X(f)) = X|e(Y (f ◦ Lg))− Y |e(X(f ◦ Lg))
= [X,Y ]|e(f ◦ Lg) = Lg∗([X,Y ])(f).

13.7 Theorem. Let G be a Lie group. The left invariant vector fields g on G together with the Lie
bracket [_,_] : g×g → g are not only a vector space over R, but also a Lie algebra, i.e. the Lie bracket
satisfies

(i) [_,_] is bilinear.
(ii) ∀X,Y ∈ g : [X,Y ] = −[Y,X].
(iii) ∀X,Y, Z ∈ g : [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (”Jacobi identity”).

13.8 Remark.
(i) g is a Lie subalgebra of the Lie algebra of all smooth vector fields on G and thus the theorem

above follows from Lemma 13.6.
(ii) Since TeG may be identified with g, TeG is a Lie algebra as well. The Lie bracket can be described

as follows: If X,Y ∈ TeG define left invariant extensions X̃, Ỹ ∈ T (G), X̃g := Lg∗X, calculate
[X̃, Ỹ ] ∈ g, and obtain [X,Y ] := [X̃, Ỹ ]|e.

13.9 Example. Let G := GLn(R), B ∈ Mn(R) = TeG, X ∈ G ⇒ LX∗(B) = ∂t(X · (Et + tB)|t=0 =
X · B. Thus X 7→ XB is the left invariant vector field with value B in e = En; denote this by VB. If
B,C ∈ TeG, then

[B,C] = [VB, VC ]|e = ∂tVC(e+ tB)|t=0 − ∂t(VB(e+ tV ))|t=0 = BC − CB

This formula holds for all Lie subgroups of GLn(R) as well (c.f. [3, 4.23]).

13.10 Lemma. If X is a left invariant vector field on a Lie group G and F tX is the maximal flow of
X, then

∀g ∈ G : F tX(g) = gF tX(e).
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Proof. On the one hand

∂t(gF tX(e)) = Lg∗|F t
X(e)∂t(F

t
X(e)) = Lg∗|F t

X(e)X|F t
X(e) = X|gF t

X(e)

and on the other hand
gF tX(e)|t=0 = g.

Thus gF tX(e) is the integral curve of X through g.

13.11 Corollary. Left invariant vector fields are complete (c.f. [3, 20.1]).

Proof. Certainly there exists ε > 0, such that the integral curve F tX(e) : [−ε, ε] → G is defined. Let
g ∈ G and t ∈ R, such that F tX(g) is defined. Then

F t±εX (g) = F±εX (F tX(g)) 13.10= F tX(g)F±εX (g)

is defined as well. Thus F tX(g) is defined for all t ∈ R.

13.12 Definition (One parameter subgroup). A one parameter subgroup of G (a ”1PSG”) is a Lie
group homomorphism α : (R,+) → G, i.e. α is smooth and satisfies α(0) = e and

∀s, t ∈ R : α(s+ t) = α(s)α(t).

13.13 Theorem. The map Ψ : {1PSG} → TeG, α 7→ α̇(0) is a bijection with inverse Φ : TeG →
{1PSG}, X 7→ F tX(e). (c.f. [3, 20.2]).

Proof. Certainly

∀X ∈ TeG : (Ψ ◦ Φ)(X) = Ψ(F tX) = Ḟ tX(e) = X =⇒ Ψ ◦ Φ = id .

Conversely if α is a 1PSG, the left invariant extension X̃ of α̇(0) satisfies

(Φ ◦Ψ)(α) = Φ((α̇(0))) = F t
X̃

(e).

We have to show, that α is the integral curve of X̃:

α̇(t0) = ∂t(α(t0 + t))|t=0 = ∂t(α(t0)α(t))|t=0 = Lα(t0)∗α̇(0) = X̃|α(t0).

13.14 Definition (Lie exponential map). For any X ∈ g let etX := F tX(e) = Φ(X) be the 1PSG
through e ∈ G with initial velocity X. This is the exponential map of a Lie group.

13.15 Lemma. The exponential map e of a Lie group G satisfies

∀X,Y ∈ g : [X,Y ] = ∂t(∂s(etXesY e−tX)|s=0)|t=0 = ∂tCetX ∗|e(Y )|t=0.

Proof. First notice that for any t ∈ R

∂s(etXesY e−tX)|s=0 = ∂s(CetX (esY ))|s=0 = CetX ∗|e(Y ) ∈ TeG, (13.1)

therefore we may take ∂t inside TeG and the right side makes sense. Using a general rule for vector
fields X,Y (c.f. [3, 18.20]]), we obtain

[X,Y ]|p = LXY |p = ∂t(F−tX ∗(Y |F t
X(p))|t=0 = ∂t(F−tX ∗(∂s(F

s
Y )|F t

X(p)))|s=0|t=0

= ∂t(∂s(F−tX (F sY (F tX(p)))))|s=0|t=0.

In our case Lemma 13.10 ensures, that F tX(p) = petX . Thus

[X,Y ]|e = ∂t(∂s(F−tX (F sY (F tX(e)))))|s=0|t=0 = ∂t(∂s(F−tX (F sY (etX))))|s=0|t=0

= ∂t(∂s(F−tX (etXF sY (e))))|s=0|t=0 = ∂t(∂s(etXesY e−tX))|s=0|t=0.
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13.16 Remark.
(i) In a matrix group G any B ∈ g ∼= TeG satisfies

etX = exp(tB),

where exp is the usual exponential map for matrices: exp(tB) is a one parameter subgroup and
exp(tB)′(0) = B. (c.f. [3, 20.6]).

(ii) Using [B,C] = BC − CB for B,C ∈ TeG this can be verified more easily.

13.17 Definition (invariant metric). A Riemannian metric on G is
(i) left-invariant, if for any g ∈ G the left translation Lg is an isomety.
(ii) right-invariant, if for any g ∈ G the right translation Rg is an isometry.
(iii) bi-invariant, if it is left- and right-invariant.

13.18 Remark. Any Lie group with a left invariant metric is a homogenous space: For any g, h ∈ G
the map Lhg−1 is an isometry mapping g to h. In particular G is complete (c.f. Lemma 12.1).

13.19 Definition (ad). For any Lie algebra g define ad : g → gl(g) by X 7→ adX , where adX : g → g,
Y 7→ [X,Y ]. This is a Lie algebra homomorphism (here we use the notation gl(g) for the Lie algebra
End(g) together with the commutator).

13.20 Theorem (Curvature of left invariant metrics). Let G be a Lie group with Lie algebra g,
〈_,_〉 be a left invariant metric on G and let ∇ be the induced Levi-Civita connection. Then for any
X,Y, Z,W ∈ g:

(i) ∇XY = 1
2([X,Y ] − adtX(Y ) − adtY (X)), where adtX is the adjoint endomorphism to adX w.r.t.

〈_,_〉.
(ii) Rm(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉 = 〈∇XZ,∇YW 〉 − 〈∇Y Z,∇XW 〉 − 〈∇[X,Y ]Z,W 〉.
(iii) 〈R(X,Y )Y,X〉 = |∇XY |2 − |[X,Y ]|2 − 〈∇XX,∇Y Y 〉 − 〈ad2

Y (X), X〉.

Proof.
(i) By the Koszul formula

2〈∇XY, Z〉 = X(〈Y, Z〉) + Y (〈Z,X〉)− Z(〈X,Y 〉)− 〈Y, adX(Z)〉+ 〈Z, adX(Y )〉 − 〈X, adY (Z)〉.

Notice that for a left invariant metric 〈_,_〉, two left invariant vector fields X,Y ∈ g and any
p ∈ G, the following holds:

〈X|p, Y |p〉p = 〈(Lp)∗X|e, (Lp)∗Y |e〉p = 〈X|e, Y |e〉e.

Thus the function p 7→ 〈X|p, Y |p〉p is constant. Therefore the Koszul formula collapses to

2〈∇XY, Z〉 = −〈Y, adX(Z)〉+ 〈Z, adX(Y )〉 − 〈X, adY (Z)〉
= 〈[X,Y ], Z〉 − 〈adtX(Y ), Z〉 − 〈adtY (X), Z〉.

(ii) Since Lg is an isometry we obtain ∇XY ∈ g by the naturality of the Levi Civita connection (this
can also be seen using (i)). Thus X(〈∇Y Z,W 〉) = 0 as well and therefore

0 = ∇X(〈∇Y Z,W 〉) = 〈∇X∇Y Z,W 〉+ 〈∇Y Z,∇XW 〉

and 〈∇Y∇XZ,W 〉+ 〈∇XZ,∇YW 〉 = 0. Thus

Rm(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉 = 〈∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W 〉
= −〈∇Y Z,∇XW 〉+ 〈∇XZ,∇YW 〉 − 〈∇[X,Y ]Z,W 〉.
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(iii) Using (ii) and the symmetry ∇YX = ∇XY − [X,Y ] we obtain

〈R(X,Y )Y,X〉 = 〈∇XY,∇YX〉 − 〈∇Y Y,∇XX〉 − 〈∇[X,Y ]Y,X〉
= |∇XY |2 − 〈∇XY, [X,Y ]〉 − 〈∇Y Y,∇XX〉 − 〈∇[X,Y ]Y,X〉.

Using (i) we obtain

− 〈∇XY, [X,Y ]〉 − 〈∇[X,Y ]Y,X〉

= −1
2
〈[X,Y ], [X,Y ]〉+

1
2
〈adtX(Y ), [X,Y ]〉+

1
2
〈adtY (X), [X,Y ]〉

− 1
2
〈[[X,Y ], Y ], X〉+

1
2
〈adt[X,Y ](Y ), X〉+

1
2
〈adtY ([X,Y ]), X〉

= −1
2
|[X,Y ]|2 +

1
2
〈Y, [X, [X,Y ]]〉+

1
2
〈X, [Y, [X,Y ]]〉

− 1
2
〈[[X,Y ], Y ], X〉+

1
2
〈Y, [[X,Y ], X]〉+

1
2
〈[X,Y ], [Y,X]〉

= −|[X,Y ]|2 − 〈[Y, [Y,X]], X〉 = −|[X,Y ]|2 − 〈ad2
Y (X), X〉.

Combining both yields the statement.

13.21 Lemma. A left or right invariant metric 〈_,_〉 on G is bi-invariant if and only if for any g ∈ G
the map Adg := (Lg)∗ ◦ (Rg−1)∗ is an isometry.

Proof.
”⇒”: In case 〈_,_〉 is bi-invariant, the left- and right-translations are isometries. Thus the Adg are
isometries.
”⇐”: Let Adg be an isometry for all g ∈ G. Assume 〈_,_〉 is left invariant. We have to show, that it
is right invariant as well. We calculate

〈(Rg)∗(X), (Rg)∗(Y )〉 = 〈(Adg ◦(Rg)∗(X)), (Adg ◦(Rg)∗)(Y )〉
= 〈((Lg)∗ ◦ (Rg−1)∗ ◦ (Rg)∗(X)), ((Lg)∗ ◦ (Rg−1)∗ ◦ (Rg)∗)(Y )〉 = 〈(Lg)∗(X), (Lg)∗(Y )〉 = 〈X,Y 〉.

In case 〈_,_〉 is right invariant, notice that Ad−1
g is an isometry as well and calculate analogously:

〈(Lg)∗(X), (Lg)∗(Y )〉 = 〈(((Lg)∗ ◦ (Rg−1)∗)−1 ◦ (Lg)∗)(X), (((Lg)∗ ◦ (Rg−1)∗)−1 ◦ (Lg)∗)(Y )〉
= 〈((Rg)∗ ◦ (Lg)−1

∗ ◦ (Lg)∗)(X), ((Rg)∗ ◦ (Lg)−1
∗ ◦ (Lg)∗)(Y )〉 = 〈(Rg)∗(X), (Rg)∗(Y )〉 = 〈X,Y 〉.

13.22 Lemma (ad is skew). Let 〈_,_〉 be a bi-invariant metric on G. Then ad is skew-symmetric,
i.e.

∀X,Y ∈ T (G) : 〈adX Y, Z〉 = −〈Y, adX Z〉.

In other words adtX = − adX .

Proof. We have just shown in Theorem 13.21, that

∀X,Y ∈ T (G) : ∀g ∈ G : 〈Adg Y,Adg Z〉 = 〈Y, Z〉. (13.2)

Notice that we may rephrase the statement of Lemma 13.15 by

adX(Y ) = ∂t(AdetX |e(Y ))|t=0. (13.3)
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Near the identity we may write g = etX . Assume X,Y, Z ∈ g and differentiate equation (13.2) in order
to obtain

0 = ∂t〈AdetX Y,AdetX Z〉|t=0
(13.3)
= 〈adX Y, Z〉+ 〈X, adX Z〉.

13.23 Theorem (Curvature of bi-invariant metrics). Let G be a Lie group with a left invariant metric
such that for all X ∈ g, the map adX is skew symmetric (c.f. 13.22) and let X,Y, Z ∈ }.

(i) The associated Levi-Civita connection satisfies

∇XY =
1
2
[X,Y ].

(ii) The Riemannian curvature is given by

R(X,Y )(Z) = −1
4
[[X,Y ], Z].

(iii) Its covariant derivative satisfies
∇R = 0,

so G is a locally symmetric space.
(iv) If X,Y is an ONB the sectional curvature of the plane they determine is

K(X,Y ) =
1
4
|[X,Y ]|2.

(v) The Ricci curvature is given by

Ric(X,Y ) = −1
4

tr(adX adY ).

Proof.
(i) By Theorem 13.20 and the skew symmetry of adX we obtain:

∇XY =
1
2
([X,Y ]− adtX(Y )− adtY (X)) =

1
2
[X,Y ].

(ii) Statement (i) and the Jacobi identity imply

R(X,Y )(Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z =
1
2
∇X [Y, Z]− 1

2
∇Y [X,Z]− 1

2
[[X,Y ], Z]

=
1
4
[X, [Y, Z]]− 1

4
[Y, [X,Z]]− 1

2
[[X,Y ], Z] = −1

4
[[X,Y ], Z].

(iii) Statment (ii) implies

8∇R(X,Y, Z,W ) = 8(∇WR)(X,Y, Z)
= 8∇W (R(X,Y, Z)− 8R(∇WX,Y, Z)− 8R(X,∇WY, Z)− 8R(X,Y,∇WZ)
= 4[W,R(X,Y )Z]− 4R([W,X], Y, Z)− 4R(X, [W,Y ], Z)− 4R(X,Y, [W,Z])
= −[W, [[X,Y ], Z]] + [[[W,X], Y ], Z] + [[X, [W,Y ]], Z] + [[X,Y ], [W,Z]]
= −[W, [[X,Y ], Z]]+[[[W,X], Y ], Z]+[[[Y,W ], X], Z] + [[X,Y ], [W,Z]]
(1)
= −[W, [[X,Y ], Z]]− [[[X,Y ],W ], Z] + [[X,Y ], [W,Z]]

= [[[X,Y ], Z],W ] + [[Z,W ], [X,Y ]] + [[W, [X,Y ]], Z]
(2)
= 0.

In step (1) we use the Jacobi identity at the underlined inner Lie bracket for W,X, Y and in (2)
we use the Jacobi identity for [X,Y ], Z,W .
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(iv) Statement (ii), the definition of sectional curvature and the skew symmetry of adX implies

K(X,Y ) = Rm(X,Y, Y,X) = 〈R(X,Y )(Y ), X〉 = −1
4
〈[[X,Y ], Y ], X〉

=
1
4
〈adY ([X,Y ]), X〉 = −1

4
〈[X,Y ], adY (X)〉 =

1
4
〈[X,Y ], [X,Y ]〉.

(v) Using (ii) we obtain

Ric(X,Y ) = Ric(Y,X) = tr(Z 7→ R(Z, Y )X) = −1
4

tr(Z 7→ [[Z, Y ], X]) = −1
4

tr(Z 7→ [X, [Y, Z]]).

13.24 Lemma. Let G be a Lie group and g be its Lie algebra. For any t ∈ R

g

et

��

ad // gl(g)

et

��

G
Ad // GL(g)

commutes, i.e.
∀X ∈ g : et adX = AdetX .

Here et denotes the resp. Lie group exponential maps for time t.

Proof. Fix X ∈ g and consider the map α : R → GL(}), t 7→ AdetX . Clearly α(0) = idg and since Ad
is a Lie group homomorphism, we obtain

α(s+ t) = Ade(s+t)X = AdesXetX = AdesX ◦AdetX = α(s)α(t),

thus α is a one parameter subgroup of GL(g) through the identity. Furthermore

∀Y ∈ g : α̇(0)(Y ) = ∂t(CetX )∗|e|t=0∂s(esY )|s=0 = ∂t∂sCetX (esY )|s=0|t=0
13.15= [X,Y ] = ∂t(et adX )|t=0(Y ).

13.25 Theorem (Characterization of bi-invariant metrics). Let (G, 〈_,_〉) be a connected Lie group
with left-invariant metric. The following are equivalent:

(i) The metric 〈_,_〉 is bi-invariant.
(ii) For any X ∈ g the map adX is skew-symmetric.
(iii) The one parameter subgroups c(t) = etX are geodesics, i.e. etX = expe(tX).
(iv) The inversion σ : G→ G, g 7→ g−1, is an isometry of G.
(v) For any g ∈ G the map Adg is an isometry.

Proof.
”(i)⇔(v)”: This was shown in Lemma 13.21.
”(i)⇒(ii)”: This was shown in Lemma 13.22.
”(ii)⇔(iii)”: If c = cX is a such a one parameter subgroup, by definition we obtain

ċ(t) = X|c(t).

Thus the geodesic ODE for c reads as
∇XX = 0.
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For a left-invariant metric Theorem 13.20 states

∇XX =
1
2
([X,X]− adtX(X)− adtX(X)) = − adtX(X).

Thus we obtain the equivalence (always with ∀X ∈ TeG)

c is geodesic ⇐⇒ ∇XX = 0 ⇐⇒ adtX(X) = 0 ⇐⇒ adX is skew-symmetric,

where the last equivalence follows from polarization via

〈adtY+Z(Y + Z), X〉 = 〈Y + Z, adY+Z(X)〉 = 〈Y + Z, adY (X) + adZ(X)〉
= 〈Y, adtY (X)〉+ 〈Y, adZ(X)〉+ 〈Z, adY (X)〉+ 〈Z, adZ(X)〉
= 〈adtY (Y ), X〉 − 〈Y, adX(Z)〉 − 〈Z, adX(Y )〉+ 〈adtZ(Z), X〉
= −〈adX(Y ), Z〉 − 〈Y, adX(Z)〉.

”(ii) and (iii) ⇒ (v)”: Since G is complete any g ∈ G may be written as g = expe(tX), X ∈ TeG ∼= g.
By (iii) and what we have just proven above g = etX . By Lemma 13.24, we obtain Adg = et adX and
by (ii)

〈Adg Y,Adg Z〉 = 〈et adXY, et adXZ〉 = 〈Y, (et adX )tet adXZ〉 = 〈Y, et(adX +adt
X)Z〉 = 〈X,Y 〉

this is an isometry of g.
”(iv)⇒(i)”: Since the metric is left invariant, statement (iv) together with the factorization

∀g, h ∈ G : (σ ◦ Lg−1 ◦ σ)(h) = σ(g−1h−1) = hg = Rg(h)

implies (i).
”(i)⇒(iv)”: Since σ∗|e = − id (c.f. [3, 3-6]), this is certainly an isometry of TeG. For any g ∈ G we
may transform the factorization above to σ = σ−1 = Rg−1 ◦ σ ◦ Lg−1 . Since 〈_,_〉 is bi-invariant, we
obtain alltogether that

σ∗|g = Rg−1∗|e ◦ σ∗|e ◦ Lg−1∗|g
is an isometry as well.

13.26 Corollary (abelian). Let G be a Lie group and g be its Lie algebra.
(i) If G is abelian, then g is abelian.
(ii) If g is abelian and G is connected, then G is abelian.

Proof.
(i) In case G is abelian, we may employ Lemma 13.15 above in order to obtain

∀X,Y ∈ g : [X,Y ] = ∂t∂se
tXesY e−tX |s=0|t=0 = ∂t∂se

sY |s=0e
tXe−tX |t=0 = ∂tY |t=0 = 0.

(ii) In case g is abelian and G is connected we may write any g, h ∈ G as g = etX , h = esY . Fix any
t ∈ R and consider the 1PSGs α, β : R → G, α(s) := etXesY e−tX , β(s) := esY . Differentiation
yields

α̇(0) = AdetX (Y ) 13.15= et adX (Y ) = Y = β̇(0)

and therefore α = β, which implies gh = hg.

13.27 Corollary (Sectional curvature). Let G be a connected Lie group with bi-invariant metric. The
sectional curvatures K and the Ricci curvature Ric satisfy:
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(i) K ≥ 0.
(ii) K = 0 ⇔ G is abelian.
(iii) Any X ∈ g satisfies

Ric(X,X) ≥ 0 and Ric(X,X) = 0 ⇔ X ∈ z,

where z is the center 16 of g. In case z = {0}, we always have Ric(X,X) > 0, X 6= 0.

Proof.
(i) Theorem 13.23,(iv) directly implies K ≥ 0.
(ii) Theorem 13.23,(iv) implies: If K = K(X,Y ) = 1

4 |[X,Y ]|2 = 0 for every X,Y ∈ g, then g is
abelian. Conversely, if g is abelian, then K = 0. So the statement follows from Corollary 13.26.

(iii) First a preliminary remark.
Step 1: For any matrix A ∈ Rn×n satisfying At = −A, we obtain

tr(A2) = (AA)ii = AijA
j
i = −(Aij)

2 ≤ 0

In particular tr(A2) = 0 ⇒ A = 0.
Step 2: By Theorem 13.25 the map adX is skew symmetric for any X ∈ g. Thus tr(ad2

X) ≤ 0
and therefore Theorem 13.23,(v) implies

∀X ∈ g : Ric(X,X) = −1
4

tr(ad2
X) ≥ 0.

Now let X ∈ g, such that Ric(X,X) = 0. Then tr(ad2
X) = 0 and thus adX = 0, which is

equivalent to X ∈ z.

13.28 Example.
(i) Let G be a Lie group of matrices. Then − tr(XY ) defines a non degenerate bilinear form on

g, such that adZ is skew symmetric for every Z ∈ g. In case G ⊂ GLn(R), we obtain the
bi-invariant, but not necessarily Riemannian metric on G. In case G ⊂ O(n) this metric is
Riemannian:

− tr(XX) = tr(XXt) ≥ 0

(in case this is = 0 ⇔ X = 0). If G ⊂ GLn(C ), then −Re tr(X,Y ) is a bi-invariant Semi-
Riemannian metric on G.

(ii) On every Lie group we may define the Killing form

B(X,Y ) := tr(adX adY ).

Since adAdg X = Adg ◦ adX ◦Ad this is bi-invariant, but may be degenerate. A Lie group for
which B is not degenerate, is called semi-simple and are very well understood. By Theorem
13.23 a semi-simple Lie group (G,B) automatically is a semi-Riemannian Einstein manifold, i.e.
Ric = constB.

16Reminder: The center is defined by

z := z(g) := {X ∈ g | ∀Y ∈ g : [X, Y ] = 0}
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13.29 Theorem (Existence of bi-invariant metrics). Let G be a compact Lie group. Then there exists
a bi-invariant Riemannian metric on G.

Proof. Choose a left-invariant metric 〈_,_〉 and a left-invariant volume form µ on G. For any two
X,Y ∈ g define the function f(X,Y ) : G → R, g 7→ 〈Adg(X),Adg(Y )〉. Define a scalar product on g

by

〈〈X,Y 〉〉 :=
∫
G
〈AdX,AdY 〉µ =

∫
G
f(X,Y )µ.

By Theorem 13.25 it suffices to show, that 〈〈_,_〉〉 is invariant under the adjoint representation. Now

∀g ∈ G : (f(X,Y ) ◦ Ch−1µ)(g) = 〈Adh−1gh(X),Adh−1gh(Y )〉µg = L∗h−1(f(X,Y ) ◦Rhµ)

and therefore the left-invariance of µ and the diffeomorphism invariance of the integral yields

〈〈Adh(X),Adh(Y )〉〉 =
∫
G
f(X,Y ) ◦Rhµ =

∫
G
L∗h−1(f(X,Y ) ◦Rhµ) =

∫
G
f(X,Y ) ◦ Ch−1µ

(1)
=
∫
G
f(X,Y ) ◦ Ch−1 |det Adh−1 |µ =

∫
G
f(X,Y )µ = 〈〈X,Y 〉〉

(1): Here we use the fact that h 7→ |det Ad−1
h | is a continuous Lie group homomorphism G→ (R+, ·).

Therefore the image is a compact subgroup of (R+, ·) and the only such subgroup is {1}.

13.1 The Unitary Group

As an example we discuss the unitary group

Un := {A ∈ GLn(C ) | AĀt = E}

with its Lie algebra
un = TEUn = {B ∈ gln(C ) | B̄t = −B},

where gln are the n by n matrices with the commutator as a Lie bracket. We define the Ad-invariant
scalar product

〈X,Y 〉 := −Re tr(XY ) = Re tr(XȲ t)

on un. This induces a bi-invariant Riemannian metric on Un. On the other tangential spaces

TAUn = {AB | B ∈ un}

the metric is given by the same formula since for any A ∈ Un

tr(AXAXt) = tr(AXȲ tAA−1) = tr(XȲ t).

We remark that the metric is the restriction of the canonical hermitian form on C n2 .
We choose an orthogonal basis for (un, 〈_,_〉) and therefore define Eij ∈ C n×n to be the matrix
(Eij)kl := δkiδlj . For i > j the matrices

Fij := Eij − Eji Gij := i(E[ij − Eji) Ei := iEii

are an orthogonal basis for un. We remark that

EijEkl = δjkEil |Fij |2 = |Gij |2 = 2 |Ei| = 1.
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The set a := Lin{Ei|1 ≤ i ≤ n} is a maximal abelian subalgebra of un. The Fij , Gij are common
eigenvectors of the ad2

A, A =
∑

i αiEi:

adA(Ejk) =
∑
i

iαi(EiiEjk − EjkEii) =
∑
i

iαi(δijEik − δkiEji) = i(αj − αk)Ejk

adA(Fij) = i(αi − αj)Eij − i(αj − αi)Eji = (αi − αj)i(Eij + Eji) = (αi − αj)Gij
adA(Gij) = −(αi − αj)Eij − (αj − αi)Eji = −(αi − αj)(Eij − Eji) = −(αi − αj)Fij .

Therefore the curvature may be calculated by

R(Fij , A)A = −1
4

ad2
A(Fij) =

1
4
(αi − αj)2Fij (13.4)

R(Gij , A)A =
1
4
(αi − αj)2Gij

R(Ei, A)A = 0.

13.30 Theorem. The sectional curvature K of Un with respect to the bi-invariant metric −Re tr(XY )
satisfies the sharp estimate

0 ≤ K ≤ 1
2
.

Proof. Since any A ∈ un may be transformed into normal form by conjugation with a suitable g ∈ Un
(i.e. gAg−1 ∈ a), it suffices to consider planes A ∧ X, where A =

∑
i αiEi ∈ a,

∑
i α

2
i = 1. But for

those the estimate is clear due to (13.4).

Next we determine the cut locus of Un: Let S ∈ Un. Choose a geodesic etΣ between e and eΣ = S,
Σ ∈ un. Since Σ is skew-hermitian, there exists T ∈ Un such that TΣT−1 = A = idiag(α1, . . . , αn),
αj ∈ R. Therefore TetΣT−1 = etA is a geodesic of the same length from e to eA = diag(eiα1 , . . . , eiαn)
and this normal form eA of S is unique up to permutation. Therefore the lengths of geodesics from e

to S are exactly
√∑

i β
2
i , where B = idiag(β1, . . . , βn) satisfies eB = eA.

Consequently etΣ is minimizing between e and S if and only if the normal form A of Σ satisfies
αi ∈ [−π, π].

13.31 Theorem. The cut locus of e in Un is

C(e) = {S ∈ Un | S has eigenvalue −1}.

Proof. If S does not have eigenvalue -1, there exists (up to permutation) precisely oneA = idiag(α1, . . . , αn)

satisfying αi ∈]− π, π[ and eA is conjugate to S. In that case d(e, S) =
√∑

i α
2
i .

In case S does have eigenvalue -1, S ∈ C(p) since eiπ = e−iπ = −1.

13.32 Remark.
(i) Un = S1 × SUn as a product of groups and Riemannian manifolds.
(ii) Um ⊂ Un totally geodesic, m ≤ n.
(iii) On ⊂ Un totally geodesic, since On is the fixed point set of the isometry A 7→ Ā.

13.2 The Heisenberg group H3

h3 = Lin(e1, e2, e3), where

e1 =

0 1 0
0 0 0
0 0 0

 e2 =

0 0 0
0 0 1
0 0 0

 e3 =

0 0 1
0 0 0
0 0 0
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Define a scalar product on h3 by declaring e1, e2, e3 to be an ONB. The Lie bracket is given by
[e1, e2] = e3 and [ei, ej ] = 0 for any other {i, j} 6= {1, 2}. All adt are zero except

adte1 e3 = e2 adte2 e3 = −e1,

which implies that the connection is given by

∇e1e2 =
1
2
e3 ∇e1e3 = −1

2
e2 ∇e2e3 =

1
2
e1

and all other values can be deduced from symmetry or are zero. Remember that the sectional curvature
is given by Theorem 13.20, which implies that

K(e1 ∧ e2) =
1
4
− 1 = −3

4
K(e1 ∧ e3) =

1
4

= K(e2 ∧ e3).

Therefore the scalar curvature is given by

S = Ric(e1) + Ric(e2) + Ric(e3) = −1
2
− 1

2
+

1
2

= −1
2
.

13.3 A realization of hyperbolic Space

We want to realize the hyperbolic space RHn+1 as a solvable group with left invariant metric. Choose
Euclidean vector spaces a, x, dim a = 1, dimx = n and define s := a + x (as an orthogonal sum of
Euclidean vector spaces). Then s becomes a solvable Lie algebra by defining [a, a] := [x, x] := 0 and
adA |x = c id, where A ∈ a (is a unit vector for example.). This implies for X,Y ∈ x

adtAX = cX adtX Y = −c〈X,Y 〉A

and all others are zero. Furthermore

∇A = 0 ∇X = cA ∧X,

where U ∧ V is the skew-symmetric endomorphism w 7→ 〈w, v〉u− 〈w, u〉v. This implies

R(A,X) = −c∇X = −c2A ∧X R(X,Y ) = [∇X ,∇Y ] = −c2X ∧ Y.

Consequently the cuvature operator R : Λ2s → Λ2s is −c2 id. So the simply connected Lie group
(S, 〈_,_〉) associated to (s, 〈_,_〉) with left invariant metric is the space form with constant curvature
−c2.
The last two examples admit a proof of the following

13.33 Theorem (Milnor). If G is non-abelian, then G admits a left-invariant metric of negative scalar
curvature.

Proof.
Case 1: There exist X,Y ∈ g : X,Y, [X,Y ] are linearly independent. Complete them to a basis
b1 := X, b2 := Y, b3 := [X,Y ], b4, . . . , bn of g. For any ε > 0 define a scalar product 〈_,_〉ε on g by
declaring

e1 := εb1, e2 := εb2, e3 := ε2b3, . . . , en := ε2bn

to be an ONB. The stucture constants αijk defined by [ei, ej ] =
∑

k αijkek satisfy α123 = 1 = α231 and
αijk ≤ const ε otherwise. Thus limε→0 αijk(ε) are the structure constants of a direct sum g0 = h3 + z,
z = center. Since the scalar curvature S depends continuously on the structure constants with respect
to an ONB, we obtain

lim
ε→0

S(g, 〈_,_〉ε) = S(g0) = S(h3) = −1
2
< 0.

In particular S < 0, if ε > 0 is sufficiently small.
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Case 2: For any X,Y we have Lin(X,Y, [X,Y ]) = Lin(X,Y ). Then

adX Y = l(X)Y mod Rx

for some linear functional l ∈ g∗. Thus

[X,Y ] = l(X)Y − l(Y )X

and ker l is an (n−1)-dimensional abelian ideal in g. Choose a unit vector A ∈ ker l⊥. Then adA | ker l =
l(A) id. Thus we have the Lie algebra from the preceeding example with c = l(A). In particular g has
negative scalar curvature.

13.4 The Heisenberg Group

As a last example we discuss the Heisenberg Group in more detail, a Lie group with a left invariant
metric. We use slightly different coordinates as in Example 13.2.

13.34 Definition (Heisenberg Group). For any m ∈ N the Heisenberg group is given by

H2m+1 :=
{1 xt z

0 1 y
0 0 1

 ∈ R(m+2)×(m+2)|x, y ∈ Rm, z ∈ R.
}
.

It is an affine linear subspace of Mm+2(R) and a subgroup of GLm+2(R). Therefore its Lie algebra is
given by

h2m+1 = TeH2m+1 =
{0 xt z

0 0 y
0 0 0

 ∈ R(m+2)×(m+2)|x, y ∈ Rm, z ∈ R
}
.

To simplify notation we employ the ”exponential coordinates”

H 3 (x, y, z) := exp(x, y, z) :=

1 xt z + 1
2〈x, y〉

0 1 y
0 0 1

 ,

in which multiplication looks like

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ +
1
2
〈x, y′〉 − 1

2
〈x′, y〉).

The Lie algebra may also be written as

h 3 (x, y, z) :=

0 xt z
0 0 y
0 0 0

 ,

in which the Lie bracket looks like

[(x, y, z), (x′, y′, z′)] = (0, 0, 〈x, y′〉 − 〈x′, y〉).

A basis for h is consequently given by

Xi := (ei, 0, 0) Yi := (0, ei, 0) Z := (0, 0, 1),

where 1 ≤ i ≤ m. The only non-zero Lie brackets are

[Xi, Yi] = −[Yi, Xi] = Z.
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13.35 Remark.
(i) Observe that [h, h] = Lin(Z) 6= 0, [h, [h, h]] = 0, so h is a second order nilpotent Lie algebra.
(ii) From the multiplication formula we may deduce exp(A) exp(B) = exp(A + B + 1

2 [A,B]). This
formula holds in every second order nilpotent Lie algebras and is a special case of the so called
”Campbill-Baker-Hausdorff-Formula”.

We would like to calculate the left-invariant vector fields corresponding to X1, . . . , Xm, Y1, . . . , Ym, Z
w.r.t. the chosen identification of H with R2m+1 (exponential coordinates): Let p = (x, y, z) ∈ H and
observe

Xi|p = Lp∗Xi = ∂t(x, y, z) · (tei, 0, 0)|t=0 = ∂t(x+ tei, y, z −
1
2
tyi)|t=0 = (ei, 0,−

1
2
yi).

Analogously

Yi|p = (0, ei,
1
2
xi) Z|p = (0, 0, 1).

Definition of the metric: Let g be the left-invariant metric on H uniquely determind by requirering
the left-invariant vector fields X1, . . . , Xm, Y1, . . . , Ym, Z, to be orthonormal.

Levi-Civita Connection: The Levi-Civita connection with respect to this metric is given by

∇XiXj = 0 = ∇YiYj , ∇XiYj = δij
1
2
Z = −∇YjXi,

∇XiZ = −1
2
Yi = ∇ZXi, ∇YiZ =

1
2
Xi = ∇ZYi, ∇ZZ = 0

Sectional Curvature: The only non-zero sectional curvatures of H are generated by

K(Xi, Yi) =
1
4
− 1− 0 = −3

4
K(Xi, Z) =

1
4
− 0− 0 =

1
4

= K(Yi, Z)

Ricci Curvature: The Ricci curvature is given by

Ric(Xi) = −3
4

+
1
4

= −1
2

= Ric(Yi) Ric(Z) = 2m · 1
4

=
m

2
.

Scalar Curvature: The scalar curvature is given by

s = 2m · (−1
2
) +

m

2
= −m

2
< 0.

Geodesics: Let γ be a unit speed geodesic in (H, g) satisfying γ(0) = e = (0, 0, 0). We may decompose
γ̇(t) into

γ̇(t) =
∑
i

ai(t)Xi|γ(t) + bi(t)Yi|γ(t) + c(t)Z|γ(t).

Therefore the geodesic equation reads as

0 = ∇γ̇ γ̇ =
∑
i

ȧiXi + ḃiYi+ċZ+
∑
i

aibi(∇XiYi +∇YiXi︸ ︷︷ ︸
=0

)+
∑
i

aic(∇XiZ +∇ZXi)︸ ︷︷ ︸
=−Yi

+
∑
i

bic(∇YiZ +∇ZYi)︸ ︷︷ ︸
=Xi

.

By comparing the coefficients, we obtain the following system of ODEȧḃ
ċ

 =

−cbca
0
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So c = const and solutions are given by(
ai(t)
bi(t)

)
= Dtc

(
ai(0)
bi(0)

)
, Dtc :=

(
cos(tc) − sin(tc)
sin(tc) cos(tc)

)
.

Now let γ(t) = (x(t), y(t), z(t) and obtainẋẏ
ż

 =

 a
b

c− 1
2

∑
i aiyi+

1
2

∑
i bixi

 .

Case 1 (c = 0): This implies a = a(0), b = b(0), x(t) = ta(0), y(t) = tb(0), ż = 0, z = 0 and therefore
γ(t) = (ta(0), tb(0), 0) = exp(tγ̇(0)) is a one parameter subgroup which is a geodesic.
Case 2 (c 6= 0): In that case the solutions for x, y are given by(

xi(t)
yi(t)

)
=
D−90(Dtc − E)

c
·
(
ai(0)
bi(0)

)
and therefore

ż(t) = c+
1
2c

∑
i

(− cos(tc)ai(0)− sin(tc)bi(0))(ai(0)− cos(tc)ai(0) + sin(tc)bi(0))

+
∑
i

(sin(tc)ai(0) + cos(tc)bi(0))(−bi(0) + sin(tc)ai(0) + cos(tc)bi(0))

= c+
1
2c

∑
i

(ai(0)2 + bi(0)2)(1− cos(tc)),

which implies

z(t) = tc+
1− c2

2c2
(tc− sin(tc)).

13.36 Remark. If we had used the coordinates from 13.2 the function z(t) would be even more
complicated. This is one reason to use exponential coordinates.

Finally we would like to analyze lengths of geodesics having the same endpoint in exp(RZ): Let λ(t) :=
(0, 0, t) the particular geodesic through (0, 0, 1). Let c 6= 0 and a(0), b(0), such that |(a(0), b(0), c| = 1,
be arbitrary and let γ be the geodesic with initial velocity (a(0), b(0), c). Now

λ(t0) ∈ λ(R) ⇔ t0 =
2kπ
c
, k ∈ Z.

Such a t0 satisfies z(t0) = 2kπ + 1−c2
2c2

2kπ = 1+c2

2c2
2kπ. Thus til the point (0, 0, z(t0)) the ”straight”

geodesic λ has length L1 = 2|k|π
|c|

1+c2

2|c| and γ has length L2 = 2|k|π
|c| . Since 1+c2

2|c| > 1, 0 < |c| < 1, L1 > L2

and the ”wriggled” geodesic γ is shorter.
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A Appendix

A.1 Covariant Derivatives along fields of Endomorphisms

We are assuming that we already have established covariant derivaties of tensor fields on manifolds
and along curves.

A.1 Remark. Let V be a real vector space of dimension n. Remember, that the map Φ : End(V ) →
T 1

1 (M), defined by Φ(f) : V ∗ × V → R, (ω,X) 7→ ω(f(X)), is an isomorphism (c.f. [2, 2.1]) For a
smooth n-manifold M , this induces a diffeomorphism Φ : End(M) → T 1

1 (M).

A.2 Definition. Let f ∈ End(M) and X ∈ T (M). We call

∇Xf := Φ−1(∇X(Φ(f)),

the covariant derivative of f in direction X. By construction

End(M)

∇X

��

Φ // T 1
1 (M)

∇X

��

End(M) Φ // T 1
1 (M)

commutes. If c : I →M is a smooth curve, f ∈ End(c), X ∈ T (c), we say

(Dtf)(t) := f ′(t) := ∇ċ(t)f(t)

is the covariant derivative of f along c.

The only reason we consider this is, that we would like to derive some formulas, which are helpful
when calculating with this derivative.

A.3 Theorem. Let X,Y ∈ T (M), T ∈ T 1
1 (M), f ∈ End(M), sodass Φ(f) = T . Then f(Y ) ∈ T (M)

and we obtain:
(i) Product Rule:

∇X(f(Y )) = (∇Xf)(Y ) + f(∇XY )

(ii) Let γ be a curve and let Y ∈ T (γ), f ∈ End(γ). Then

Dt(f(Y )) = (Dtf)(Y ) + f(DtY ),

where we are assuming that the covariant differential Dt is extended to tensor fields.
(iii) For any g ∈ End(M), we obtain the chain rule

∇X(f(g(Y )) = (∇Xf)(g(Y )) + f((∇Xg)(Y )) + f(g(∇XY )).

(iv) In particular if f is a field of isomorphisms and g := f−1, we obtain

(∇Xf
−1)(f(Y )) = −f−1((∇Xf)(Y )).

Analogous formulae hold when considering fields of endomorphisms along curves.

Proof. We choose a local frame {Ei} and calculate using [2, 4.6]:
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(i)

∇X(f(Y ))− (∇Xf)(Y )− f(∇XY )

= ∇X(T (Ei, Y )Ei)− (∇XT )(Ei, Y )Ei − T (Ei,∇XY )Ei
=
(
X(T (Ei, Y ))Ei + T (Ei, Y )∇XEi

)
−
(
X(T (Ei, Y ))Ei − T (∇XE

i, Y )Ei − T (Ei,∇XY )Ei
)

− T (Ei,∇XY )Ei
= T (Ei, Y )∇XEi + T (∇XE

i, Y )Ei = T (Ei, Y )Xj∇EjEi +XjT (∇EjE
i, Y )Ei

= T (Ei, Y )XjΓkjiEk +XjT (−ΓijkE
k, Y )Ei = T (Ei, Y )XjΓkjiEk −XjΓkjiT (Ei, Y )Ek = 0

(ii) Follows analogously.
(iii) Using (i) we obtain

∇X(f(g(Y )) = (∇Xf)(g(Y )) + f(∇X(g(Y ))) = (∇Xf)(g(Y )) + f((∇Xg)(Y ) + g(∇XY ))
= (∇Xf)(g(Y )) + f((∇Xg)(Y )) + f(g(∇XY )).

(iv) Using (iii) we obtain:

∇X(f−1(f(Y )) = (∇Xf
−1)(f(Y )) + f−1((∇Xf)(Y )) + f−1(f(∇XY ))

⇔ ∇XY = (∇Xf
−1)(f(Y )) + f−1((∇Xf)(Y )) +∇XY

⇔ (∇Xf
−1)(f(Y )) = −f−1((∇Xf)(Y )).

Besides this abstract interpretation, there is a very easy way to calculate the differential.

A.4 Lemma (Covariant derivative in coordinates). Let c : I → M be a unit speed curve and let
E1 := ċ, E2, . . . , En be a parallel ONB along c. Let (uji ) be the coordinate matrix function of a field of
endomorphisms U ∈ End(c) along c whith respect to this basis, i.e.

∀t ∈ I : uji (t) = 〈Ut(Ei(t)), Ej(t)〉.

Then
∀t ∈ I : (u′)ji (t) = (uji )

′(t),

i.e. the coefficients of U ′ are just the ordinary derivaties of the coefficients u of U .

Proof. Since DtEi = DtEj = 0 the product rule implies

(uji )
′(r) = 〈Ur(Ei), Ej(r)〉′ = 〈Dt(UrEi), Ej(r)〉+ 〈Ur(Ei), DtEj(r)︸ ︷︷ ︸

=0

〉

= 〈U ′r(Ei), Ej(r)〉+ 〈Ur(DtEi︸ ︷︷ ︸
=0

), DtEj(r)〉 = 〈U ′r(Ei), Ej(r)〉 = (u′)ji (r).

The concept of covariant differentiation of fields of endomorphisms is of geometric intrest, because of
the curvature endomorphism.
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A.5 Lemma. Denote by T 3(M) → T (M) : (X,Y, Z) → R(X,Y )Z the Riemannian curvature of M .
By fixing two fields at two positions, this defines three smooth fields of endomorphisms

X 7→ RY,Z(X) := R(X,Y, Z) Y 7→ RX,Z(Y ) := R(X,Y, Z) Z 7→ RX,Y (Z) := R(X,Y, Z) .

Their covariant differentials are given by

∇WRY,Z(X) = ∇W (R(X,Y, Z))−R(∇WX,Y, Z)
∇WRX,Z(Y ) = ∇W (R(X,Y, Z))−R(X,∇WY, Z)
∇WRX,Y (Z) = ∇W (R(X,Y, Z))−R(X,Y,∇WZ).

Proof. This follows directly from Theorem A.3.

A.6 Remark. This construction can be generalized. If we denote by Multkl (V ) the space of multilinear
maps (V ∗)l × V k → V , there is also a canonical isomorphism Φ : Multkl (V ) → T kl+1(V ) (c.f. [2, 2.1]
again). If F ∈ Multkl (V ) and T ∈ T kl+1(V ) such that Φ(F ) = T we may use a basis {Ei} of V and its
corresponding dual basis {Ei} to mutually identify T , F (via Φ) using the equations

T (ω1, . . . , ωl+1, X1, . . . , Xk) = ωl+1(F (ω1, . . . , ωl, X1, . . . , Xk))

F (ω1, . . . , ωl, X1, . . . , Xk) = T (Ei, ω1, . . . , ωl, X1, . . . , Xk))Ei

This generalizes to manifolds and by forcing this diagramm

Multkl (M)

∇X

��

Φ // T kl (M)

∇X

��

Multkl (M) Φ // T kl (M)

to commute, we may also define covariant differentiation of (k, l)-multilinear fields in an entirely anal-
ogous fashion.

A.7 Lemma. In the sense of the above definition the covariant derivative of the Riemannian curvature
R ∈ Mult3(M) is given by

∇R(X,Y, Z,W ) = ∇W (R(X,Y, Z))−R(∇WX,Y, Z)−R(X,∇WY, Z)−R(X,Y,∇WZ).

Proof. By unwinding all the definitions we obtain

∇R(X,Y, Z,W ) , ∇R(X,Y, Z,W,Ei)Ei = (∇WR)(X,Y, Z,Ei)Ei
= W (R(X,Y, Z,Ei))Ei −R(X,Y, Z,∇WE

i)Ei
−R(∇WX,Y, Z,E

i)Ei −R(X,∇WY, Z,E
i)Ei −R(X,Y,∇WZ,E

i)Ei
, Ei(∇W (R(X,Y, Z,Ei))Ei
−R(∇WX,Y, Z)−R(X,∇WY, Z)−R(X,Y,∇WZ).
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A.2 Gauss’ Lemma

There are various formulations of Gauss’ lemma in the literature. We will prove one version of it as
well as some small preliminary lemmas, which are sometimes useful themselves.

A.8 Lemma ((exp)∗ and Jacobi fields). Let p ∈ M , w, v, Y ∈ TpM w = ‖w‖v and let c be the unit
speed geodesic through p with initial velocity ċ(0) = v. Then

(expp)∗|w(Y ) =
1
‖w‖

J(‖w‖),

where J is the Jacobi field along c satisfying J(0) = 0 and J ′(0) = Y .

Proof. Define a geodesic variation H of c by

H(s, t) := expp(t(v + sY )).

Its variation field
J(t) := ∂sH(s, t)|s=0 = ∂s(expp(t(v + sY )))s=0

is a Jacobi field ([2, 10.2]) and we obtain

(expp)∗|w(Y ) =
1
‖w‖

(expp)∗|v‖w‖(Y ‖w‖) =
1
‖w‖

∂s expp(v‖w‖+ sY ‖w‖)|s=0

=
1
‖w‖

∂s expp(‖w‖(v + sY )|s=0 =
1
‖w‖

J(‖w‖).

Obviously J(0) = 0 and furthermore

J ′(0) = DtJ(0) = Dt∂sH(s, t)|s=0|t=0 = Ds∂t expp(t(v + sY ))|t=0|s=0 = Ds(v + sY )|s=0 = Y.

A.9 Lemma. Let c : I → M be a geodesic and let J be a Jacobi field along c. Then the function
t 7→ 〈J(t), ċ(t)〉 is a polynomial of degree 1. More precisely:

〈J(t), ċ(t)〉 = 〈DtJ(0), ċ(0)〉t+ 〈J(0), ċ(0)〉

Proof. Since c is a geodesic, we have Dtċ ≡ 0. Using compatibility with the metric and that J solves
the Jacobi equation, we obtain

〈J, ċ〉′′ = 〈D2
t J, ċ〉 = −〈R(J, ċ)(ċ), ċ〉 = −Rm(J, ċ, ċ, ċ) = 0,

where the last equality follows from the symmetries of the curvature tensor (c.f. [2, 7.4]). Thus there
are a, b ∈ R, such that 〈J(t), ċ(t)〉 = at+ b =: p(t). We obtain

b = p(0) = 〈J(0), ċ(0)〉, a = p′(0) = 〈DtJ(0), ċ(0)〉.

A.10 Theorem (Gauss’ Lemma). Let p ∈M , X ∈ Ep ⊂ TpM and Y ∈ TpM . Then

〈expp∗|X(X), expp∗|X(Y )〉 = 〈X,Y 〉.
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Proof. In case X = 0, the statement is trivial, so let X 6= 0. Let cX be the geodesic through p with
initial velocity X ∈ TpM . Then

expp∗|X(X) = ∂t(expp(X + tX)|t=0 = ∂t(expp(tX))|t=1 = ċX(1).

By Lemma A.8 we obtain

expp∗|X(Y ) =
1

‖X‖
JY (‖X‖),

where JY is the Jacobi field along c X
‖X‖

satisfying JY (0) = 0 and DtJY (0) = Y . Using c X
‖X‖

(t‖X‖) =

cX(t), we obtain alltogether

〈expp∗|X(X), expp∗|X(Y )〉 = 〈ċX(1),
1

‖X‖
JY (‖X‖)〉 = 〈ċ X

‖X‖
(‖X‖)‖X‖, 1

‖X‖
JY (‖X‖)〉

A.9= 〈ċ X
‖X‖

(0), DtJY (0)〉‖X‖+ 〈JY (0), ċ X
‖X‖

(0)〉 = 〈X,Y 〉.

A.3 Technical Lemmata

A.11 Lemma. Let D ⊂ R be open, f : D → R be smooth and a ∈ D. Suppose

∀0 ≤ k ≤ n− 1 : f (k)(a) = 0,

but f (n)(a) 6= 0. Then there exists a smooth function g : D → R, such that

∀x ∈ D : f(x) = (x− a)ng(x),

where g(a) 6= 0.

Proof. This is just a weaker formulation of Taylor’s formula: Although f is not analytic it has a
representation

f(x) =
n−1∑
k=0

f (k)(a)
k!

(x− a)k +
f (n)(a)
n!

(x− a)n +
f (n+1)(ξ(x))

(n+ 1)!
(x− a)n+1

= (x− a)n
(
f (n)(a)
n!

+
f (n+1)(ξ(x))

(n+ 1)!
(x− a)

)
︸ ︷︷ ︸

=:g(x)

,

where ξ(x) ∈ [x, a] bzw. ξ(x) ∈ [a, x].

A.12 Corollary. Let c : [0, R] →M be a curve and let X ∈ T (c) be a vector field such that X(0) = 0
and X ′(0) 6= 0. Then there exists Y ∈ T (c) such that

∀t ∈ [0, R] : X(t) = tY (t),

where Y (0) = X ′(0).

Proof. Let E1 be the parallel translate of X ′(0) 6= 0 and choose E2, . . . , En, such that E1, . . . , En is
a parallel ONB along c. We obtain

0 = X(0) = Xi(0)Ei(0) =⇒ Xi(0) = 0

E1(0) = X ′(0) = Ẋi(0)Ei(0) +Xi(0)Ėi(0) ⇒ Xi(0) = δi1.

Therefore Lemma A.11 above yields functions Gi : [0, R] → R such that Gi(0) 6= 0 and Xi(t) = tGi(t).
Thus

X(t) = Xi(t)Ei(t) = tGi(t)Ei(t) =: tY (t).

Clearly X ′(0) = Y (0).
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A.4 Law of Cosines

A.13 Theorem (Law of Cosines). Let κ ∈ R and let ∆ = (γ0, γ1, γ2) be a triangle in M2
κ with side

lengths li and angles αi, i ∈ {1, 2, 3}. Taking all indices modulo 3, the law of cosines holds:
(i) If κ = 0

l2i = l2i+1 − 2li+1li+2 cos(αi).

(ii) If κ 6= 0
csκ(li) = csκ(li+1) csκ(li+2) + sgn(κ)κ snκ(li+1) snκ(ii+2) cos(αi).

Here the functions csκ, snκ are taken from 2.7.

Proof. We just quote this from [6, p.138].

A.14 Theorem (Angle sum identity). If κ 6= 0 the csκ satisfies

csκ(α1 + α2) = csκ(α1) csκ(α2)− κ snκ(α1) snκ(α2).

A.15 Theorem. Let M be a Riemannian manifold with metric g. Assume there is a second metric g̃
and a constant λ ∈ R>0, such that g̃ = λg. Then we obtain the following transformation laws:

(i) Length:
∀p ∈M : ∀v ∈ TpM : ‖v‖g̃ =

√
λ‖v‖g.

(ii) Balls
∀p ∈M : ∀v ∈ TpM : ∀R ≥ 0 : B̃R(v) = B R√

λ

(v).

(iii) Distance:
∀p, q ∈M : d̃(p, q) =

√
λd(p, q).

(iv) Levi/Civita-Connection:
∀X,Y ∈ T (M) : ∇̃XY = ∇XY.

(v) Riemannian Curvature Endomorphism:

∀X,Y, Z ∈ T (M) : R̃(X,Y )Z = R(X,Y )Z.

(vi) Curvature Tensor:

X,Y, Z,W ∈ T (M) : R̃m(X,Y, Z,W ) = λR(X,Y, Z,W ).

(vii) Sectional Curvature

K̃(X,Y ) =
1
λ
K(X,Y )
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List of Symbols

1PSG one parameter subgroup, page 84

Ad Adjoint representation of a Lie group, page 86

ad the ad map in a Lie group, page 85

Cg conjugation with g, page 82

C(p) cut locus, page 13

csκ standard solution of the Jacobi equation, page 10

ctκ standard solution of the Riccati equation, page 10

cv geodesic through p := π(v) with initial velocity v ∈ TpM

dL n integration with respect to the Lebesgue measure in Rn

DT tangential cut ball, page 15

etX the exponential map of a Lie group, page 84

End(c) the smooth endomorphism fields along a curve c
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Ep domain of definition for expp

F tX maximal flow of the vector field X, page 83

g a Lie algebra, page 82

G usually a Lie group or the group of deck transformations

g a Riemannian metric on M

II the second fundamental form

Isom(M) the isometry group of M

JacF the Jacobian of F , page 34

K(X ∧ Y ) the sectional curvature of the plane spanned by X,Y

Lg left-translation with g, page 82

Lip Lipschitz constant

M smooth Riemannian n-manifold with metric g

mκ a distance modifying function, page 24

Multkl (M) the smooth (k, l)-multilinear fields M , page 99

NM the normal bundle of M

Rg right-translation with g, page 82

Rv curvature endomorphism along cv , page 5

snκ standard solution of the Jacobi equation, page 10

Sp the geodesic reflection, page 71
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t0 cut point, page 12

t1 conjugate point, page 12

T kl (M) the smooth tensor fields of type (k, l) on M

T kl M the bundle of tensors of type (k, l) on M

T (M) the smooth vector fields on M

TM the tangential bundle of M

U(n) the unitary group, page 67

Uv(t) second fundamental form of geodesic sphere, page 43
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Alexandrov-Toponogov, Theorem of, 45

Berger’s Lemma, 57
bi-invariant, 85
Bishop-Gromov Inequality, 38

Cartan’s Theorem, 75
Cheng’s Theorem, 41
comparison triangle, 26
complex projective space, 61
congruent, 26
conjugate locus, 13
conjugation, 82
covariant differential

of endomorphisms, 97
of multilinear fields, 99

cut locus, 13
cut point, 13

distance function, 3

exponential map
of a Lie group, 84

Fubini-Study metric, 65

geodesic reflection, 71
geodesic triangle, 26
Gromov’s Theorem, 50
Growth

of a function, 29
Grwoth

of a group, 30

Heisenberg group, 94
Hessian, 4
homotopy class

free, 53
Hopf circle, 62
Hopf map, 62

injectivity radius, 18

Jacobi equation, 8
of endomorphisms, 5

Jacobian, 34

Karcher’s Trick, 24
Killing form, 90
Klingenberg’s Lemma, 57

left-invariance
of a metric, 85
of a vector field, 82

left-invariant, 82
Lie algebra, 82
Lie group, 82
locally symmetric space, 71

Milnor’s Theorem, 93
model spaces, 26

one parameter subgroup, 84

parallelepiped, 34

Riccati equation, 8
of endomorphisms, 5

right-invariance
of a metric, 85
of a vector field, 82

short basis, 49
Sphere Theroem, 56
symmetric space, 71

construction theorem, 79
Synge’s Theorem, 55

Topogonov
inverse, 26

Toponogov’s Theorem, 45
transformation theorem, 35
translation, 82
transvection, 78
triangle, 26

Veronese map, 64
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