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Notation:
M smooth closed spin manifold of dimension m > 3
©:GL "M = GL* M a fixed topological spin structure
R(M) Riemannian metrics on M with C!-topology
©8& : Spinf M — SO% M metric spin structure
p : Spin,, — GLx V spinor representation, K € {R,C}
Y&M :=Spinf M x, V — M spinor bundle w.r.t. g
D% - HY(ZEM) C [2(£8 M) — L?(X£§ M) Dirac operator
H(£& M) first order Sobolev space
spec [P§ C R spectrum of %
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Dahl's Conjecture

Conjecture (Dahl '05): For any spin manifold (M, ©) and any
A1 < ... < A, €]A1, Ay satisfying 2.-4. there exists a metric g on

M such that
spec LD% DAL Ao[= {1 < ... < A\p}

Theorem (Dahl '05): Conjecture is true, if all \;'s are simple and
non-zero.

A subtlety: \ € R is simple, if

H, m=2,3,4 mod 8,
C, otherwise

dimg ker(lﬁf; -A) =1, K= {
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No topoloaical orstructions

Main Theorem (Nowaczyk 2014): Let (M, ©) be a closed spin
manifold of dimension m=0,6,7 mod 8.

1. There exists a Riemannian metric g on M such that the Dirac
operator [§® has at least one eigenvalue of multiplicity at
least two.

2. The metric g can be chosen such that it agrees with an
arbitrary metric g outside an arbitrary small neighborhood on
the manifold.




Qutline

Introduction

Main Idea




Lasso Lenmma

Lemma: Let
X = (R(M),C!) (simply
connected)




Lasso Lenmma

Lemma: Let

X = (R(M),C") (simply
connected) and

R1i(M) C AC X be any
subspace.




Lasso Lenmma

Lemma: Let

X = (R(M),C?) (simply
connected) and

Ri1(M) C AC X be any
subspace.

Want: Then X \ A not
empty.




Lasso Lenmma

Lemma: Let

X = (R(M),C?) (simply
connected) and

Ri1(M) C AC X be any
subspace. Let

g:S! — Abe not
null-homotopic. Then

X\ A0




Lasso Lenmma

Lemma: Let

X = (R(M),C?) (simply
connected) and

Ri1(M) C AC X be any
subspace. Let E— A
be a vector bundle such
that g*E — S! is not
trivial. Then X \ A # ().




Lasso Lenmma

Lemma: Let

X = (R(M),C?) (simply
connected) and

Ri1(M) C AC X be any
subspace. Let

E — A be a real vector
bundle such that

g'E — Slis
non-orientable. Then

X\ A#0.
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Definition: For n € 2N +1 define

A={geR(M) |31 <j<n:pr(N(g)) € 2N+1,
Ao(g) < A1(g), An(g) < Anta(g)}

Remark:

X\A={geR(M)|V1<j<n:ur(N(g)) €2N or

Ao(g) = Mi(g) or An(g) = Ant1(g)}
C{g e R(M) |31 <j<n:pr(N(eg)) € 2N}
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Theorem (Bir 1996): Let A > 0 such that A ¢ spec /% and
enumerate

spec PEN]-AA[={ M <A< <\

For any € > 0, there exists a C!-neighborhood U of g such that for
any g’ € U, we have

spec Q% N-AA[={N <<}

VI<i<n:|\—\|<e.
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Corvtinuity of Dirac Spectra

Theorem (Bar 1996): A bounded spectral interval of the Dirac
operator can be described locally by continuous functions.

Main Theorem (Nowaczyk 2013): There exists a family of
continuous functions {); : R(M) — R)} ez such that

1. For all g € R(M), the sequence (\j(g))jcz is non-decreasing
. and represents all the eigenvalues of [J® (counted with
multiplicities).
. In addition, the sequence {arsinh(\;)};cz is
equicontinuous.
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Remark: Recall

A={g e R(M) |31 <j < n:pr(N(g)) € 2N+1,
Mo(g) < A1(g), An(g) < Anta(g)}

Definition:

E:= H Z ker(DE —)\i(g)) — A

geA1<<n
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Lniversal Spinor Field Bundle

Theorem (Bourguignon, Gauduchon 1992): For any g, h € R(M),
there exists an identification isomorphism

Ben: LA(ZEM) — L2(ZEM),
which is an isometry of Hilbert spaces.

Theorem: The universal spinor field bundle

2(5kM) = [erm L2(EEM) — R(M)
b e L2(ZEM) — g

carries a unique Hilbert bundle topology such that any
identification isomorphism yields a global trivialization.
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Loops induced By Diffeomorphisms

Definition: Let F : S! — Diff(M) be a loop of diffeomorphisms
and g € R(M) be any metric. Then

g: St - R(M)
a = oga=(Fil)e

is the associated loop of metrics.




Sprin Diffeomorphisms

Definition: A diffeomorphism f : M — M is a spin
diffeomorphism, if

GLim -3 scaltm

2:1[@ 2:1[@

GLTM—" sGLtMm

| |

M—F m

commutes.
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Odd and even Loops

Let M be connected.

DiffP"(M) := {f € Diff(M) | IF : @ o F = f, 0 ©}
Diff " (M) := {(f, F) | f € Diff*"(M)}

Definition: A loop F : S' — DiffP"(M) is even, if

———spi

_Diff" " (M)

2:1

§t ——— Diff*" (M)

and odd otherwise.
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The san Invariant

Remark: Let F : [0, 1] — Diff*®"(M) be a loop. Then the lift

——spin

~, Diff (M)

2:1

0. 1] ——— Diff*™"(M)

exists always, but F(1) = +F(0). This defines an invariant

sgn:wl(DifFSPin(M),idM) — Zz
+1, F iseven
F is odd.

F




Non-Orientarility

Theorem: Let F : ST — DiffP"(M) and g € A (= g : S' — A).




Non-Orientarility

Theorem: Let F : ST — DiffP"(M) and g € A (= g : S' — A).
If n=dimE is odd and F is odd, then g*E — S! is
non-orientable.




Non-Orientarility

Theorem: Let F : ST — DiffP"(M) and g € A (= g : S' — A).
If n=dimE is odd and F is odd, then g*E — S! is
non-orientable.

Recall:

gE——E

L, ]

S1_8 A

In that case, the hypothesis of the Lasso Lemma is satisfied and we
can conclude X \ A # ().




Odd Loops of Me-tries

Definition: A spin manifold (M, ©) admits an odd loop of
metrics, if there exists a continuous map

g: (St 151) — (A,C?)
such that the bundle E is odd dimensional and
g'E — St

is non-orientable.
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Just one slicht Prorlem..

Finding F : St — Diff"™(M) is more difficult than
finding g : S* — A is more difficult than
finding g € R(M) as required by the Main Theorem.
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The Sphere

Theorem (odd loops on the sphere): The sphere (§™,0), m > 3,
admits an odd loop of metrics.

Lemma: The map F : ST — Diff"™(S™), o = Rara|sm, where

Im—1 0 0
VaeR:Ry:=| 0 cos(a) —sin(a) | :R™! 5 R
0 sin(a) cos(a)

is an odd loop of spin diffeomorphisms.

Lemma: There exists a metric g on S™ arbitrary close to g° such
that )% has at least one eigenvalue A of odd multiplicity.

n = dimker(% —\).
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Suraery

Idea: Transport odd loop of metrcis from S™ to M™ via surgery.

N:=MIIS™ «w N = MiS™ = M.




Suraery and Dirac Spectra
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Conclusion

1. Construction of the set A v/
~» Continuity of Dirac Spectra
2. Construction of the bundle E — A v
~~> Universal Spinor Bundle
3. Construction of the Loop g
~» Odd loops of diffeomorhpisms v*
~ Surgery stability of odd loops of metrics v/

— Existence of Dirac eigenvalues of higher multiplicity is
not topologically obstructed in dimensions m =0,6,7 mod 8.




e

Comparison to other operators

- For the Laplace operator g — A& on a compact manifold, it is
kown that finitely many eigenvalues can be prescribed
arbitrarily including multiplicity (by Verdiere 1986-1993,
Jammes 2009-2012).

- For the Laplace operator Q — Agq on a domain Q with
Dirichlet boundary conditions, the spectrum cannot be
prescribed arbitrarily if the volume of Q is fixed. (Henrot 2006)

- For the Sturm-Liouville operator,

(P, q) = —(d%(p-d%) +q),

(with boundary conditions) higher multiplicities do not exist.
(Hartmann 1964)




Thanks £or your
attention




Open Prorlems

Can one prescribe double eigenvalues?

Is the set of metrics R1(M) for which all Dirac eigenvalues are
simple generic in R(M)?

Can one build a finite dimensional spinor bundle that is
independent of the metric?

Can one approach these problems by variational techniques?
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