
Basics of Complex Manifolds

Nikolai Nowaczyk, Johannes Niediek, Moritz Firsching

January 2009

Contents

1 Complex Manifolds 1

2 Almost complex Structures 1

3 Tangent Bundle and Vector fields 5

4 Compatible Metrics and Hermitian Manifolds 7

5 Nijenhuis Tensor 9

6 Differential forms and Dolbeault cohomology 10

1 Complex Manifolds

1.1 Definition (Complex Manifold). Let M be a smooth manifold of dimension 2m. A smooth
atlas A is holomorphic, if for any two charts z : U → U ′, w : V → V ′, the transition function
z ◦ w−1 : w(U ∩ V ) → z(U ∩ V ) is holomorphic, if we identify R2m = Cm. In this case A determines
a maximal holomorphic atlas, called a complex structure on M . The charts of an holomorphic atlas
are called holomorphic charts. The tupel (M,A ) is a complex manifold of complex dimension m. If
m = 1, M is a Riemann Surface.

1.2 Definition (Holomorphic maps). Let M,N be complex manifolds. Then a map f : M → N is
holomorphic , if for all holomorphic charts z of M and w of N the map w ◦ f ◦ z−1 is holomorphic on
its domain of definition.
If N = C we say f is a holomorphic function. For any open subset U ⊂ M we denote by O(U) the
set of all holomorphic functions on U .
We say f is biholomorphic if f is bijective and f and f−1 are both holomorphic. If M = N we say f
is an automorphism.

2 Almost complex Structures

2.1 Definition. Let V be an n-dimensional R vector space. Then a J ∈ EndR(V ) satisfying

J2 = − idV

is a complex structure on V
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2.2 Example. Cm as an R vector space with the almost complex structure J given by v 7→ iv. Seen
over the reals we can identify

(z1, . . . , zm) = (x1 + iy1, . . . , xm + iym)=̂(x1, y1, . . . , xm, ym)

Then J is given on R2m by

(x1, y1, . . . , xm, ym) 7→ (y1,−x1, . . . , ym,−xm)

2.3 Lemma. In this situation J determines a natural complex vector space structure on V by defining
VJ := V as a set and extending complex scalar multiplication by the linear extension of

∀v ∈ V : iv := J(v)

We can interpred J ∈ EndC(VJ) in this case.

Proof. Most of the axioms of scalar multiplication are more or less obvious, except maybe

∀a, b, c, d ∈ R : (a+ ib) · ((c+ id) · v) = (a+ ib) · (cv + dJ(v)) = acv + adJ(v) + cbJ(v)− bcv

= (ac− bc)v + (ad+ cb)J(v) = ((a+ ib)(c+ id))v

By definition J is R linear. By by definition

J(iv) = J(J(v)) = iJ(v)

2.4 Lemma. Let W be a C vector space with dimCW = m. Denote by WR the underlying real vector
space, i.e. WR = W as a set and scalar multiplication on W is restricted to the reals. Then

dimRWR = 2m

Proof. Let b1, . . . , bm be a C-basis of W and w ∈W . Then there exist λ1, . . . , λm ∈ C such that

w =
m∑

k=1

λkbk =
m∑

k=1

Re(λk)bk +
m∑

k=1

Im(λk)ibk

so (b1, ib1, . . . , bm, ibm) R-generates WR. They are R - linear independent since

∀αk, βk ∈ R : 0 =
m∑

k=1

αkbk +
m∑

k=1

βkibk =
m∑

k=1

(αk + iβk)bk

implies ∀1 ≤ k ≤ m : αk = βk = 0 since b1, . . . , bm are C - linear independent.

2.5 Corollary. If V is a finite dimensional R-vector space which admits a complex structure J then
its dimension is even. Especially if n := dimR V and m := dimC VJ we obtain:

n = dimR V = dimR VJ = 2m

2.6 Definition (Complexification). Let V be an n-dimensional R vector space. The space

V C := V ⊗R C

is the complexification of V . By the dimension formula for tensor products dimR V
C = 2n. So VC can

be seen as a complex vector space with scalar multiplication defined by

∀z, α ∈ C : ∀v ∈ V : z · v ⊗ α := v ⊗ (zα)
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There is a canonical embedding V → V C, v 7→ v ⊗ 1. The image of this embedding is precisely the
subset of V C, that is invariant under complex conjugation which is defined by v ⊗ α := v ⊗ α.
If W is another R vector space, any f ∈ HomR(V,W ) extends to an fC ∈ HomC(V,W ) via

fC(v ⊗ α) := f(v)⊗ α

If J is a complex structure on V , it especially as a C-linear extension JC : VC → VC sometimes also
denoted by J

2.7 Lemma. Complexification is a covariant additive functor from the category of R vector spaces to
the category of C vector spaces, i.e.

(i) For any g : U → V , f : V →W : (f ◦ g)C = fC ◦ gC

(ii) (idV )C = idV C

(iii) For any f, g : V →W : (f + g)C = fC + gC

(iv) For any a ∈ R: (af)C = afC

2.8 Lemma. [Properties of complex Structures] Let V be an n-dimensional R vector space with a
complex structure J and V C its complexification. Then J = JC still satisfies JC ◦ JC = − idV C .

(i) J is an isomorphism
(ii) The only eigenvalues of J are +i,−i.
(iii) J is diagonizable.
(iv) If V ′ is the eigenspace of +i and V ′′ is the eigenspace of −i, we have

V C = V ′ ⊕ V ′′

(v) The maps ϕ : VJ → V ′ and ψ : VJ → V ′′

v 7→ 1
2
(v ⊗ 1− iJ(v)⊗ 1) v 7→ 1

2
(v ⊗ 1 + iJ(v)⊗ 1)

are complex linear / complex antilinear resp. isomorphisms.

Proof.
(i) Injectivity:

v ∈ ker J ⇒ −v = J(J(v)) = J(0) = 0 ⇒ v = 0

Surjectivity: Let v ∈ V C be arbitrary and define w := −J(v) then

J(w) = J(−J(v)) = −J(J(v)) = v

(ii) Assume λ ∈ C is an eigenvalue of J . Then for any v ∈ VC

−v = J(J(v)) = J(λv) = λJ(v) = λ2v

and thus λ2 = 1.
(iii) We claim that (X + i)(X − i) is the minimal polynomial of J , by simply calculating

(J + i)(J − i) = J2 − iJ + iJ − i2 = − id+ id = 0

(iv) This is a consequence of the preceeding statements.
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(v) First of all, the image of ϕ really is contained in V ′ since

J(ϕ(v)) = J(
1
2
(v ⊗ 1− iJ(v)⊗ 1)) =

1
2
(J(v)⊗ 1 + iv ⊗ 1) =

1
2
(iv ⊗ 1 + J(v)⊗ 1) = iϕ(v)

Complex linearity follows by definition via

ϕ(iv) = ϕ(J(v)) =
1
2
(J(v)⊗1−iJ(J(v))⊗1) =

1
2
(J(v)⊗1+iv⊗1) = i

1
2
(−iJ(v)⊗1+v⊗1) = iϕ(v)

Now assume
v ∈ kerϕ⇒ 0 =

1
2
(v ⊗ 1− iJ(v)⊗ 1) ⇒ v ⊗ 1 = J(v)⊗ i

On the other hand complex conjugation yields

⇒ v ⊗ 1 = v ⊗ 1̄ = v ⊗ 1 = J(v)⊗ i = J(v)⊗ i = −J(v)⊗ i

This implies v ⊗ 1 = 0 ⇒ v = 0. So ϕ in injective and thus an isomorphism.
The discussion of ψ is entirely analogous.

2.9 Lemma. Let V be an R vector space endowed with an almost complex structure J . Then the
dual space V ∗ = HomR(V,R) has a natural complex structure as well given by J(f)(v) := f(J(v)).

2.10 Definition (Almost complex structure). Let M be a smooth manifold. Let J be a smooth (1, 1)
tensor field on M . For any p ∈M we can interpret J(p) ∈ EndR(TpM). If J satisfies

∀p ∈M : J(p)2 = − idTpM

J is an almost complex structure on M .

2.11 Lemma (Complex to Almost Complex). Let M be a smooth manifold. If M admits a complex
structure A , then M admits an almost complex structure J . Let dimCM = m and (z, U) be any
holomorphic chart inducing a coordinate frame ∂x1, ∂y1, . . . , ∂xm, ∂ym. Then J is given locally as

Jp(∂xi|p) = ∂yi|p Jp(∂yi|p) = −∂xi|p

where 1 ≤ i ≤ m and p ∈ U .

Proof. We have no chance but to define J as required. Clearly J satisfies J2 = −1. We have to
show that this definition does not depend on the chosen coordinate chart. So let (z′, U ′) be another
holomorphic coordinate chart and suppose p ∈ U ∩ U ′. Denote by J ′p the induced almost complex
structure defined by z′. Fix any 1 ≤ i ≤ m. To simplify notation write

J := Jp J ′ := J ′p

Xi := ∂xi|p Yi := ∂yi|p
X ′

i := ∂x′i|p Y ′
i := ∂y′i|p

By definition we have

J(Xi) = Yi J(Yi) = −Xi

J ′(X ′
i) = Y ′

i J ′(Y ′
i ) = −X ′

i

We have to show, that

J(X ′
i) = J ′(X ′

i) J(Y ′
i ) = J ′(Y ′

i )
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Let ψ := z′ ◦z−1 be the transition function and T := dψ(z(p)) be its differential. Let’s discuss the case
n = 1 first by by dropping all the i in notation. Since ψ is holomorphic, there exist α, β ∈ R such that

T =
(
α β
−β α

)
This uses the Cauchy-Riemann differential equations. It follows that the coordinate frames are trans-
formed via

X ′ = αX + βY

Y ′ = −βX + αY

This implies

J(X ′) = J(αX + βY ) = αJ(X) + βJ(Y ) = αY − βX = Y ′ = J ′(X ′)

And similar for Y ′.
The multidimensional case follows similar since the multidimensional Cauchy-Riemann differential
equations state that T is of the same form as above, but with α, β being matrices.

2.12 Definition (Almost Complex To Complex). An almost complex structure J on M is a complex
structure, if it is induced by some complex structure on M as above.

2.13 Remark. One can show, that on a surface any almost complex structure is a complex structure.

3 Tangent Bundle and Vector fields

3.1 Definition (Complexified Tangent Bundle). Let M be a smooth manifold. Then

TCM := TM ⊗R C

is the complexified tangent bundle of M .

3.2 Lemma. If J is an almost complex structure, the complexified tangent bundle admits an eigenspace
decomposition

TCM = T ′M ⊕ T ′′M

with respect to J . Notice that T ′M and T ′′M are smooth subbundles of TCM and the isomorphisms
in lemma 2.8 extend to isomorphisms of complex vector bundles.

3.3 Definition (Complex Vector Fields). A smooth section Z of TCM is a complex vector field. Any
such field can be written as

Z = X + iY

where X,Y ∈ Γ(M) are smooth real vector fields. We denote the space of all complex vector fields by
ΓC(M).

3.4 Lemma (Vector fields as Derivations). Any complex vector field Z acts on C∞(M,C) as a complex
linear derivation in the following way: Write Z = X + iY ∈ ΓC(M), X,Y ∈ Γ(M) and f = u + iv ∈
C∞(M,C) with u, v ∈ C∞(M,R). Define

Z(f) := X(u)− Y (v) + i(X(v) + Y (u))

Then Z is a complex linear derivation.
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Proof. Clearly Z is R-linear, so it suffices to check

Z(if) = Z(i(u+ iv)) = Z(−v + iu) = −X(v)− Y (u) + iX(u)− iY (v)
= iX(u)− iY (v)−X(v)− Y (u) = i(X(u)− Y (v) + i(X(v) + Y (u))) = iZ(f)

We have to check, that Z satisfies the product rule with respect to complex multiplication as well. So
take another g = a+ ib ∈ C∞(M,C) and calculate:

Z(fg) = Z(au− bv + i(bu+ av)) = X(au− bv)− Y (bu+ av) + i(X(bu+ av) + Y (au− bv))
= aX(u) + uX(a)− bX(v)− vX(b)− bY (a)− uY (b)− aY (v)− vY (a)
+ i(bX(u) + uX(b) + aX(v) + vX(a) + uY (a) + aY (u)− bY (v)− vY (b))
= (a+ ib)(X(u)− Y (v) + i(X(v) + Y (u))) + (u+ iv)(X(a)− Y (b) + i(X(b) + Y (a)))
= gZ(f) + fZ(g)

3.5 Definition (Lie - Bracket). Remember that for any smooth vector fields X,Y ∈ Γ(M) we obtain
a new vector field [X,Y ] ∈ Γ(M) by defining

[X,Y ](f) := X(Y f)− Y (Xf)

where f ∈ C∞(M). The operation [_,_] is called Lie-Bracket.

3.6 Definition (Complex Lie - Bracket). We extend the Lie Bracket to complex vector fields, by
defining

[X + iY, U + iV ] := [X,U ]− [Y, V ] + i([X,V ] + [Y, U ])

3.7 Definition. Let (z, U) be a holomorphic coordinate chart for M . Write zj = xj + iyj . Define

∂zj :=
1
2
(∂xj − i∂yj) ∂z̄j :=

1
2
(∂xj + i∂yj)

Any complex vector field Z on M has a decomposition Z = Z ′ + Z ′′ where

Z ′ =
1
2
(Z − iJZ) ∈ TM ′ Z ′′ =

1
2
(Z + iJZ) ∈ TM ′′

3.8 Lemma. Let dxj , dyj ∈ T ∗U be the dual operators of ∂xj , ∂yj ∈ TU . Define

dzj := dxj + idyj dzj := dxj − idyj

Then dzj , dzj are the dual basis corresponding to ∂zj , ∂zj .

Proof. We check this for one arbitrary j, which we drop in notation for simplicity, by checking, that
dz has the dual basis property:

dz(∂z) = (dx+ idy)(
1
2
(∂x− i∂y)) =

1
2
dx(∂x)− i

2
dx(∂y) +

i

2
dy(∂x)− i2

2
dy(∂y) = 1

and

dz(∂z) = (dx+ idy)(
1
2
(∂x+ i∂y)) =

1
2
dx(∂x)− i

2
dx(∂y) +

i

2
dy(∂x) +

i2

2
dy(∂y) = 0

The calculation for dz is entirely analogous.
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4 Compatible Metrics and Hermitian Manifolds

4.1 Definition (Compatible Metric, Hermitian Manifold). Let M be a complex manifold with corre-
sponding almost complex structure J . A Riemannian metric g = 〈_,_〉 on M is compatible with J
if

∀X,Y ∈ Γ(M) : 〈JX, JY 〉 = 〈X,Y 〉

The triple (M,J, g) is an Hermitian Manifold.

4.2 Lemma. Let (M,J, g) be a Hermitian Manifold. Then there is a complex linear extension gC of
g = 〈_,_〉 to TCM given by

〈X1 ⊗ z1, X2 ⊗ z2〉 := z1z2〈X1, X2〉

This extension is symmetric and satisfies the following conditions
(i) For all complex vector fields Z1, Z2: 〈Z1, Z2〉 = 〈Z1, Z2〉
(ii) For all Z1, Z2 ∈ T ′M : 〈Z1, Z2〉 = 0
(iii) If Z 6= 0: 〈Z,Z〉 > 0

Proof. The symmetry is obvious from the definition. Write Z1 = X1 ⊗ z1, Z2 = X2 ⊗ z2, Z = X ⊗ z,
where X1, X2, X ∈ Γ(M), z1, z2, z ∈ C

(i) Unraveling the definitions we obtain

〈Z1, Z2〉 = 〈X1 ⊗ z1, X2 ⊗ z2〉 = 〈X1 ⊗ z1, X2 ⊗ z2〉 = z1z2〈X1, X2〉
= z1z2〈X1, X2〉 = 〈X1 ⊗ z1, X2 ⊗ z2〉 = 〈Z1, Z2〉

(ii) On the one hand we obtain by definition

〈Z1, Z2〉 = z1z2〈X1, X2〉

Now assume Z1, Z2 ∈ T ′M , i.e. J(Z1) = iZ1, J(Z2) = iZ2. Then on the other hand

〈Z1, Z2〉 = 〈J(Z1), J(Z2)〉 = 〈iZ1, iZ2〉 = 〈X1 ⊗ iz1, X2 ⊗ iz2〉 = iz1iz2〈X1, X2〉 = −z1z2〈X1, X2〉

So 〈Z1, Z2〉 = 0.
(iii) If Z 6= 0 then X 6= 0, z 6= 0 as well, so

〈Z,Z〉 = 〈X ⊗ z,X ⊗ z〉 = 〈X ⊗ z,X ⊗ z〉 = zz〈X,X〉 = |z|2||X||2 > 0

4.3 Lemma. Let M be a complex manifold with complex structure J . Let gC : TCM × TCM → C
be a symmetric complex bilinear form on TCM satisfying the conditions (i)-(iii) in the lemma above.
Then there exists a Riemannian metric gR on TM , such that gR is compatible with J and the complex
bilinear extension (gR)C of gR is equal to gC. In this case, the conditions (i)-(iii) hold for complex
vector fields as well.

Proof. Let X = X ⊗ 1, Y = Y ⊗ 1 be real vector fields. Then property (i) ensures

gC(X,Y ) = gC(X,Y ) = gC(X,Y )

which implies, that gC|TM : TM × TM → R. So define

gR := Re(gC) = gC|TM
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By construction gR is R-bilinear and symmetric. Property (iii) ensures

gR(X,X) = gR(X,X) > 0

for any real vector field X 6= 0. So gR is a Riemannian metric.
Consider arbitrary complex vector fields X1 ⊗ z1, X2 ⊗ z2 and the complexification of gR:

(gR)C(X1 ⊗ z1, X2 ⊗ z2) = z1z2gR(X1, X2) = z1z2gC(X1, X2) = gC(X1 ⊗ z1, X2 ⊗ z2)

So (gR)C = gC.
By property (ii) gC vanishes on T ′M . Let Z1, Z2 ∈ T ′′M . Property (i) immediately implies

gC(Z1, Z2) = gC(Z1, Z2) = 0

since Z1, Z1 ∈ T ′M . So gC vanishes on T ′′M as well. Now let X,Y ∈ TM be real vector fields.
Interpreted as the complex vector fields X⊗1, Y ⊗1 they admit a uinque decomposition X = X ′+X ′′ ∈
T ′M ⊕ T ′′M , Y = Y ′ + Y ′′ ∈ T ′M ⊕ T ′′M . We obtain

gR(J(X), J(Y )) = gC(J(X), J(Y ))
= gC(J(X ′) + J(X ′′), J(Y ′) + J(Y ′′))
= gC(J(X ′), J(Y ′) + gC(J(X ′), J(Y ′′)) + gC(J(X ′′), J(Y ′)) + gC(J(X ′′), J(Y ′′))
= gC(iX ′, iY ′) + gC(iX ′,−iY ′′) + gC(−iX ′′, iY ′) + gC(−iX ′′,−iY ′′)
= gC(X ′, Y ′′) + gC(X ′′, Y ′)
= gC(X ′, Y ′) + gC(X ′, Y ′′) + gC(X ′′, Y ′) + gC(X ′′, Y ′′)
= gC(X ′ +X ′′, Y ′ + Y ′′)
= gR(X,Y )

So gR is compatible with J . For any complex vector fields X1 ⊗ z1, X2 ⊗ z2:

gC(J(X1 ⊗ z1), J(X2 ⊗ z2))) = z1z2 · gC(J(X1), J(X2))
= z1z2 · gR(J(X1), J(X2)) = z1z2 · gR(X1, X2) = gC(X1 ⊗ z1, X2 ⊗ z2)

4.4 Lemma (Existence of Compatible Metrics). Let M be a complex manifold and J be the induced
complex structure on M . Then there exists a compatible Riemannian metric g = 〈_,_〉 on M .

Proof. First we define g locally. Let p ∈M and (z, U) be a holomorphic chart near p. Let V := TpM
and J := Jp. The induced coordinate frame of z yields a basis (X1, Y 1, . . . , Xm, Y m) for V . Since J
is induced by the complex structure

J(Xi) = Y i J(Y i) = −Xi

Define 〈_,_〉 by declaring (X1, Y 1, . . . , Xm, Y m) to be an orthonormal basis. Then

〈J(Xi), J(Y j)〉 = −〈Y i, Xj〉 = 0 = 〈Xi, Y j〉
〈J(Xi), J(Xj)〉 = 〈Y j , Y i〉 = δij = 〈Xi, Xj〉
〈J(Y i), J(Y j)〉 = 〈−Xj ,−Xi〉 = δij = 〈Y i, Y j〉

So J is compatible. This process can be done in any TqM where q ∈ U and any holomorphic coordinate
chart. This yields to an open cover Uα of M where each TUα is endowed with a compatible Riemannian
Metric. Patching together with a smooth partition of unity, we obtain the desired result.
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4.5 Theorem. Let M be a complex manifold with complex structure J and let g = 〈_,_〉 be a
Riemannian metric on M . Then g is compatible with J iff around each point p ∈ M there are
holomorphic coordinates

z = (z1, . . . , zm) = (x1 + iy1, . . . , xm + iym)

such that the associated coordinate frame (X1, Y1, . . . , Xm, Ym) at p is a g - orthonormal basis of TpM .

4.6 Corollary. Let M be a Hermitian manifold. Then the type decomposition

Ar(M,C) = ⊕p+q=rA
p,q(M,C)

is orthogonal with respect to the induced Hermetian metric (ϕ,ψ) := 〈ϕ,ψ〉.
Let ϕ ∈ Ap,q, then it follows that ∗ϕ ∈ Am−q,m−p.

5 Nijenhuis Tensor

5.1 Definition (Nijenhuis / Torsion Tensor). Let M be a smooth manifold and J be an almost
complex structure on M . For any smooth vector fields X,Y ∈ Γ(M) we defined

NJ(X,Y ) := 2([JX, JY ]− [X,Y ]− J([X,Y ])− J([JX, Y ]))

N is the associated Nijenhuis or torsion Tensor.

5.2 Definition (Connection). Let π : E → M be a smooth vector bundle over a smooth manifold
M . Denote by E (M) the space of smooth sections over M and by T (M) the space of smooth sections
over TM . A connection is a map

∇ : T (M)× E (M) → E (M)

written (X,Y ) 7→ ∇XY satisfying the following properties:
(i) Linearity over C∞(M) in X:

∀f, g ∈ C∞(M) : ∇fX1+gX2 = f∇X1Y + g∇X2Y

(ii) Linearity over R in Y :

∀a, b ∈ R : ∇X(aY1 + bY2) = a∇X(Y1) + b∇X(Y2)

(iii) Product rule:
∀f ∈ C∞(M) : ∇X(fY ) = f∇XY + (Xf)Y

A connection is a linear connection, if E (M) = T (M).

5.3 Definition (Torsion). A linear connection is torsion free, if

∀X,Y ∈ TM : ∇XY −∇YX = [X,Y ]

5.4 Lemma. Let M be a smooth manifold and J be an almost complex structure on M .
(i) NJ is a tensor.
(ii) Let ∇ be a torsion free connection. Then

1
2
NJ(X,Y ) = ∇J(JX, Y )− J∇J(X,Y )−∇J(JY,X) + J∇J(Y,X)

(iii) J is a complex structure, if ∇J = 0.

5.5 Theorem. Let M be a smooth manifold and J be an almost complex structure. Then the
associated torsion tensor NJ vanishes if and only if T ′M is an involutive distribution, i.e. forall
Z1, Z2 ∈ E(T ′M) : [Z1, Z2] ∈ E(T ′M).

5.6 Theorem (Newlander - Nirenberg). An almost complex structure J on M is a complex structure
if and only if NJ vanishes.
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6 Differential forms and Dolbeault cohomology

Splitting into types∧k V ∗
C =

∧k (V ⊕ V ′′)∗ =
⊕

k=p+q (
∧p V ′∗ ⊗ ∧q V ′′∗) . By “=” we express that there is a basis-

independent isomorphism between these complex vector spaces. Let ϕ ∈
∧p V ′∗ ⊗ ∧q V ′′∗, that is,

ϕ = ϕ1 ⊗ ϕ2. Define a morphism A by

(Aϕ)(v′1 + v′′1 , . . . , v
′
k + v′′k) :=

1
p!q!

∑
σ∈Sk

ε(σ)ϕ1(v′σ(1), . . . , v
′
σ(p))ϕ2(v′′σ(p+1), . . . , v

′′
σ(k)).

By choosing bases, one can show that A defines an isomorphism.
Therefore any form in

∧k V ∗
C is a linear combination of forms of type (p, q) where p+ q = k.

Let M a complex Manifold and TCM = T ∗M ⊗ C its complexified tangent bundle. The point-
wise splitting into types now becomes global: Define Ar(M,C) :=

∧r T ∗CM . Then Ar(M,C) =⊕
p+q=r A

p,q(M,C). Denote with Ap,q(M,C) the space of smooth sections of Ap,q(M,C). These sec-
tions are called differential forms of type (p, q). Let zj = xj+iyj components of holomorphic coordinates
on U ⊆M . Let dzj = dxj +idyj and dzj = dxj− idyj . Recording Zj = 1

2(Xj− iYj), Zj = 1
2(Xj +iYj),

we can now check relations as dzj(Zk) = δjk and dzj(Zk) = δjk applying the definitions and calcu-
lating. This shows that

(
dzj ,dzj

)
is a dual basis of

(
Zj , Zj

)
. Further calculations show J(dz) = idz

and J(dz) = −idz. Thus dz ∈ A1,0(M,C) and dz ∈ A0,1(M,C). Using the definitions again we obtain
dz(JV ) = idz(V ) and dz(JV ) = −idz(V ) for any vector field V on M . For ω ∈ Ap,q(M,C) we examine
the complex structure J on M and denote αv = (a+ bi)v = av + bJv for the multiplication of z ∈ C
with a vectorfield v on M . The above equalities show that ω(αv1, . . . , αvr) = αpαqω(v1, . . . , vr).

Exterior differential

If ω ∈ Ap,q we have a local coordinate representation

ω =
∑
IJ

aIJdzI ∧ dzJ .

Apply d:
dω =

∑
iIJ

Xi(aIJ)dxi ∧ dzI ∧ dzJ +
∑
iIJ

Yi(aIJ)dyi ∧ dzI ∧ dzJ .

Using Xi = Zi + Zi and Yi = i(Zi − Zi) this is

dω =
∑
iIJ

Zi(aIJ)(dxi + idyi) ∧ dzI ∧ dzJ +
∑
iIJ

Zi(aIJ)(dx− iyi) ∧ dzI ∧ dzJ .

By calling the summands ∂ω and ∂ω, we have d = ∂ + ∂. Everything is well-defined and we have
∂ : Ap,q → Ap+1,q and ∂ : Ap,q → Ap,q+1. In the smooth category one cannot define ∂ because there is
no natural (Zj , Zj). In the almost complex category there are more subtle difficulities.

Dolbeault cohomology

Now we use the fact im ∂ ∩ im ∂ = 0. From 0 = d2 = (∂ + ∂)2 we deduce ∂2 = 0 = ∂
2. Therefore ∂

defines a cochain complex for each integer p:

· · · → Ap,q−1 → Ap,q → Ap,q+1 → · · ·

Its cohomology is called Dolbeault cohomology, the cohomology groups Hp,q are called Dolbeault coho-
mology groups and their complex vector space dimensions are the Hodge numbers hp,q of M . Lastly,
the first non-trivial cohomology group has a special meaning. We use the notation Ωp(M) := ker(∂ :
Ap,0 → Ap,1), the holomorphic forms of degree p.
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Holomorphic vector bundles

For any complex vector bundle of rank n we have the following typical diagram:

U × Cn Φ−1
//

prU

%%KKKKKKKKKKK p−1(U)

p

��

Ψ // U × Cn

prU

yysssssssssss

U

We have (Ψ ◦ Φ−1)(u, v) = (u,Av) = (u, γ(u)v) where γ : U → Gl(n,C) is the transition map. If one
can find an atlas for a given complex vector bundle such that all γ and p are holomorphic, the bundle
together with this atlas is called a holomorphic vector bundle. At this moment we do not know if there
are complex vector bundles that admit several distinct holomorphic structures.
For coordinates z and w on U ⊆ M we examine the cotangent bundle T ∗CU with induced coordinates
dzj =

∑ ∂zj

∂wk dwk and dzj =
∑ ∂zj

∂wk dzk. The derivatives in the sums are the components of the
transition function γ. Therefore γ is holomorphic with induced coordinates on tensor bundles T k

l U of
U iff there do never appear any dzj coordinates in local coordinate representations of sections of T k

l U .
This shows that the bundle Ap,0 has a natural holomorphic structure while the related bundles Ap,q,
Ak and A∗ do not carry such a structure in a natural way for q 6= 0 (of course only if their rank is at
least one).

Review of Poincaré Duality

We review the Hodge operator ∗ on an oriented real Manifold M of dimension n with volume form vol.
For any ϕ ∈ Ar(M,R) the equation

∗ϕ ∧ ψ = 〈ϕ,ψ〉vol ∀ψ ∈ Ar

defines a unique form ∗ϕ. There are some well-known relations: ∗1 = vol, ∗vol = 1 and ∗∗ : Ar → Ar

is given by multiplication with (−1)r(n−r). For the exterior differential d we define the adjoint operator
d∗ : Ar → Ar−1 by ∫

M
〈dϕ,ψ〉vol =

∫
M
〈ϕ,d∗ψ〉vol ∀ϕ ∈ Ar

c, ψ ∈ Ar+1
c

where Ac is the space of forms with compact support.
We define the Laplace operator ∆ = dd∗+d∗d and say that a form ϕ is harmonic if ∆ϕ = 0. We write
Hr for the subspace of harmonic functions. Now we can formulate Poincaré duality : ∗ : Hn → Hn−r

is an isomorphism.

Serre Duality

LetM a complex Manifold of complex dimensionm. Define a hermitian metric (·, ·) by (ϕ,ψ) := 〈ϕ,ψ〉.
We need two facts:

(i) The splitting into types Ar =
⊕

p+q=r Ap,q is orthogonal with respect to (·, ·).
(ii) ∗ : Ap,q → Am−q,m−p

The proof of (i) consists in calculating (dzi,dzj), (dzi,dzj) etc. To prove (ii), one shows (ψ, ∗ϕ) = 0
for all ψ ∈ Am−q′,m−p′ . Thus, with ∗ϕ := ∗ϕ we have ∗ : Ap,q → Am−p,m−q. Now we derive a
useful expression for the adjoint operator ∂∗: Let α ∈ Ap,q

c , β ∈ Ap,q−1
c . Thus ∗α ∧ β ∈ Am,m−1

and therefore d(∗α ∧ β) = ∂(∗α ∧ β) = ∂∗α ∧ β + (−1)2m−r(∗α ∧ ∂β). Using ∗∗ = (−1)r for the
spaces concerned we get d(∗α∧β) = (−1)2m−r

(
−(∗∂∗α, β) + (α, ∂β)

)
vol, which by integration (using

Stoke’s theorem on the l.h.s.) yields
∫
M (∗∂∗α, β)vol =

∫
M (α, ∂β)vol. Hence we have ∂∗ = ∗∂∗. Setting
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∆∂ := ∂∂
∗+∂∗∂ another (easier but longer) calculation shows

[
∆∂ , ∗

]
= 0. Thus ∗ : Hp,q → Hm−p,m−q

is an isomorphism between the spaces H of ∂-harmonic forms. It follows from Hodge theory that the
Dolbeault cohomology groups inherit this isomorphism. This gives the final result: Hp,q ∼= Hm−p,m−q,
known as Serre duality.
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