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1 Definition of the Schwarzschild Spacetime

1.1 Physical Motivation

With Einstein’s theory of General Relativity in the starting block as possible replacement
of the Newtonian theory of gravitation, the first natural question is of course if it correctly
describes the motion of the planets around the sun. In order to test this, one needs to find
the solution for the gravitational field (in the sense of General Relativity) of the sun. To
a good approximation, this is given by the Schwarzschild solution.

The Schwarzschild solution is a static, spherically symmetric solution to the vacuum Ein-
stein equations. As said above, it can be considered as one half of the model of a spherically
symmetric (and static) massive object, namely the part describing the exterior gravitational
field. The other half of the model has to describe the interior of the star, hence it is not a
vacuum solution. One has to take a (spherically symmetric) solution for a suitable matter
model (e.g., a fluid), and match the two solutions at the radius of the star. We will not
think about the interior solution at all, though we might make some comments along the
way.

1.1 Remark. One can also ask for solutions of (spherically symmetric) charged objects,
or objects which rotate. This leads to the so-called Reissner-Nordström solution, the Kerr
solution, and the Kerr-Newman solution.

1.2 Spacetime Symmetries in General Relativity

We start with a short discussion about symmetries in General Relativity. In particular,
we want to find a way to express spherical symmetry and the notion of a spacetime to be
”time-independent”.

1.2 Definition (G-symmetric). Let G be a Lie group. We say a semi-Riemannian manifold
(M, g) is G-symmetric if there exists an injective Lie group homomorphism G ↪→ Iso(M, g).

1.3 Example.

(i) (Rn, gEuclid) is SO(n)-symmetric.

(ii) (Sn−1, g◦) is also SO(n)-symmetric.

(iii) (R1,n, gMink) is SO(1, n)-symmetric.

(iv) (R1,n, gMink) is also SO(n)-symmetric via A : (t, x) 7→ (t, Ax) for any A ∈ SO(n).

(v) (R1,n, gMink) is (R,+)-symmetric via : s(t, x) 7→ (t+ s, x) for any s ∈ R.

First we start by explaining how to model ”time-independent” spacetimes, since this is
simpler than spherical symmetry.

1.4 Definition (Stationary and Static). Let (M, g) be a Lorentzian manifold.
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(i) (M, g) is said to be stationary if it is (R,+)-symmetric, and if all orbits are timelike
curves. Equivalently, (M, g) is stationary if there exists a complete timelike Killing
vector field (the generator of the R-action).

(ii) (M, g) is said to be static, if it is stationary with some complete timelike Killing
vector field U which additionally is irrotational, i.e. satisfies U [ ∧ dU [ = 0.

1.5 Example. The Minkowski spacetime is static. A suitable R-action is the one of
Example 1.3 (v). The corresponding Killing vector field is ∂t. This is irrotational since
∂[t = −dt, hence alrady d∂[t = −d2t = 0.

Intuitively, the notion of static means that an observer traveling through the spacetime
along the flow of the Killing field does not observe any changes in his surrounding space.
This is made more precise by the following theorem.

1.6 Theorem. Let (M, g) be a simply connected static spacetime. Then there exists a
spacelike hypersurface Σ ⊂M and a diffeomorphism M ∼= Rt×Σx such that the metric is
given by

g = −β(x)2 dt2 + h , (1.1)

where h = g|Σ is the Riemannian metric on Σ induced by g, and where β ∈ C∞(Σ) is a
smooth, positive function on Σ.

Proof. Let U be the static vector field. Using that U [ ∧ dU [ = 0, one can show that
the one-form ω = − 1

g(U,U)U
[ is closed, i.e. dω = 0. Since M is simply connected, every

closed form is exact, thus there exists a smooth function τ : M → R such that ω = dτ .
Since we can always add a constant to τ , we may assume that 0 ∈ im(τ). Now one
verifies that Σ := τ−1(0) is a spacelike hypersurface, that the flow of the vector field U
induces a diffeomorphism between M and R × Σ, and that the pullback of g under this
diffeomorphism is given by (1.1) with β(x) = −g(U(x), U(x)) for any x ∈ Σ.

1.7 Remark. If M is not simply connected, then the statement of the previous theorem
still holds locally, i.e. in small neighborhoods. This means that one can always introduce
local coordinates in which the metric is of the form (1.1).

Now we turn to spherical symmetry, which is more involved than staticity.

1.8 Definition (spherically symmetric). We say a Lorentzian manifold (M, g) is spherically
symmetric in the weak sense if it is SO(n)-symmetric. We say it is spherically symmetric
in the strong sense if additionally all orbits of the SO(n)-action are spacelike submanifolds
isometric to (Sn−1(r), g◦) for some r > 0.

1.9 Example.

(i) Minkowski spacetime is spherically symmetric in the weak sense for the usual SO(n)-
action on the spatial part described in Example 1.3 (iv). Notice that the quotient by
this group action is given by

R1,n/ SO(n) = Rt × [0,∞)r × Sn−1 ,

which is a manifold with boundary.
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(ii) Minkowski spacetime with the spatial origins removed, i.e. M = R × (Rn \ {0}), is
spherically symmetric in the strong sense for the same SO(n)-action as in (i). This
time the quotient is

R× (Rn \ {0})/SO(n) = Rt × (0,∞)r × Sn−1 ,

which is an ordinary manifold without boundary.

The reason for distinguishing between weak and strong spherical symmetry is precisely
that one would like split the spatial part as (a, b) × S2, i.e. one would like to be able to
introduce spherical coordinates.

Now we put the notions of staticity and spherical symmetry together.

1.10 Definition. A Lorentzian manifold (M, g) is said to be spherically symmetric and
static in a compatible sense if it is spherically symmetric and static, and if moreover the
two group actions Φ : (R,+) → Iso(M, g) and θ : SO(n) → Iso(M, g) are compatible in
the sense that Φs ◦ θA = θA ◦ Φs for all s ∈ R and A ∈ SO(n).

The meaning of this definition is that an observer traveling along the flow of the static
Killing vector field observes a spherically symmetic geometry in his restspaces. This is
made more precise by the following theorem.

1.11 Theorem. Let (M4, g) be four dimensional, simply connected, and spherically sym-
metric and static in a compatible sense. Let M ∼= Rt ×Σx and g ∼= −β(x)2 dt2 + h be the
static splitting as done in Theorem 1.11. Then the isometric SO(3)-action on (M, g) maps
{t} × Σ to itself for every t ∈ R. Therefore, it restricts to an isometric SO(3)-action on
(Σ, h).

Proof. If one differentiates Φs ◦θA = θA ◦Φs with respect to s, one obtains that the static
vector field U is invariant under θ in the sense that (θ∗AU)|p = U |θA(p) for all p ∈M . From
this it now follows that U must be orthogonal to the orbits of the SO(n)-action. Otherwise
the tangential projection of U onto an orbit would yield a nonvanishing (since invariant)
vector field on this orbit, and this is not possible since the orbits are diffeomorphic to S2.

This orthogonality implies that the SO(n)-action leaves invariant the splitting of M in
space and time in the sense that it leaves invariant every hypersurface {t}×Σ. To see this,
notice that for any ξ ∈ so(3), we have

d

dλ
τ(θeλξ(p)) = dτ(

d

dλ
θeλξ(p)) = − 1

g(U,U)
g(U,

d

dλ
θeλξ(p)) = 0 .

Here we used that dτ = ω = − 1
g(U,U)U

[, and that d
dλθeλξ(p) is tangential to the orbit.

This shows that the SO(n)-action leaves {t} × Σ invariant, since the function τ stays
unchanged.

The next task in line would be to discuss in more detail how the spatial part (Σ, h) can
look like. In particular, one would like to know under which conditions it splits as

Σ = (a, b)r × S2 , h = f1(r) dr2 + f2(r)g◦ .
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This seems to be a rather delicate matter, therefore we will not go into details here. We
only make the following definition:

1.12 Definition. The standard static and spherically symmetric spacetime is

M = Rt × (a, b)r × S2 , g = −e−2a(r) dt2 + e−2b(r) dr2 + r2(dϑ2 + sin2 ϑ dϕ2) , (1.2)

where a, b ∈ C∞((a, b)) are smooth functions of r.

1.3 The Schwarzschild Spacetime

1.13 Definition (Einstein Tensor). For any Lorentz manifold (M, g) the tensor field

G := Ric−1
2g scal ∈ T 2(M)

is called Einstein Tensor. Here Ric = Ricg denotes the Ricci curvature and scal = scalg

denotes the scalar curvature of (M, g). In coordinates this equation reads Gik = Rik −
1
2gik scal. The manifold (M, g) satisfies the Vacuum Einstein Equation (VEE), if G = 0.

1.14 Lemma (Characterization of (VEE)). A spacetime (M, g) satisfies (VEE) if and only
if (M, g) is Ricci flat, i.e. Ricg = 0.

Proof.
”=⇒”: Assume G = 0. This implies

0 = tr(G) = scal−4
2 scal = − scal,

thus Ric = G+ 1
2g scal = G = 0. Therefore (M, g) is Ricci flat.

”⇐=”: Assume Ric = 0. This implies scal = tr(Ric) = 0. Thus G = Ric−1
2g scal = 0.

Consequently (M, g) solves (VEE).

1.15 Definition (Schwarzschild spacetime). Let g◦ be the round metric on S2. Then The
manifold (M, g) defined by

MS := R×]2m,∞[×S2

gS := −(1− 2m
r )dt2 + 1

(1−2m
r )
dr2 + r2g◦

= − r−2m
r dt2 + r

r−2mdr
2 + r2g◦

is called exterior Schwarzschild spacetime (expressed in Schwarzschild coordinates) of mass
m ∈ R>0. The quantity rs := 2m is the Schwarzschild radius. Analogously, the spacetime

R×]0, 2m[×S2

with the same metric as above is called interior Schwarzschild spacetime.

1.16 Remark. Notice that due to the singularity of the metric gS at r = 2m we can-
not simply patch together the exterior and the interior Schwarzschild spacetime into one
globally well-defined Semi-Riemannian manifold.
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1.17 Remark (Schwarzschild radius for our sun). In physical units the Schwarzschild
radius is given by rs = 2mG/c2, where G is the gravitaional constant. If we plug in the
mass of our sun, we obtain rs ≈ 3km. Notice that the radius of the sun ( ∼ 700.000km)
is a lot larger.

1.18 Lemma. The Schwarzschild spacetime (MS , gS) is static and spherically symmetric.

Proof. ∂t is a timelike Killing vector field with respect to gS . The corresponding restspaces
are ]2m,∞[×S2. Thus (MS , gS) is static. The canonical action of SO3 on ]2m,∞[×S2 ⊂
R 3 is an isometric group action and the orbits are spacelike spheres. Thus (MS , gS) is
spherically symmetric.

1.19 Theorem. Let a, b ∈ C∞(]2m,∞[,R ). Define the Lorentz manifold

M := R×]2m,∞[×S2

ga,b := −e2adt2 + e2bdr2 + r2g◦.

Then (M, ga,b) is a physically resonable solution of the Vacuum Einstein Equation, i.e.
satisfies

lim
r→∞

a(r) = lim
r→∞

b(r) = 0, G = 0, (1.3)

if and only if

a = 1
2 ln(1− 2m

r ), b = −1
2 ln(1− 2m

r ), (1.4)

i.e. if and only if (M, ga,b) is the Schwarzschild spacetime.

Proof. For simplicity, we set g := ga,b in this proof.

Step 1 (construct ON frame): The Schwarzschild coordinates (t, r, ϑ, ϕ) induce a global
coordinate frame (∂t, ∂r, ∂ϑ, ∂ϕ) on TM independently of a,b. In these coordinates the
metric is given by

g = −e2adt2 + e2bdr2 + r2dϑ2 + r2 sin(ϑ)2dϕ2.

The coordinate frame can easily be g-orthonormalized to a frame

e0 := e−a∂t, e1 := e−b∂r, e2 := r−1∂ϑ, e3 := r−1 sin(ϑ)−1∂ϕ.

The corresponding dual coframe is given by

θ0 := eadt, θ1 := ebdr, θ2 := rdϑ, θ3 := r sin(ϑ)dϕ.

are also orthonormal, if we extend the metric to T ∗M , c.f. Theorem 5.2. Consequently,
the metric is given by

g = gνµθ
ν ⊗ θµ, gνµ = ενδνµ, ε = (−1,+1,+1,+1).
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Step 2 (connection 1-forms): Let ωij be the globally defined connection 1-forms with re-
spect to the frame (e0, . . . , e3) above. Since the Levi civita connection ∇g induced by g
will always be metric by definition (regardless of the functions a, b), we obtain from (5.1)

∀1 ≤ i, j ≤ m : ωij + ωji = dgij = 0, ωij = gikω
k
j .

From this it follows immediately that the matrix of the (ωij) is skew-symmetric. This
implies

(ωij) =


0 ω0

1 ω0
2 ω0

3

ω0
1 0 ω1

2 ω1
3

ω0
2 −ω1

2 0 ω2
3

ω0
3 −ω1

3 −ω2
3 0

 . (1.5)

This symmetry condition can be expressed by

ωij = −εiεjωji . (1.6)

To determine the remaining six unknowns, we calculate the exterior derivatives dθα of θα,
express them in terms of the basis θσ ∧ θρ and compare them with Cartans first structure
equation

dθα = −ωαβ ∧ θβ,

c.f. Theorem 5.3:

−ω0
β ∧ θβ = dθ0 = a′eadr ∧ dt = −a′e−bθ0 ∧ θ1,

−ω1
β ∧ θβ = dθ1 = 0,

−ω2
β ∧ θβ = dθ2 = dr ∧ dϑ = −r−1e−bθ2 ∧ θ1,

−ω3
β ∧ θβ = dθ3 = sin(ϑ)dr ∧ dϕ+ r cos(ϑ)dϑ ∧ dϕ

= −r−1(e−bθ3 ∧ θ1 + cot(ϑ)θ3 ∧ θ2).

(1.7)

One verifies that

ω0
1 = a′e−bθ0, ω0

2 = ω0
3 = 0

ω1
2 = −r−1e−bθ2, ω1

3 = −r−1e−bθ3

ω2
3 = −r−1 cot(ϑ)θ3

(1.8)

together with the symmetries (1.5) solve (1.7). By Theorem 5.3(iv) this impiles that the
ωαβ are the connection 1-forms of g.

Step 3 (curvature 2-forms): By Cartans second structure equation (5.4) the associated
curvature 2-forms Ωi

j satisfy

Ωi
j = dωij + ωik ∧ ωkj .

From this and (1.6) it follows that

Ωj
i = dωji + ωjk ∧ ω

k
i = −εiεj dωij − ωki ∧ ω

j
k

= −εiεj dωij − ε2
kεiεjω

i
k ∧ ωkj = −εiεjΩi

j ,
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thus the matrix of curvature 2-forms Ωi
j satisfies the same symmetry as (1.5). Therefore

we calculate the following entries using (1.8) and express the result in terms of the basis
θα ∧ θβ :

Ω0
1 = −e−2b((a′)2 − a′b′ + a′′)θ0 ∧ θ1

Ω0
2 = −e−2br−1a′θ0 ∧ θ2

Ω0
3 = −a′e−2r−1θ0 ∧ θ3

Ω1
2 = b′e−2br−1θ1 ∧ θ2

Ω1
3 = b′e−2br−1θ1 ∧ θ3

Ω2
3 = (1− e−2b)r−2θ2 ∧ θ2.

(1.9)

This completely determines the curvature tensor.

Step 4 (Ricci tensor): We calculate the Ricci tensor Ric using eq. (5.5)

Ricik =
∑
j

Ωj
i (Ej , Ek).

This calculation can be simplified as follows: Due to the symmetries of Ωj
i we only sum

over all j such that j 6= i (this holds in general). It follows from (1.9) that our specific
curvature 2-forms satisfy Ωi

i = fjiθ
j ∧ θi for some functions fji ∈ C∞. Consequently, we

only have to sum over all j 6= i such that in addition {j, i} = {j, k}. But this set is empty
unless i = k. In other words,

∀1 ≤ i 6= k ≤ 3 : Rik = 0.

For the remaining terms we calculate:

Ric00 = −1
2(e−2b(a′b′ − a′′ − (a′)2) + 2

ra
′e−2b),

Ric11 = 1
2(e−2b(a′b′ − a′′ − (a′)2)− 2

r b
′e−2b),

Ric22 = 1
2(−a′e−2b

r + b′e−2b

r + 1−e−2b

r2
),

Ric33 = 1
2(−a′e−2b

r + b′e−2b

r + 1−e−2b

r2
).

(1.10)

Step 5 (Final Argument): By Lemma 1.14 the manifold (M, ga,b) solves the (VEE) if and
only if it is Ricci flat.
”=⇒”: Assume Ric = 0. Then in particular

0 = R00 +R11
(1.10)
=⇒ −a′ − b′ = 0 =⇒ (a+ b)′ = 0.

This implies that a+ b is a constant function. Due to the asymptotics in (1.3) this implies
a+ b = 0, i.e. a = −b. Furthermore

0 = R33 =⇒ −1 = e−2b(2b′r − 1) = (−e−2br)′

Consequently, by choosing −2m as an integration constant, we obtain

e−2br = r − 2m =⇒ e−2b = 1− 2m
r =⇒ −2b = ln(1− 2m

r ),
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which together with a = −b finally implies (1.4).
”⇐=”: Apparently the functions a and b specified in (1.4) satisfy

lim
r→∞

a(r) = lim
r→∞

b(r) = 0

and a = −b. Using (1.10), we calculate

a′ = mr−2(1− 2m
r )−1,

a′′ = −2mr−3(1− 2m
r )−2 − 4m2r−4(1− 2m

r )−2.

Hence

a′b′ − a′′ − (a′)2 + 2
ra
′ = 2

ra
′ − 2(a′)2 − a′′

= 2mr−3(1− 2m
r )−3 − 2m2r−4(1− 2m

r )−2

+ 2mr−3(1− 2m
r )−2 + 4m2r−4(1− 2m

r )−2

= 0.

By (1.10) this implies

Ric00 = 0 = Ric11 .

Furthermore

2r2e2b Ric22 = 2r2e2b Ric33 = 2b′r + e2b − 1

= −2mr−1(1− 2m
r )−1 + (1− 2m

r )−1 − 1

= (1− 2m
r )−1(1− 2mr−1)− 1 = 0.

Thus Ric22 = Ric33.

2 Geodesics in the Schwarzschild Spacetime

In this section, we study timelike and null geodesics in the exterior Schwarzschild space-
time.

Timelike geodesics are potential wordlines of massive particles (such as planets) moving in
the exterior gravitational field of a spherically symmetric (static) mass distribution (such as
our sun). Therefore they provide an experimental test of general relativity by testing, e.g.,
whether the orbits of planets in our solar system can be described by timelike Schwarzschild
geodesics. As a matter of fact, the first experimental confirmation of general relativity was
the explanation of the perihelion advance of Mercury by Schwarzschild geodesics.

Null geodesics can be thought of as describing the motion of photons, i.e. of light in
the geometric optics approximation. A famous general relativistic effect is gravitational
lensing, i.e the bending of light by gravitational fields. This effect, as caused by our sun,
can also be explained by studying null geodesics in the Schwarzschild spacetime.

After studying geodesics in the Schwarzschild spacetime in general, we shall come back to
these connections to experimentally observable effects later.
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2.1 General Properties of Geodesics

In general, the geodesic equation cannot be solved explicitly, i.e. by actually writing down
the solutions. Therefore, in order to study the behaviour of geodesics, one has to rely on
other methods. A very convenient method, which one might be familiar with already from
classical mechanics, is to exploit symmetries. The reason for this is the relation between
symmetries and conserved quantities, as is generally explained by Noether’s theorem. Here
we will not go into the Lagrangian formalism (which is necessary for Noether’s theorem),
but rather prove directly how symmetries lead to conserved quantities. The intuitive idea
about the usefulness of conserved quantities is that each conserved quantity reduces the
degrees of freedom (the number of coordinates we need to describe our system) by one,
hence allows us to decrease the number of equations we have to solve by one.

Now we show how each symmetry, described infinitesimally by a Killing vector field, leads
to a conserved quantity of the geodesic equation.

2.1 Lemma. Let (M, g) be a Lorentzian manifold and let X ∈ T (M) be a Killing field
and γ be a geodesic. Then

d

dτ
g(X(γ(τ)), γ̇(τ)) = 0 ,

hence g(X(γ(τ)), γ̇(τ)) is constant.

Proof. Since X is Killing, it satisfies g(∇YX,Z) + g(Y,∇ZX) = 0 for any Y,Z ∈ T (M).
Therefore, we get

d

dτ
g(X, γ̇) = g(∇γ̇X, γ̇) + g(X,∇γ̇ γ̇)

= g(∇γ̇X, γ̇)

= −g(γ̇,∇γ̇X)

= −g(∇γ̇X, γ̇) = − d

dτ
g(X, γ̇) .

Clearly this implies that this quantity must vanish.

The following Lemma will also be needed.

2.2 Lemma. Let (M, g) be a SR manifold and let ϕ : M →M be an isometry. Let

Σ := {p ∈M | ϕ(p) = p} ⊂M

be the submanifold of fixed points of ϕ. Then Σ is a totally geodesic submanifold.

Proof. Let (p, v) ∈ Σ× TpΣ and let γ : I → M be the geodesic with these initial values.
Then ϕ ◦ γ is again a geodesic satisfying (ϕ ◦ γ)(0) = γ(0). Using the fact that ϕ|Σ = idΣ,
we obtain

d
dt(ϕ ◦ γ)(0) = dϕ|pγ̇(0) = d(id)|pγ̇(0) = γ̇(0).
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By uniqueness of geodesics, we obtain ϕ ◦ γ = γ. Consequently

∀t ∈ I : ϕ(γ(t)) = γ(t)⇐⇒ γ(t) ∈ Σ.

Now we come to the study of geodesics in the Schwarzschild spacetime. The main content
of the following theorem is the derivation of an equation for the radial coordinate of a
geodesic which resembles the equation of a Newtonian particle in one spatial dimension
which moves in an ”effective” potential.

2.3 Theorem. Let (MS , g) be the exterior Schwarzschild spacetime with Schwarzschild
coordinates (t, r, ϑ, ϕ). Let γ̃ be a geodesic. There exists an isometry Λ : M → M such
that γ := Λ ◦ γ̃ satisfies ϑ(γ) = π

2 . Moreover, r(τ) = r(γ(τ)) satifies

1
2 ṙ

2︸︷︷︸
Ekin

+ 1
2(1− 2m

r )(L
2

r2
+ κ)︸ ︷︷ ︸

Epot

= 1
2E

2︸︷︷︸
Eges

, (2.1)

where

κ := −g(γ̇, γ̇), E := g(γ̇, ∂t), L := g(γ̇, ∂ϕ).

are all constants.

Proof.

Step 1: First of all, we define the isometry

F : M → M
(t, r, ϑ, ϕ) 7→ (t, r, π − ϑ, ϕ)

The fixed point set Σ of this isometry is the hypersurface defined by ϑ = π
2 . By Lemma 2.2

Σ is totally geodesic. Now let γ : I →M be any geodesic with initial values (p, v). Since the
S2-component of M carries the round metric, there exists an isometry of M which carries
(p, v) into Σ× TΣ . Since Σ is totally geodesic, we may assume that γ lies completely in
Σ, i.e. ϑ(γ(τ)) = π

2 for all τ ∈ I.

Step 2: Any geodesic has constant speed, thus κ is a constant. Since ∂t and ∂ϕ are Killing
vector fields the quantities E and L are also constants by Lemma 2.1. They are explicitely
given by

E = g(γ̇, ∂t) = −(1− 2m
r )dt(γ̇) = −(1− 2m

r )ṫ.

L = g(γ̇, ∂ϕ) = r2 sin(ϑ)2ϕ̇

Therefore

−κ = g(γ̇(τ), γ̇(τ))

= −(1− 2m
r(τ))ṫ(τ)2 + 1

(1− 2m
r(τ) )

ṙ(τ)2 + r(τ)2(ϑ̇(τ)2 + sin(ϑ(τ))2ϕ̇(τ)2)

= − E2

(1−2m
r )

+ 1

(1− 2m
r(τ) )

ṙ(τ)2 + r(τ)2ϑ̇(τ)2 + L2

r2 sin(ϑ)2

= − E2

(1−2m
r )

+ 1

(1−2m
r )
ṙ(τ)2 + L2

r2
.
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In the last step we use that ϑ = π
2 . Rearranging the last equality, we obtain

1
2E

2 = 1
2 ṙ

2 + 1
2(1− 2m

r )(L
2

r2
+ κ).

2.4 Remark. The first step in the previous proof, i.e. the reduction to θ = π
2 is the

analogue of the exploitation of the conservation of the total angular momentum in the
Newtonian Kepler problem. There, also as a first step, one uses the conservation of the
direction of the angular momentum vector to see that the particle must move in the plane
orthogonal to the angular momentum. Without loss one may then assume that this plane
is given by θ = π

2 . One might also be able to introduce the total angular momentum here
and exploit its conservation in a similar way (hopefully it is also conserved).

2.5 Remark. One sees that (2.1) looks like the Newtonian equation of a particle moving
in one dimension in the effective potential V (r) := 1

2(1− 2m
r )(L

2

r2
+ κ). And this is cool.

2.2 Timelike Geodesics and Perihelion Advance

In this paragraph we discuss the behaviour of timelike geodesics. First we make some
general observations about their behaviour via a qualitative study of the radial equation.
Afterwards, we want to compare the behaviour of timelike geodesics in the Schwarzschild
spacetime to the behaviour of Newtonian particles in the classical Kepler potential.

We parametrize the geodesics by proper time (i.e. arc-length), then κ = −g(γ̇, γ̇) = 1.
Therefore, our effective equation is

1
2 ṙ

2 + 1
2(1− 2m

r )(1 + L2

r2
)︸ ︷︷ ︸

=V (r)

=
1

2
ṙ2 +

(
1

2
− m

r
+
L2

2r2
− mL2

r3

)
= E2 . (2.2)

The effective potential satisfies V (r)→ −∞ for r → 0 and V (r)→ 1
2 for r →∞. Moreover,

we always have V (2m) = 0. The further shape of the effective potential depends crucially
on the size of L and m. To see this, one calculates the extremal points of V (r), for which
one finds

R± =
L2 ±

√
L4 − 13L2m2

2m
.

One sees that for L2 < 12m2, there are no real solutions. Hence V (r) has no extremal
points and looks like this. This means that (just as in Newtonian physics), every particle
whose angular momentum is too small in comparison to m crashes into the source of
gravity.

For L2 > 12m2, we have two real solutions, and it is easy to check that the smaller one
R− is a maximum and the larger one R+ a minimum, see. Hence R− corresponds to
an unstable circular orbit, whereas R+ corresponds to a stable circular orbit. The orbits
of planets correspond to small oscillations around the stable orbit. Qualitatively this is
similar as for the classical Kepler problem, but since the effective potential has a different
form, there is a quantitative difference as we shall see in the following.
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The classical Kepler problem is given by ẍ = m∇ 1
|x| . Similar as we did above, it follows

from conservation of the angular momentum vector (more precisely, of its direction) that
the motion must lie in a plane. Introducing polar coordinates (r, ϕ) in this plane and using
conservation of the angular momentum L = r2ϕ̇, the following equation is obtained from
conservation of energy

1

2
ṙ2 +

(
L2

r2
− m

r

)
= E . (2.3)

One sees that the effective potential appearing here differs from the Schwarzschildean one
by a constant term and by the 1

r3
-term, which is only present in the Schwarzschildean

potential. The constant term is unimportant since it does not change the shape of the
potential. The 1

r3
-term, however, really changes the shape of the potential, and therefore

also the motion of particles. We will illustrate next how this leads to a precision of the
perihelion that is not present for Kepler orbits.

We consider a particle with L large enough and E accordingly such that it moves on
a closed orbit in either the Schwarzschild spacetime or in the Kepler potential. For the
following considerations, it is best if we paramtrize the motion of the particle by its angular
coordinate ϕ. Since ϕ̇ = L

r2
> 0, this is indeed possible. Be aware here that we let ϕ range

over all of R and do not explicitly calculate modulo 2π for the moment. A perihel of the
motion is a an extremal point of the function r. See figure for an illustration. Next, we
consider u = 1

r as a function of ϕ. Then we have

ṙ =
d

dt

1

u
= − 1

u2

du

dϕ
ϕ̇ = −Ldu

dϕ
, (∗)

and hence also

r̈ = −Ld2u

dϕ2
ϕ̇ = −L2u2 d2u

dϕ2
. (∗∗)

So far this holds for both the classical and the relativistic case, but now we have to treat
the two separately.

Newtonian: From the classical equation (2.3) it follows easily that

r̈ =
2L2

r3
− m

r2
= 2L2u3 −mu2 .

If we equate this with (∗∗), we obtain the equation

d2u

dϕ2
+ u =

m

L2
. (2.4)

This linear ODE is easy to solve, and the solution is

u(ϕ) = a cos(ϕ) +
m

L2
. (2.5)

It is not very difficult to see that this describes an ellipse.

Relativistic: This time, it follows from (2.2) that

r̈ = −2L3mu4 + L2u3 −mu2 .

13



Equating this with (∗∗) again, we obtain the equation

d2u

dϕ2
+ u =

m

L2
+ 3mu2 . (2.6)

We cannot explicitly solve this equation anymore, therefore we make a (very) naive
perturbation argument. Since r is much larger compared to mit follows that the
quadratic term only makes a small contribution. Hence the Keplerian solution
u0(ϕ) = m

L2 (1 + ε cosϕ) is an approximate solution to (2.6). The perturbative argu-
ment is now to replace the quadratic term by 3mu2

0 and study the resulting equation,
which is given by

d2u

dϕ2
+ u =

m

L2
+

3m3

L4

(
1 +

ε2

2
+ 2ε cosϕ+

ε2

2
cos 2ϕ

)
.

A particular solution of this equation is given by

u(ϕ) =
m

L2
(1 + εϕ) +

3m3

L4

(
1 +

ε2

2
− ε2

6
cos 2ϕ+ εϕ sinϕ

)
.

For some unknown reasons one likes this function as an approximate solution to
(2.6), therefore we use it to calculate the perihels. To this end, we must calculate
the positions of its maxima. We have

u′(ϕ) = −mε
L2

sinϕ+
3m2ε

L4

( ε
3

sin 2ϕ+ sinϕ+ ϕ cosϕ
)
.

The first perihel is at ϕ = 0. What one sees, however, is that the next perihel is not
at ϕ = 2π (this would be needed for an ellipse), but at ϕ = 2π + δ, where δ is given
by the approximate equation

0 ≈ −mε
L2

sin δ
3m2ε

L4
(2π + δ) cos δ .

Hence it follows that

δ ≈ tan δ ≈ 3m2

L2
(2π + δ) ≈ 6πm2

L2
. (2.7)

If one evaluates this for Mercury, one obtains the famous 43” (be aware that the mass
of the planet was absorbed into the units).

2.6 Remark. The Perihelion advance of Mercury was the first famous prediction of Gen-
eral Relativity. It was observed long before that Mercury does not move on an ellipse, but
that its perihel moves. Before general relativity, one had tried to account for this effect
by treating the perturbation to Mercury’s motion caused by the other planets. Although
this could be used to predict a rotating ellipse, the predicted precession of the ellipse did
not agree with experimental observations. It was a great success for Einstein’s theory that
the additional precession caused by relativistic effects brought the theoretical predictions
to agreement with the observations. Indeed, as Einstein told his former colleague Fokker,
this first successful prediction caused him to have heart palpitations. However, one should
also say that by far the largest effect on Mercury’s perihel motion is caused by the other
planets (this can be taken into account by an effective change to the potential), and only
the second largest effect is the one coming from General Relativity. Still, the relativistic
effect makes up around 5-10%.
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2.3 Lightlike Geodesics and Bending of light

Now we analyze the behaviour of lightlike geodesics, i.e. κ = −g(γ̇, γ̇) = 0. In this case
the radial equation reads

1
2 ṙ

2 + 1
2(1− 2m

r )L
2

r2︸ ︷︷ ︸
=V (r)

= E2 .

Hence the effective potential is

V (r) =
L2

2r3
(r − 2m) .

One sees that this time, the general shape of the effective potential is independent of L
(unless L = 0). We have V (r) → −∞ for r → 0 and V (r) → 0 for r → ∞. Moreover,
now we have a single extremum, namely a maximum, which happens to be at r = 3m.
It is interesting to observe that hence there is a circular lightlike orbit, i.e. the orbit of a
photon that neither escapes to infinity, nor falls into the gravitational source, but stays at
the same distance r = 3m.

If we believe for now that lightlike geodesics indeed describe the propagation of photons
(in the geometric optics approximation), then all this already shows that gravity has a
significant influence on the propagation of photons.

Another famous observation is gravitational lensing, i.e. the bending of light around a
massive object. This can also be observed for lightlike Schwarzschild geodesics if one
studies the behaviour of the angular variable ϕ(τ). One can do similar calculations as we
did for the perihelion advance, we refer for to the literature [Oloff] for this.

3 The Kruskal Extension

In this section, we want to understand the (geometric) meaning of the so-called event
horizon {r = 2m}. At first sight it seems that the metric becomes singular at the hori-
zon. However, as we shall see in this section, this is not an actual singularity in the
metric/geometry, but comes from the fact that our coordinate system (t, r, ϑ, ϕ) becomes
invalid at the horizon. You may compare this to the way in which the well-known spherical
coordinates on R3 become invalid at the origin. What we will do in this section is to suit-
ably continue the Schwarzschild spacetime beyond the horizon. Although at the moment
this is a question of rather mathematical than physical interest, the continuation we will
be crucial for the definition of black holes in the following section.

3.1 Remark. In the motivational section 1.1 it was said that the exterior Schwarzschild
solution is thought to model the exterior gravitational field of a spherically symmetric,
static object. Moreover, it was said that the gravitational field in the interior of the object
has to be modeled by a solution of the Einstein equation for some suitable matter model.
As a matter of fact, for many usual matter models (e.g. perfect fluid) it turns out that one
has to match the two solutions outside of the event horizon. Therefore, for any object whose
interior can be described by such a matter model (as should be the case for planets and
usual stars), the continuation we obtain in the following has no actual physical meaning.
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However, since it is not expected that the interior of black holes can be described by a
classical matter model (due to ”quantum effects” of some sort which should play a role due
to extreme energy densities), the continuation of the Schwarzschild solution beyond the
event horizon is of interest for such objects. Of course, whether such objects actually exist
in real life may be questioned, but at the moment it seems that the generally accepted
opinion is that they do in fact exist.

3.1 Geodesics approaching the horizon

3.2 Kruskal-Szekeres coordinates

3.2 Theorem. The Schwarzschild spacetimeM can be isometrically embedded as a proper
subset into the Kruskal-Szekeres spacetime

MK := {(U, V ) ∈ R 2 | V 2 − U2 < 1} × S2,

gK = 32m3

r e−
r

2m (−dV 2 + dU2) + r2dω2 .

Here r is now a smooth function of U and V . More explicitly, the embedding is given by

F : M = R×]2m,∞[×S2 → MK × S2

(t, r, ω) 7→ (V (t, r), U(t, r), ω),

where the functions U and V are defined by

V :=
√

r
2m − 1e

r
4m sinh

(
t

4m

)
=
√

r−2m
2m e

r
4m sinh

(
t

4m

)
,

U :=
√

r
2m − 1e

r
4m cosh

(
t

4m

)
=
√

r−2m
2m e

r
4m cosh

(
t

4m

)
.

This embedding provides an extension of the original Schwarzschild spacetime beyond the
event horizon, as can be seen from figure .

Proof. First we check that F maps indeed into MK and onto

F (M) = {(u, v) ∈ R 2 | v2 − u2 < 0, u > 0} × S2.

To that end we calculate

V 2 − U2 =
(
1− r

2m

)
e
r

2m =: h(r)

Notice that h ∈ C∞(]2m,∞[, ] − ∞, 0[) and from this it follows that the range of F is
correctly specified. In addition

h′(r) = − 1
2me

r
2m + 1

2m

(
1− r

2m

)
e
r

2m = − r
4m2 e

r
2m < 0

and is therefore a diffeomorphism. Since U > 0, we obtain

V
U = tanh( t

2m) =⇒ artanh(VU )2m = t.
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Since tanh : R →] − 1, 1[ is a diffeomorphism, we conclude that F is indeed a diffeomor-
phism. We calculate

dV = 1
4mUdt+

(
1
2

(
r

2m − 1
)−1

2 1
2me

r
4m +

√
r

2m − 1e
r

4m 1
4m

)
sinh

(
t

4m

)
dr

= 1
4mUdt+

(
1 + r

2m − 1
)

sinh
(
t

4m

) (
r

2m − 1
)−1

2 1
4me

r
4mdr

= 1
4mUdt+ sinh

(
t

4m

) (
r

2m − 1
)−1

2 r
8m2 e

r
4mdr ,

and analogously

dU = 1
4mV dt+ cosh

(
t

4m

) (
r

2m − 1
)−1

2 r
8m2 e

r
4mdr .

Therefore

−dV 2 + dU2 = 1
16m2 (−U2 + V 2)dt2 +

(
r

2m − 1
)−1 r2

64m4 e
r

2mdr2

= − 1
16m2

(
1− r

2m

)
e
r

2mdt2 +
(
r

2m − 1
)−1 r2

64m4 e
r

2mdr2

= − 1
16m2

(
1− r

2m

)
e
r

2mdt2 +
(
r

2m − 1
)−1 r2

64m4 e
r

2mdr2

= − 1
16m2

2m−r
2m e

r
2mdt2 + 2m

r−2m
r2

64m4 e
r

2mdr2

thus

16m2 2m
r e
− r

2m (−dV 2 + dU2) = −2m
r e
− r

2m 2m−r
2m e

r
2mdt2 + 2m

r e
− r

2m 2m
r−2m

r2

4m2 e
r

2mdr2

= −2m−r
r dt2 + r

r−2mdr
2 = g − r2dω2 .

We obtain the formula

gK = 32m3

r e−
r

2m (−dV 2 + dU2) + r2dω2.

3.3 Remark. singularity at r = 2m is removed

Figure 2: The Kruskal Spacetime
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4 The Penrose Diagram of Schwarzschild and Black Holes

In order to discuss the concept of black holes, it is suitable to represent the Schwarzschild
solution in yet another way, namely by its Penrose diagram. Generally, Penrose diagrams
are an important tool for qualitative studies of spherically symmetric spacetimes.

4.1 Theorem (Penrose Diagram). There exists an open, bounded embedding of the
Kruskal-Szekeres spacetime into RT × RX × Sn−1

ω such that the metric looks like

gP = 32m3

r e−
r

2m 1

4 cos
(
T+X

2

)2
cos

(
T−X

2

)2 (−dT 2 + dX2) + r2dω2.

The image of the embedding is pictured in:

Proof. We introduce the null coordinates Ũ , Ṽ by means of the diffeomorphism

G̃ : MK → M̃P

(U, V, ω) 7→ (V − U, V + U, ω) =: (Ũ , Ṽ , ω)

M̃p = {(Ũ , Ṽ ) ∈ R 2 | Ũ Ṽ < 1} × S2.

In these coordinates the metric looks like

g̃P = 32m3

r e−
r

2m 1
2(−dṼ dŨ − dŨdṼ ) + r2dω2,

since

dV = 1
2(dṼ + dŨ), dU = 1

2(dṼ − dŨ).

Next we introduce finite null coordinates ũ, ṽ by the diffeomorphisn

G : MP → M̃P

(ũ, ṽ, ω) 7→ (tan(ũ), tan(ṽ), ω),

where

MP = {(ũ, ṽ) ∈]− π
2 ,

π
2 [2| −π

2 + ṽ ≤ ũ ≤ π
2 − ṽ} × S2

In these coordinates the metric looks like

gP = 32m3

r e−
r

2m 1
2 cos(ũ)2 cos(ṽ)2

(−dṽdũ− dũdṽ) + r2dω2

In a last step we change to

MP → MP

(T,X) 7→ 1
2(T +X,T −X),

which yields a metric in coordinates:

gP = 32m3

r e−
r

2m 1

4 cos
(
T+X

2

)2
cos

(
T−X

2

)2 (−dT 2 + dX2) + r2dω2
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4.2 Remark (Physical Interpretation). conformally equivalent to R 1,1 × S2, conformal
invariance of null geodesics, future null infinity J +, the fate of null geodesics, future
timelike infinity i+, spacelike infinity i0, definition black hole region, horizon r = 2m

4.3 Lemma (conformal invariance of null geodesics). Let (M, g) be a Lorentz manifold
and h = e2fg be conformal to g. Let γ be a g null geodesic in M . Then γ is an h null
pregeodesic (i.e. can be reparametrized to an h-geodesic).

Proof.

5 Appendix: Some Notions from Differential Geometry

5.1 Definition (Lie derivative). Let τ ∈ T k(M) be any tensor field and X ∈ T (M) be a
vector field with local flow θt(p), t ∈ R , p ∈M . Then the Lie derivative of τ with respect
to X is defined by

∀p ∈M : (LXτ)|p := d
dt(θ

∗
t τ)|p|t=0 = lim

t→0

θ∗t (τ |θt(p))−τp
t .

5.2 Theorem (Musicial Isomorphisms). Let (M, g) be a Semi-Riemannian m-manifold of
signature (r, s) (i.e. r-fold negative definite and s-fold positive definit). For any vector
field X ∈ T (M) denote by X[ ∈ T 1(M) the 1-form defined by

∀Y ∈ T (M) : X[(Y ) := g(X,Y ).

Then the following hold:

(i) The map [ : TM → T ∗M resp. [ : T (M) → T 1(M) is an isomorphism. Its inverse
is denoted by ] : T 1(M)→ T (M).

(ii) Setting

∀ω, η ∈ T ∗(M) : g(ω, η) := g(ω)

extends the metric g to a fibre metric on T ∗M .

(iii) If E0, . . . , Em is a g-orthonormal local frame, then its dual coframe E0, . . . , Em is
orthonormal with respect to the extended metric.

5.3 Theorem (Cartan Calculus). Let (M, g) be a Semi-Riemannian m-manifold. Let ∇
be a linear connection on M , U ⊂M , E1, . . . , Em be a local frame and ϕ1, . . . , ϕm be the
dual coframe.

(i) There exists a uniquely determined matrix of forms ωji ∈ Ω1(U), 1 ≤ i, j ≤ m such
that

∀1 ≤ i ≤ m : ∀X ∈ T (U) : ∇XEi = ωji (X)Ej .

The forms ωji are called connection 1-forms with respect to (E1, . . . , Em).
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(ii) The connection ∇ is metric on U if and only if

ωij + ωji = dgij , ωij := gikω
k
j (5.1)

(iii) Let τ be the torsion tensor of ∇, i.e.

∀X,Y ∈ T (X,Y ) : τ(X,Y ) = ∇XY −∇YX − [X,Y ].

Expand τ(X,Y ) = τ j(X,Y )Ej locally in U , where τ j ∈ Ω2(U). Then Cartan’s first
structure equation holds:

∀1 ≤ j ≤ m : dϕj = ϕi ∧ ωji + τ j . (5.2)

(iv) Let ω̃ji ∈ Ω1(U) be a matrix of 1-forms that satisfies the symmetries (5.1) and (5.2)
for τ = 0. Then the local connection ∇̃ defined by

∀X ∈ TU : ∇̃XEi := ω̃ji (X)Ej , ∀f ∈ C∞(U) : ∇̃X(fEi) = X(f)Ei + f∇̃XEi,

agrees with the Levi-Civita connection of g. Alltogether, a matrix of 1-forms ωji are
the connection 1-forms of the Levi civita connection of a metric g if and only if they
satisfy the symmetries (5.1) with respect to g and Cartans first structure equation
(5.2) for τ = 0.

(v) Let ∇ be the Levi-Civita connection onM and R ∈ T 3
1 (M) be the induced curvature

tensor. Expanding locally to

∀1 ≤ k ≤ m : R(X,Y )Ek = Ωl
k(X,Y )ElΩ

j
i (5.3)

we obtain the curvature 2-forms Ωl
k ∈ Ω2(U). They satisfy Cartan’s second structure

equation

∀1 ≤ k, l ≤ m : Ωl
k = dωlk + ωlν ∧ ωνk (5.4)

(vi) The Ricci tensor Ric satisfies

Ricik = Ωj
i (Ej , Ek) (5.5)
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Nomenclature

g◦ round metric on the sphere S2, page 5

L Lie derivative, page 19

(MS , gS) Schwarzschild spacetime, page 5

N the natural numbers N = {0, 1, 2, . . .}, page 21
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