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1 Complex Manifolds

1.1 Definition (Complex Manifold). Let M be a smooth manifold of dimension 2m. A smooth
atlas ./ is holomorphic, if for any two charts z : U — U’, w : V — V', the transition function
zow l:w(UNV) — 2(UNV) is holomorphic, if we identify R*™ = C™. In this case &/ determines
a maximal holomorphic atlas, called a complex structure on M. The charts of an holomorphic atlas
are called holomorphic charts. The tupel (M, <7) is a complez manifold of complex dimension m. If
m =1, M is a Riemann Surface.

1.2 Definition (Holomorphic maps). Let M, N be complex manifolds. Then a map f: M — N is
holomorphic , if for all holomorphic charts z of M and w of N the map wo f o z~! is holomorphic on
its domain of definition.

If N =C wesay f is a holomorphic function. For any open subset U C M we denote by &(U) the
set of all holomorphic functions on U.

We say f is biholomorphic if f is bijective and f and f~! are both holomorphic. If M = N we say f
is an automorphism.

2 Almost complex Structures

2.1 Definition. Let V' be an n-dimensional R vector space. Then a J € Endg(V) satisfying
J? = —idy

is a complex structure on V.



2.2 Example. C™ as an R vector space with the almost complex structure J given by v +— iv. Seen
over the reals we can identify

(24, 2™ = (@t iyt 2™ ™)=Yt 2™ ™)
Then J is given on R?™ by
(x17y1""7xm7ym) — (y17_$17"'?ym7 _mm)

2.3 Lemma. In this situation J determines a natural complex vector space structure on V by defining
Vi =V as a set and extending complex scalar multiplication by the linear extension of

Yo eV iiv:=J(w)
We can interpred J € Endc (V) in this case.

Proof. Most of the axioms of scalar multiplication are more or less obvious, except maybe

Va,b,c,d € R: (a+1b) - ((c+id)-v) = (a+1ib) - (cv+dJ(v)) = acv + adJ (v) + cbJ (v) — bcv
= (ac — be)v + (ad + ¢b)JJ(v) = ((a + ib)(c + id))v

By definition J is R linear. By by definition
J(w) = J(J(v)) =iJ(v)
O

2.4 Lemma. Let W be a C vector space with dim¢ W = m. Denote by Wg the underlying real vector
space, i.e. Wr = W as a set and scalar multiplication on W is restricted to the reals. Then

dimR WR =2m

Proof. Let by,...,by, be a C-basis of W and w € W. Then there exist A1,..., Ay € C such that

w=> Mbp=> Re(Ae)by + > Im(\g)iby
k=1 k=1 k=1

so (by,ib1, ..., bm,ib,,) R-generates Wgr. They are R - linear independent since
m m m
Vou, B €R:0=> apbp+ > Bribe = Y _ (o + Bk b
k=1 k=1 k=1
implies V1 < k <m : ap = B = 0 since by, ..., by, are C - linear independent. O

2.5 Corollary. If V is a finite dimensional R-vector space which admits a complex structure J then
its dimension is even. Especially if n := dimg V' and m := dim¢ V; we obtain:

n::dHnRV’::dhnRVQ::2nz
2.6 Definition (Complexification). Let V be an n-dimensional R vector space. The space
ve.=v Qr C

is the complezification of V. By the dimension formula for tensor products dimg VC = 2n. So V¢ can
be seen as a complex vector space with scalar multiplication defined by

VzaeC:YoeV iz v®@a:=vQ (zq)



There is a canonical embedding V' — VC, v +— v ® 1. The image of this embedding is precisely the
subset of VC, that is invariant under complex conjugation which is defined by v® a := v @ @.
If W is another R vector space, any f € Homg(V, W) extends to an f© € Home(V, W) via

ffFrea):=fv)®a

If J is a complex structure on V, it especially as a C-linear extension JC : Vo — Vi sometimes also

denoted by J

2.7 Lemma. Complexification is a covariant additive functor from the category of R vector spaces to
the category of C vector spaces, i.e.

(i) Forany g: U =V, f:V = W: (fog)® = fCog¢®
(i) (idy)® = idyec

(iii) For any f,g:V — W: (f + )¢ = fC + 4

(iv) For any a € R: (af)® = af®

2.8 Lemma. [Properties of complex Structures| Let V' be an n-dimensional R vector space with a
complex structure J and VC its complexification. Then J = JC still satisfies JC o JC = — idyc.

(i) J is an isomorphism
(ii) The only eigenvalues of J are +i, —i.
(iii) J is diagonizable.
(iv) If V' is the eigenspace of +i and V" is the eigenspace of —i, we have
V(C -V’ D \Veld
(v) The maps ¢ : V; =V and ¢ : V; — V"
1 , 1 ,
U'—>§(U®1—2J(U)®1) vb—>§(v®1+zJ(v)®l)
are complex linear / complex antilinear resp. isomorphisms.

Proof.
(i) Injectivity:
vekerJ = —v=J(J(v)=J0)=0=v=0

Surjectivity: Let v € V€ be arbitrary and define w := —J(v) then

(i1) Assume A € C is an eigenvalue of J. Then for any v € V¢
—v=J(J() =JW) =AJ(v) = v

and thus A\? = 1.
(iii) We claim that (X +4)(X —4) is the minimal polynomial of .J, by simply calculating

(J+i)(J —i)=J% —iJ +iJ —i* = —id+id = 0

(iv) This is a consequence of the preceeding statements.



(v) First of all, the image of ¢ really is contained in V' since
1 1 1
J(p(v)) = J(i(v ®1—iJv)®1)) = i(J(U) Rl1+iwvel)= i(w @1+ J(v)®1) =ip(v)

Complex linearity follows by definition via

oliv) = p(J(v)) = %(J(v)@l—z’J(J(v))@l) - %(J(v)@l—i—iv@l) _ i%(—iJ(v)@l—l—v@l) — i)

Now assume

1
vekercpé():§(U®1—iJ(v)®1):>v®1:J(v)@i

On the other hand complex conjugation yields

SoRl=0vl=v1=J0)®i=Jv)@i=-J(v)Qi

This implies v® 1 =0 = v = 0. So ¢ in injective and thus an isomorphism.
The discussion of ¢ is entirely analogous.

O

2.9 Lemma. Let V be an R vector space endowed with an almost complex structure J. Then the
dual space V* = Hompg(V,R) has a natural complex structure as well given by J(f)(v) := f(J(v)).

2.10 Definition (Almost complex structure). Let M be a smooth manifold. Let J be a smooth (1,1)
tensor field on M. For any p € M we can interpret J(p) € Endr(T,M). If J satisfies

Vpe M :J(p)® =—idpum
J is an almost complex structure on M.

2.11 Lemma (Complex to Almost Complex). Let M be a smooth manifold. If M admits a complex
structure o7, then M admits an almost complex structure J. Let dim¢ M = m and (z,U) be any
holomorphic chart inducing a coordinate frame 0x1,0y1,...,0Tm, Oym. Then J is given locally as

Jp(0xi|p) = Oyilp Jp(0yilp) = —Oxi|p
where 1 <7 <mand p e U.

Proof. We have no chance but to define .J as required. Clearly J satisfies J? = —1. We have to
show that this definition does not depend on the chosen coordinate chart. So let (z/,U’) be another
holomorphic coordinate chart and suppose p € U N U’. Denote by JI/) the induced almost complex
structure defined by z’. Fix any 1 <7 < m. To simplify notation write

J:=J, J = lea
X := 0x4|p Y; = Oyilp
Xj = Oxilp Y] = 0yilp
By definition we have
J(Xz)_Y{ J(K =-X;
J(X) =Y J(Y) =-X;
We have to show, that
J(X}) = J'(X)) J(Y]) = J'(Y])



Let 1) := 2’ 0 2! be the transition function and T := di(z(p)) be its differential. Let’s discuss the case
n = 1 first by by dropping all the ¢ in notation. Since @ is holomorphic, there exist «, 3 € R such that

r=(5 %)

This uses the Cauchy-Riemann differential equations. It follows that the coordinate frames are trans-
formed via

X' =aX +8Y
Y = —BX +aY

This implies
JX)Y=J(aX+pY)=aJ(X)+BJ(Y)=aY - X =Y' = J(X)

And similar for Y.
The multidimensional case follows similar since the multidimensional Cauchy-Riemann differential
equations state that T is of the same form as above, but with «, 8 being matrices. O

2.12 Definition (Almost Complex To Complex). An almost complex structure J on M is a complex
structure, if it is induced by some complex structure on M as above.

2.13 Remark. One can show, that on a surface any almost complex structure is a complex structure.

3 Tangent Bundle and Vector fields

3.1 Definition (Complexified Tangent Bundle). Let M be a smooth manifold. Then
TeM =TM g C
is the complexified tangent bundle of M.

3.2 Lemma. If J is an almost complex structure, the complexified tangent bundle admits an eigenspace
decomposition
TeM =T M e T"'M

with respect to J. Notice that T7"M and T" M are smooth subbundles of TcM and the isomorphisms
in lemma 2.8 extend to isomorphisms of complex vector bundles.

3.3 Definition (Complex Vector Fields). A smooth section Z of Te M is a complex vector field. Any
such field can be written as
Z=X+1iY

where X, Y € T'(M) are smooth real vector fields. We denote the space of all complex vector fields by
Le(M).

3.4 Lemma (Vector fields as Derivations). Any complex vector field Z acts on €°°(M, C) as a complex
linear derivation in the following way: Write Z = X +iY € I'c(M), X, Y e I'(M) and f =u+iv €
¢ (M, C) with u,v € €°°(M,R). Define

Z(f) = X (u) = Y(0) + i(X(v) + Y (w))

Then Z is a complex linear derivation.



Proof. Clearly Z is R-linear, so it suffices to check
Z(if) =Z(i(u+iv)) = Z(—v+iu) = —X(v) — Y (u) +iX(u) —iY (v)
=iX(u) —iY(v) = X(v) = Y(u) =i(X(u) =Y (v) +i(X(v) +Y(u))) =iZ(f)

We have to check, that Z satisfies the product rule with respect to complex multiplication as well. So
take another g = a +ib € ¥°°(M, C) and calculate:

Z(fg) = Z(au — bv +i(bu + av)) = X (au — bv) — Y (bu + av) 4+ i(X (bu 4+ av) + Y (au — bv))
=aX(u) +uX(a) —bX(v) —vX(b) —bY (a) — uY (b) — aY (v) — vY (a)
+i(bX (u) + uX(b) + aX (v) + vX(a) + uY (a) + aY (u) — bY (v) — vY (b))
=(a+ib)(X(u) =Y () +i(X(v)+Y(u))+ (u+iv)(X(a) = Y(b) +i(X(b) + Y(a)))
=9Z(f) +12(9)
O

3.5 Definition (Lie - Bracket). Remember that for any smooth vector fields X,Y € I'(M) we obtain
a new vector field [X,Y] € I'(M) by defining

[(X,Y](f) = X(Yf) = Y(X])
where f € €°°(M). The operation [ _, ] is called Lie-Bracket.

3.6 Definition (Complex Lie - Bracket). We extend the Lie Bracket to complex vector fields, by
defining
(X 4V, U +iV]:= [X,U] - [\, V] +i([X,V]+ [Y,U])

3.7 Definition. Let (z,U) be a holomorphic coordinate chart for M. Write 2/ = 27 + iy/. Define
. 1 S » 1 S
0z = 5(81’7 —i0y’) 07 = 5(83:] +i0y’)

Any complex vector field Z on M has a decomposition Z = Z' + Z" where

1 1
7'=3(Z~ilZ) e TM' 7" = (Z+i]Z) e TM"

3.8 Lemma. Let dz/,dy’ € T*U be the dual operators of 927,09y’ € TU. Define
dz) = da’ + idy’ dz = da’ —idy’
Then dz’,d%’ are the dual basis corresponding to 927, 0%.

Proof. We check this for one arbitrary j, which we drop in notation for simplicity, by checking, that
dz has the dual basis property:

i i i2
@@@:@m+mw%mw4@»:%mw@—imww+§@mm—5@@w:1

and
)

@@a:@m+mm§@wm@»:%m@@—%m@w+%@@m+%@@w:o

The calculation for dz is entirely analogous. O



4 Compatible Metrics and Hermitian Manifolds

4.1 Definition (Compatible Metric, Hermitian Manifold). Let M be a complex manifold with corre-
sponding almost complex structure J. A Riemannian metric ¢ = ( , ) on M is compatible with J
if

VX, Y eT(M): (JX,JY) = (X,Y)
The triple (M, J, g) is an Hermitian Manifold.

4.2 Lemma. Let (M, J,g) be a Hermitian Manifold. Then there is a complex linear extension g© of
g={(_,_) toTcM given by
<X1 ® 21, X9 ® 2’2> = 2’122<X1, X2>

This extension is symmetric and satisfies the following conditions
(i) For all complex vector fields Z1, Zo: (Z1, Z2) = (Z1, Z)
(i1) For all Z1,Zo € T'"M: (Z1,Z5) =0

(iii) If Z #£0: (Z,Z) >0

Proof. The symmetry is obvious from the definition. Write Z1 = X1 ® 21, Zo = Xo® 22, Z = X ® z,
where X1, X9, X € I'(M), 21,29,z € C

(i) Unraveling the definitions we obtain

<71772> = (X1 ®21,X2® 22) = (X1 ®71, X2 ® Z2) = Z122(X1, X2)
= 2122(X1, X2) = (X1 ® 21, X2 ® 22) = (Z1, Z2)

(ii) On the one hand we obtain by definition
(Z1,Z2) = z122(X1, Xo)
Now assume Z1,Zs € T'M, i.e. J(Z1) =iZ1, J(Z2) = iZ5. Then on the other hand
(Z1, Z3) = (J(21), J(Zs)) = (iZ1,i2) = (X1 @iz1, Xo @ iza) = iz1i22(X1, Xa) = —2122(X1, Xo)

So <Zl,ZQ> =0.
(iii) If Z # 0 then X # 0, z # 0 as well, so
7,7) = (X875 X®2) = (X©5,X 02) = 72(X, X) = [+2]|X|> > 0

O

4.3 Lemma. Let M be a complex manifold with complex structure J. Let gc : TeM x TeM — C
be a symmetric complex bilinear form on T M satisfying the conditions (i)-(iii) in the lemma above.
Then there exists a Riemannian metric gg on T'M, such that gg is compatible with J and the complex
bilinear extension (gr)® of ggr is equal to gc. In this case, the conditions (i)-(iii) hold for complex
vector fields as well.

Proof. Let X =X ®1,Y =Y ®1 be real vector fields. Then property (i) ensures
g(C(X> Y) = gC(y7?) = gC(X?Y)
which implies, that gc|rar : TM x TM — R. So define

gr := Re(gc) = gc|rm



By construction gr is R-bilinear and symmetric. Property (iii) ensures
gR(X,X) = gR(Y,X) >0

for any real vector field X # 0. So ggr is a Riemannian metric.
Consider arbitrary complex vector fields X; ® 21, X2 ® z2 and the complexification of ggr:

(9r)° (X1 ® 21, Xo ® 22) = 21200 (X1, X2) = 212290(X1, X2) = gc(X1 ® 21, Xo @ 22)

So (gr)© = gc-
By property (ii) gc vanishes on T"M. Let Z1, Zo € T" M. Property (i) immediately implies

9c(Z1,Zs) = gc(Z1, Z2) =0

since Z1,7Z, € T'M. So gc vanishes on T"M as well. Now let X, Y € TM be real vector fields.
Interpreted as the complex vector fields X ®1, Y ®1 they admit a uinque decomposition X = X'+ X" €
T'MeT'M,Y =Y'+Y" €T'M & T"M. We obtain

gr(J(X), J(Y)) = gc(J(X), J(Y))
= gc(J(X') + J(X"), J(Y") + J(Y"))
= gc(J(X'), J(Y') 4+ gc(J(X'), J(Y")) + gc(J(X), J(Y")) + gc(J(X"), J(Y"))
= gc(iX',iY") + gc(iX', —iY") + gc(—i X", iY") + gc(—i X", —iY")
:g(C(X,,Y/,)+g (X/l Y)
ZQ(C(X )+g(C(X, Y,/)+gC(X,, Y,)+g(c(X”,Y”)
— g(C(X _l_X// YI+Y//)
= gr(X,Y)

So ggr is compatible with J. For any complex vector fields X1 ® z1, Xo ® za:

gc(J (X1 ® 21), J (X2 @ 22))) = z122 - gc(J(X1), J(X2))
= z120 - gr(J(X1), J(X2)) = 2122 - gr(X1, X2) = gc(X1 ® 21, X2 ® 22)

O

4.4 Lemma (Existence of Compatible Metrics). Let M be a complex manifold and J be the induced
complex structure on M. Then there exists a compatible Riemannian metric g = (_, ) on M.

Proof. First we define g locally. Let p € M and (z,U) be a holomorphic chart near p. Let V :=T,M
and J := J,. The induced coordinate frame of z yields a basis (XL Yl ..., X™ Y™) for V. Since J

is induced by the complex structure
J(X)=Y" JYH =-X"
Define (_, ) by declaring (X!, Y! ..., X™ Y™) to be an orthonormal basis. Then
(J(XT),J(Y7)) = —<Yi X7) =0=(X"Y)
(J(XT), J (X)) = (V7 Y2> = d;j = (X', X7)
(J(Y"), J(Y7)) = (X7, =X") = &;; = (V' Y7)

So J is compatible. This process can be done in any 7, M where ¢ € U and any holomorphic coordinate
chart. This yields to an open cover U, of M where each TU, is endowed with a compatible Riemannian
Metric. Patching together with a smooth partition of unity, we obtain the desired result. O



4.5 Theorem. Let M be a complex manifold with complex structure J and let ¢ = (_, ) be a
Riemannian metric on M. Then g is compatible with J iff around each point p € M there are
holomorphic coordinates
2= (24 ..., 2™ = (L +ayt, . 2™ 4 ay™)
such that the associated coordinate frame (X1,Y,...,X,,,Y,,) at pis a g - orthonormal basis of T),M.
4.6 Corollary. Let M be a Hermitian manifold. Then the type decomposition
A"(M,C) = @pyq=r APY(M, C)

is orthogonal with respect to the induced Hermetian metric (¢, ) := (@, ).
Let ¢ € AP4, then it follows that xp € A"~ ¢™M7P,

5 Nijenhuis Tensor

5.1 Definition (Nijenhuis / Torsion Tensor). Let M be a smooth manifold and J be an almost
complex structure on M. For any smooth vector fields X,Y € I'(M) we defined

N is the associated Nijenhuis or torsion Tensor.

5.2 Definition (Connection). Let 7 : E — M be a smooth vector bundle over a smooth manifold
M. Denote by & (M) the space of smooth sections over M and by .7 (M) the space of smooth sections
over T'M. A connection is a map

V:T(M)x&EM)— &M)
written (X,Y) — VxVY satisfying the following properties:
(i) Linearity over €°°(M) in X:
Vg€ CT(M): Vixitgx, = VXY +9Vx,Y
(ii) Linearity over R in Y:
Va,b € R: Vx(aYy +bY2) = aVx (Y1) + bVx(Y2)
(iii) Product rule:
Vfee>*(M):Vx(fY)=fVxY +(X[f)Y
A connection is a linear connection, if &(M) = T (M).
5.3 Definition (Torsion). A linear connection is torsion free, if
VX,Y € TM : VxY — Vy X = [X,Y]
5.4 Lemma. Let M be a smooth manifold and J be an almost complex structure on M.
(i) Ny is a tensor.

(ii) Let V be a torsion free connection. Then
1
§NJ(X7Y) =VJJX,)Y)-JVJ(X,Y)-VJJY,X)+ JVJ(Y,X)

(iii) J is a complex structure, if VJ = 0.

5.5 Theorem. Let M be a smooth manifold and J be an almost complex structure. Then the
associated torsion tensor N; vanishes if and only if 7"M is an involutive distribution, i.e. forall
71,7y € E(T'M) : [Z1,Z5) € E(T'M).

5.6 Theorem (Newlander - Nirenberg). An almost complex structure J on M is a complex structure
if and only if N vanishes.



6 Differential forms and Dolbeault cohomology

Splitting into types

NveE = NFvevny: = Dieprg N'VFQNAIV™). By “=" we express that there is a basis-
independent isomorphism between these complex vector spaces. Let ¢ € AP V™* Q A?V"*, that is,
© = 1 ® pg. Define a morphism A by

(Ap) (v + o, v +vg) - plg! Z a(1 (p))w(vg(pﬂ)a---avg(k))-
og€eSy,

By choosing bases, one can show that A defines an isomorphism.
Therefore any form in /\k V¢ is a linear combination of forms of type (p,q) where p 4+ ¢ = k.

Let M a complex Manifold and TeM = T*M ® C its complexified tangent bundle. The point-
wise splitting into types now becomes global: Define A"(M,C) := A"T{M. Then A"(M,C) =
@D, —r AP(M,C). Denote with AP4(M,C) the space of smooth sections of AP4(M,C). These sec-
tions are called differential forms of type (p,q). Let 27 = 27 +iy’ components of holomorphic coordinates
on U C M. Let dz7 = da? +idy/ and dz/ = da? —idy’. Recording Z; = 1(X; —iY}), Z; = $(X; +iY)),
we can now check relations as dz’/(Zy) = d;, and dz/(Z)) = 6 applying the definitions and calcu-
lating. This shows that (dz7,dz?) is a dual basis of (Z}, Z;). Further calculations show J(dz) = idz
and J(dz) = —idz. Thus dz € AY°(M,C) and dz € A%(M, C). Using the definitions again we obtain
dz(JV) =1idz(V) and dz(JV) = —idz(V) for any vector field V on M. For w € AP9(M,C) we examine
the complex structure J on M and denote av = (a + bi)v = av + bJv for the multiplication of z € C
with a vectorfield v on M. The above equalities show that w(awvy,...,av,) = aPa@lw(vy,. .., v.).

Exterior differential

If w € AP9 we have a local coordinate representation
w= ZaudzI AdzY.
1J
Apply d:
dw =Y Xi(ary)da' Adz" Adz) + ) Yilars)dy' Ade’ Adz’.
ilJ ilJ
Using X; = Z; + Z; and Y; = i(Z; — Z;) this is
dw = Z Zi(ary)(da® +idy’) A dz! A dz7 + Z?i(au)(dx —iy) Ad2! AdZ.
ilJ il J
By calling the summands dw and Ow, we have d = & + 0. Everything is well-defined and we have

0 : APY — APTL4 and 0 : APY — AP9TL In the smooth category one cannot define O because there is
no natural (Z;, Z;). In the almost complex category there are more subtle difficulities.

Dolbeault cohomology

Now we use the fact imd Nimd = 0. From 0 = d? = (0 + 9)? we deduce §? = 0 = 9. Therefore &
defines a cochain complex for each integer p:

Cs AP L APa y pPatl
Its cohomology is called Dolbeault cohomology, the cohomology groups HP'? are called Dolbeault coho-
mology groups and their complex vector space dimensions are the Hodge numbers h?? of M. Lastly,

the first non-trivial cohomology group has a special meaning. We use the notation QP (M) := ker (0 :
APO — APL) the holomorphic forms of degree p.

10



Holomorphic vector bundles
For any complex vector bundle of rank n we have the following typical diagram:

UxC”&pfl(U)LUX(C”

We have (¥ o ®~1)(u,v) = (u, Av) = (u,y(u)v) where v : U — Gl(n,C) is the transition map. If one
can find an atlas for a given complex vector bundle such that all v and p are holomorphic, the bundle
together with this atlas is called a holomorphic vector bundle. At this moment we do not know if there
are complex vector bundles that admit several distinct holomorphic structures.

For coordinates z and w on U C M we examine the cotangent bundle T*U with induced coordinates
dz/ = > e 92 gk and dz = >0 82] -dzF. The derivatives in the sums are the components of the
transition functlon ~. Therefore « is holomorphic with induced coordinates on tensor bundles TZkU of
U iff there do never appear any dz’ coordinates in local coordinate representations of sections of le U.
This shows that the bundle AP° has a natural holomorphic structure while the related bundles AP,
AF and A* do not carry such a structure in a natural way for ¢ # 0 (of course only if their rank is at
least one).

Review of Poincaré Duality

We review the Hodge operator = on an oriented real Manifold M of dimension n with volume form vol.
For any ¢ € A"(M,R) the equation

xp Np = (p,)vol Vi € A"

defines a unique form *p. There are some well-known relations: *1 = vol, *vol = 1 and #x* : A" — A"
is given by multiplication with (—1)"(="). For the exterior differential d we define the adjoint operator
d*: A" — A" ! by

/ (dp, )vol = / (o, d"p)vol Vg € AT, € ATH
M M

where A, is the space of forms with compact support.

We define the Laplace operator A = dd* + d*d and say that a form ¢ is harmonic if Ap = 0. We write
‘H" for the subspace of harmonic functions. Now we can formulate Poincaré duality: * : H™ — H" ™"
is an isomorphism.

Serre Duality

Let M a complex Manifold of complex dimension m. Define a hermitian metric (-, ) by (¢, %) := (@, ).
We need two facts:
(i) The splitting into types A" = P
(i) *: APY9 — Am—am—p
The proof of (i) consists in calculating (dz*,dz7), (dz¢,dz?) etc. To prove (ii), one shows (1, *¢) = 0
for all ¢ € A™~9™mP  Thus, with %¢ = %p we have ¥ : AP? — AMPM74 Now we derive a
useful expression for the adjoint operator & : Let a € AP, 8 € AP Thus ¥a A g e Amm-l
and therefore d(¥a A 8) = d(¥a A B) = J%a A 3 —t(—l)zm_’”@g A 9B3). Using ¥x = (—1)" for the
spaces concerned we get d(¥a A B) = (—1)?*™~" (—(¥0%a, B) + («, 9B)) vol, which by integration (using
Stoke’s theorem on the L.h.s.) yields fM (¥0%a, B)vol = fM a, dB)vol. Hence we have 9" = %0%. Setting

ptqr AP? is orthogonal with respect to ().
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Ay = 99" +8 0 another (easier but longer) calculation shows [Az,%] =0. Thus % : HP9 — Hm—Pm—4
is an isomorphism between the spaces H of d-harmonic forms. It follows from Hodge theory that the
Dolbeault cohomology groups inherit this isomorphism. This gives the final result: HP¢ = H™~P™m~4
known as Serre duality.
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