Overview of Atiyah-Singer Index Theory

Nikolai Nowaczyk

January 26, 2015

Abstract. The aim of this text is to give an overview of the Index Theorems by Atiyah and Singer. Our primary motivation is to understand the formulation of the $C\ell_k$ -linear Index Theorem. The primary reference for this is [LM89].

Contents

1	Rer	minder on K-Theory	2
2	$\mathrm{C}\ell_k$	-Linearity and Real Dirac Bundles	3
	2.1	$\mathrm{C}\ell_k$ -linear Dirac Operators	3
	2.2		
3	Ove	erview of complex Index Theory	6
	3.1	Analytic index of a PDO	6
	3.2	Topological index of a PDO	6
	3.3	Analytic Index of a family	7
	3.4	Topological index of a family	9
	3.5	Index for $\mathrm{C}\ell_k$ -family	9
R	efere	ences	10
To	odo		11

1. Reminder on K-Theory

[LM89, I.§9, 10]

Definition 1.1 (K(X)). Let X be a compact space and let V(X) be the isomorphism classes of complex vector bundles over X. We define

$$K(X) := F(X)/E(X),$$

where F(X) is the free abelian semi-group generated by elements of V(X) and E(X) is the subgroup in F(X) generated by elements of the form $[V] + [W] - ([V] \oplus [W])$, where + is addition in F(X) and \oplus is addition in V(X). This is a ring with respect to

$$[u] \cdot [v] := \Delta^* [u \otimes v],$$

where $\Delta: X \to X \times X$ is the diagonal map.

Definition 1.2 (KO(X)). KO(X) is defined exactly as K(X), but with V(X) replaced by $V_{\mathbb{R}}(X)$, the isomorphism classes of real vector bundles.

Lemma 1.3 (Functoriality). K and KO are functors from TOP to RINGS. In particular, if $f: X \to Y$ is a map, we get an induced map $K(f): K(Y) \to K(X)$ constructed using the pull-back $f^*: V(Y) \to V(X)$.

Definition 1.4 $(\tilde{K}(X))$. Let $i : \{ pt \} \to X$ be the inclusion. Let $\tilde{K}(X)$ be the kernel of the induced map $K(i) : K(X) \to K(pt)$. We obtain a split exact sequence

$$0 \longrightarrow \tilde{K}(X) \longrightarrow K(X) \longrightarrow K(\operatorname{pt}) = \mathbb{Z} \longrightarrow 0.$$

Definition 1.5 $(K^{-i}(X))$. For any space X, let $\Sigma(X) := S^1 \wedge X$ be the reduced suspension of X and $\Sigma^i(X) \approx S^i \wedge X$ be the *i*-fold suspension, $i \in \mathbb{N}$. We define for any $Y \subset X$:

$$\tilde{K}^{-i}(X) := \tilde{K}(\Sigma^{i}(X)), \qquad K^{-i}(X) := \tilde{K}^{i}(X/Y) := \tilde{K}(\Sigma^{i}(X/Y)). \qquad \Diamond$$

Definition 1.6 (*L*-Theory). Let $Y \subset X$ be a closed subspace. For each $n \geq 1$, let $\mathcal{L}_n(X,Y)$ be the space of tuples $\mathbf{V} = (V_0, \dots, V_n; \sigma_1, \dots, \sigma_n)$, where $V_0, \dots V_n$ are vector bundles over $X, \sigma_i : V_{i-1} \to V_i$ are vector bundle morphisms such that

$$0 \longrightarrow V_0|_Y \xrightarrow{\sigma_1} V_1|_Y \xrightarrow{\sigma_2} \dots \xrightarrow{\sigma_n} V_n|_Y \longrightarrow 0$$
 (1.1)

is an exact sequence. Two such elements V and V' are *isomorphic*, if there are bundle isomorphisms $\varphi_i: V_i \to V_i'$ such that

$$V_{i-1}|_{Y} \xrightarrow{\sigma_{i}} V_{i}|_{Y}$$

$$\downarrow^{\varphi_{i-1}} \qquad \downarrow^{\varphi_{i}}$$

$$V'_{i-1} \xrightarrow{\sigma'_{i}} V'_{i}|_{Y}$$

commutes, i = 1, ..., n. An element $\mathbf{V} = (V_0, ..., V_n; \sigma_1, ..., \sigma_n)$ is elementary, if there exists i such that

$$V_i = V_{i-1}, \sigma_i = id,$$
 $\forall j \neq i, i-1 : V_i = \{0\}.$

We say \mathbf{V}, \mathbf{V}' are *equivalent*, if there exist elementary elements $\mathbf{E}_1, \dots, \mathbf{E}_k, \mathbf{F}_1, \dots, \mathbf{F}_k \in \mathcal{L}_n(X,Y)$ and an isomorphism

$$\mathbf{V} \oplus \mathbf{E}_1 \oplus \ldots \oplus \mathbf{E}_k \cong \mathbf{V}' \oplus \mathbf{F}_1 \oplus \ldots \oplus \mathbf{F}_l$$
.

Denote by $L_n(X,Y)$ the set of all equivalence classes. This is an abelian group under \oplus . We get a map $L_n(X,Y) \to L_{n+1}(X,Y)$ by extending as squence with the zero bundle and the zero morphism. We define

$$L(X,Y) := \varinjlim_{n} L_n(X,Y)$$

to be the L-theory of (X, Y).

Theorem 1.7. There exists a unique equivalence $\chi: L(X,Y) \to K(X,Y)$ satisfying

$$\chi([V_0,\ldots,V_n]) = \sum_{k=0}^n (-1)^k [V_k],$$

when $Y = \emptyset$.

Definition 1.8 (K-Theory with compact support). Let X be locally compact. Then

$$K_{\rm cpt}(X) := \tilde{K}(X^+),$$

where $X^+ := X \cup \{pt\}$ is the one point compactification of X. We also set

$$K_{\mathrm{cpt}}^{-i}(X) := K_{\mathrm{cpt}}(X \times \mathbb{R}^i).$$

 \Diamond

 \Diamond

Remark 1.9. One can show that any element in $K_{\text{cpt}}(X)$ can be represented as the formal difference of two vector bundles over X, which are trivialized outside a compact subset of X.

Remark 1.10 ($L_{\rm cpt}$). One can also define $L_{\rm cpt}$ in a similar fashion: One replaces the compact space X by a locally compact space X. We require that $\ref{eq:cpt}$ is exact outside a compact set. We also get isomorphisms $L_1(X)_{\rm cpt} \to L_2(X)_{\rm cpt} \to \dots K_{\rm cpt}(X)$. Consequently, any element in $L(X)_{\rm cpt}$ can be represented by a map $\sigma: V_0 \to V_1$ which is an isomorphism outside a compact set. We denote this equivalence class by

$$[V_0, V_1; \sigma] \in L(X)_{\text{cpt}} \cong K_{\text{cpt}}(X). \tag{1.2}$$

Definition 1.11 (KR-Theory). Consider the category of bundles $(V, c_V) \to (X, c_X)$, where $V \to X$ is a complex vector bundle $c_X : X \to X$ is an involution and c_V is a \mathbb{C} -antilinear lift of c_X . Let $VR(X, c_X)$ be the abelian semi-group of isomorphism classes of such bundles. The resulting Grothendieck group

$$KR(X, c_X)$$

is the KR-Theory of (X, c_X) .

Remark 1.12. One can also consider an LR-Theory and $KR_{\mathrm{cpt}}(X,Y)$ in an analogous fashion.

 \Diamond

 \Diamond

2. $C\ell_k$ -Linearity and Real Dirac Bundles

Remark 2.1. In this section, all the bundles and operators are real.

2.1. $C\ell_k$ -linear Dirac Operators

[LM89, II.§7]

Definition 2.2 ($\mathcal{S}(X)$). Let (X,g) be a Riemannian spin manifold of dimension n and $\rho: \mathrm{Spin}_n \to \mathrm{Aut}(V)$ be a real spinor representation. Then

$$S(X) := P_{\text{spin}}(X) \times_{\rho} V \to X$$

is the spinor bundle of X.

Definition 2.3 $(C\ell(X))$. Let (X,g) be a Riemannian spin manifold of dimension n. Then

$$C\ell(X) := \coprod_{x \in X} C\ell(T_x X, g_x) \to X$$

is the Clifford- $Algebra\ bundle\ of\ X$.

Definition 2.4 (Spinor-Clifford bundle). Let X be a spin manifold of dimension $n, l: \operatorname{Spin}_n \to \operatorname{Iso}(\mathrm{C}\ell_n)$ be the left multiplication. We define

$$\mathfrak{E}(X) := P_{\text{spin}}(X) \times_l \mathrm{C}\ell_n$$
.

This bundle carries

- A canonical connection ∇ just as $\mathcal{S}(X)$.
- A canonical right multiplication $\mathfrak{E}(X) \times \mathrm{C}\ell_n \to \mathfrak{E}(X)$ and therefore, the fibres are $\mathrm{C}\ell_n$ -modules of rank 1. This multiplication is parallel.
- A canonical left action of $\mathrm{C}\ell(X)$ that commutes with the right multiplication.
- A \mathbb{Z}_2 -grading $\mathfrak{E}(X) = \mathfrak{E}^0(X) \oplus \mathfrak{E}^1(X)$ over $\mathrm{C}\ell(X)$ satisfying

$$\forall i, j \in \mathbb{Z}_2 : \mathfrak{G}(X)^i \cdot \mathcal{C}\ell_n^j \subseteq \mathfrak{G}^{i+j}(X). \tag{2.1}$$

This splitting is induced from $\mathrm{C}\ell_n=\mathrm{C}\ell_n^0\oplus\mathrm{C}\ell_n^1.$

• A Dirac-Operator $\mathfrak{D}: \Gamma(\mathfrak{G}(X)) \to \Gamma(\mathfrak{G}(X))$, which is $\mathrm{C}\ell_n$ -linear, i.e. it commutes with the action of $\mathrm{C}\ell_n$. With respect to the splitting, this operator is of course of the form

$$\mathfrak{D} = \begin{pmatrix} 0 & \mathfrak{D}^1 \\ \mathfrak{D}^0 & 0. \end{pmatrix} \qquad \diamond$$

Lemma 2.5. The operator $\mathfrak{D}^0: \Gamma(\mathfrak{E}^0(X)) \to \Gamma(\mathfrak{E}^1(X))$ is a real, elliptic first-order operator which commutes with the action of $\mathrm{C}\ell_n^0 \cong \mathrm{C}\ell_{n-1}$ on $\mathfrak{E}(X) = \mathfrak{E}^0(X) \oplus \mathfrak{E}^1(X)$.

Definition 2.6 ($C\ell_k$ -Dirac bundle). A $C\ell_k$ -Dirac bundle over a Riemannian manifold X is a real Dirac bundle $\mathfrak{G} \to X$ together with a right action $C\ell_k \to Aut(\mathfrak{G})$ which is parallel and commutes with multiplication by elements of $C\ell(X)$. Such a bundle is \mathbb{Z}_2 -graded, if it is \mathbb{Z}_2 -graded as a Dirac bundle $\mathfrak{G} = \mathfrak{G}^0 \oplus \mathfrak{G}^1$ and the splitting is also a \mathbb{Z}_2 -grading for the right action, i.e. (2.1) is satisfied. This also yields a Dirac operator \mathfrak{D} .

Definition 2.7 (analytic index). Let X be compact and $\mathfrak{E} \to X$ be a $\mathrm{C}\ell_k$ -linear \mathbb{Z}_2 -graded Clifford bundle with Dirac operator $\mathfrak{D}^0: \Gamma(\mathfrak{E}^0) \to \Gamma(\mathfrak{E}^1)$. Then

$$\operatorname{ind}_{k}(\mathfrak{D}^{0}) := [\ker \mathcal{D}^{0}] \in \mathfrak{M}_{k-1}/i^{*}\mathfrak{M}_{k} \cong KO^{-k}(\operatorname{pt}) \cong \begin{cases} \mathbb{Z}, & k \equiv 0 \mod 4, \\ \mathbb{Z}_{2}, & k \equiv 1, 2 \mod 8, \\ 0, & \text{otherwise.} \end{cases}$$
 (2.2)

Remark 2.8 (Explaination of (2.2)). Since \mathfrak{D} commutes with $C\ell_k^0 \cong C\ell_{k-1}$, $\ker \mathfrak{D}^0$ is a finite-dimensional $C\ell_{k-1}$ -module. Consequently, $\ker \mathfrak{D}^0$ determines an element in the Grothendieck group \mathfrak{M}_{k-1} of isomorphism classes of $C\ell_{k-1}$ -modules. Let $i: C\ell_{k-1} \to C\ell_k$ be induced by the canonical inclusion $\mathbb{R}^{k-1} \to \mathbb{R}^k$. Then $[\ker \mathfrak{D}^0]$ simply denotes the residue class. The isomorphism to $KO^{-k}(\operatorname{pt})$ is the Atiyah-Bott-Shapiro-Isomorphism, see [LM89, I.Prop. 9.27]. \Diamond

Remark 2.9 (Alternative Description of the Index). By [LM89, I. Prop. 5.20] there is an equivalce between the category of \mathbb{Z}_2 -graded modules over $C\ell_n$ and the category of ungraded modules over $C\ell_{n-1}$ induced by projecting

$$C\ell_n = C\ell_n^0 \oplus C\ell_n^1 \mapsto C\ell_n^0$$
.

Consequently, if $\widehat{\mathfrak{M}}_k$ denotes the Grothendieck group of \mathbb{Z}_2 -graded $\mathrm{C}\ell_k$ -Clifford modules. Clearly, $\ker \mathfrak{D}$ is a \mathbb{Z}_2 -graded module and $(\ker \mathcal{D})^0 = \ker \mathcal{D}^0$. Consequently, we can also define

$$\operatorname{ind}_k(\mathfrak{D}) := [\ker \mathfrak{D}] \in \widehat{\mathfrak{M}}_k/i^*\widehat{\mathfrak{M}}_{k+1}.$$

This index agrees with (2.2) under the isomorphism $\widehat{\mathfrak{M}}_k \cong \mathfrak{M}_{k-1}$.

Lemma 2.10. ind_k is a generalization of ind in the sense that

$$\operatorname{ind}_{0}(\mathfrak{D}) = \operatorname{ind}(\mathfrak{D}) = \dim_{\mathbb{R}} \ker \mathfrak{D}^{0} - \dim_{\mathbb{R}} \operatorname{coker} \mathfrak{D}^{0} \qquad \Diamond$$

 \Diamond

Proof. First notice that $C\ell_0 = \mathbb{R}$ and $C\ell_1 = \mathbb{C}$. A \mathbb{Z}_2 -graded $C\ell_0$ -module is just a pair of real vector spaces $V = V^0 \oplus V^1$. Now

$$V \oplus 0 + 0 \oplus V = V \oplus V \cong V \otimes \mathbb{C}$$

is a graded $\mathrm{C}\ell_1=\mathbb{C}\text{-module},$ thus $[V\oplus 0]=-[0\oplus V]$ and therefore

$$\begin{split} \operatorname{ind}_0(\boldsymbol{\mathcal{D}}) &= [\ker \boldsymbol{\mathcal{D}}] \\ &= [\ker \boldsymbol{\mathcal{D}}^0 \oplus \ker \boldsymbol{\mathcal{D}}^1] \\ &= [\ker \boldsymbol{\mathcal{D}}^0 \oplus 0] + [0 \oplus \ker \boldsymbol{\mathcal{D}}^1] \\ &= [\ker \boldsymbol{\mathcal{D}}^0 \oplus 0] - [\ker \boldsymbol{\mathcal{D}}^0 \oplus 0] \\ &\cong \dim_{\mathbb{R}} \ker \boldsymbol{\mathcal{D}}^0 - \dim_{\mathbb{R}} \operatorname{coker} \boldsymbol{\mathcal{D}}^0 \end{split}$$

 \Diamond

2.2. Analytic Clifford Index

[LM89, III.§10]

Definition 2.11 (C ℓ_k -bundle). A C ℓ_k -bundle on a space X is a bundle $E \to X$ of real right $C\ell_k$ -modules, i.e. $E \to X$ is a real vector bundle together with a continuous map $\Psi: C\ell_k \times E \to E$ such that $\Psi_{\varphi}: E \to E$ is a bundle endomorphism for all $\varphi \in C\ell_k$ and the restriction $C\ell_k \times E_x \to E_x$ makes the fibre into a $C\ell_k$ -module for each $x \in X$.

Definition 2.12 (analytic Index). Let X be compact, $E \to X$ be a $C\ell_k$ bundle with \mathbb{Z}_2 -grading, P be an elliptic graded self-adjoint PDO. Then

$$\operatorname{ind}_k(P) := [\ker P] \in \widehat{\mathfrak{M}}_k / i^* \widehat{\mathfrak{M}}_{k+1} \cong KO^{-k}(\operatorname{pt})$$

is the analytic index of P.

3. Overview of complex Index Theory

3.1. Analytic index of a PDO

[LM89, III. §1]

Definition 3.1 (PDO). Let $E, F \to X$ be \mathbb{C} -vector bundles over manifold X. A linear map $P: \Gamma(E) \to \Gamma(F)$ is a PDO of order $m \in \mathbb{N}$, if locally

$$P = \sum_{|\alpha| \le m} A^{\alpha} \frac{\partial^{|\alpha|}}{\partial x^{\alpha}}.$$

Definition 3.2 (Symbol). For any P as above, we obtain the symbol of P, $\sigma(P) \in \Gamma(\bigcirc^m TX \otimes \text{Hom}(E,F))$ defined locally by

$$\forall x \in X : \forall \xi \in T_x^* X : \sigma_{\xi}(P) := \sum_{|\alpha| = m} i^m A^{\alpha} \xi_{\alpha} \in \text{Hom}(E_x, F_x).$$

Definition 3.3 (elliptic). We say P is *elliptic*, if $\sigma_{\xi}(P)$ is an isomorphism for all $0 \neq \xi \in T^*X$.

[LM89, III. §7]

Definition 3.4 (analytic index). Let P be a PDO of order $m \in \mathbb{N}$ and consider any Fredholm extension $P: L_s^2(E) \to L_{s-m}^2(F)$. Then

$$\operatorname{a-ind}(P) := \dim \ker P - \dim \operatorname{coker} P \in \mathbb{Z}$$

is the analytic index of P.

¹In [LM89], there is a *left* here. We use a *right* action here in order to make this definition more compatible with Definition 2.6. Of course this is just cosmetics.

3.2. Topological index of a PDO

[LM89, III. §13]

Again, let $E, F \to X$ be complex vector bundles and $P : \Gamma(E) \to \Gamma(F)$ be a PDO of order m.

Definition 3.5 (K-Theory-class of principal symbol). Consider the pullback diagram

$$\begin{array}{ccc}
\pi^*E, \pi^*F & \longrightarrow E, F \\
\downarrow & & \downarrow \\
T^*X & \xrightarrow{\pi} & X.
\end{array}$$

We define [LM89, III, (1.9), (13.1)]

$$i(P) := [\pi^* E, \pi^* F; \sigma(P)] \in K_{\mathrm{cpt}}(T^* X) \cong K_{\mathrm{cpt}}(TX),$$

see also ??.

Definition 3.6 (topological index of a PDO). Let $f: X \hookrightarrow \mathbb{R}^N$ be a smooth embedding for N large enough. This induces an embedding

$$f_!: K_{\mathrm{cpt}}(TX) \to K_{\mathrm{cpt}}(T\mathbb{R}^N),$$

see [LM89, III.(12.7)]. Now, consider $T \mathbb{R}^N = \mathbb{R}^N \oplus \mathbb{R}^N = \mathbb{C}^N$ and think of \mathbb{C}^N as a vector bundle $q : \mathbb{C}^N \to \operatorname{pt}$. Let $q_! : K_{\operatorname{cpt}}(\mathbb{C}^N) \to K_{\operatorname{cpt}}(\operatorname{pt}) = K(\operatorname{pt})$ be the inverse of the Thom-Isomorphism $i_!$, see below, and define

$$top-ind(P) := q_1 f_1 i(P) \in \mathbb{Z}.$$

Theorem 3.7 (Atiyah-Sinder Index Theorem for an operator). Let P be an elliptic operator on a compact manifold. Then

$$\operatorname{a-ind}(P) = \operatorname{top-ind}(P).$$

 \Diamond

Remark 3.8 (Thom-Isomorphism). Let $E \to X$ be a complex vector bundle and $i: X \to E$ be the inclusion of X into X via the zero section. Then there exists an isomorphism

$$i_!: K_{\mathrm{cpt}}(X) \to K_{\mathrm{cpt}}(E),$$

called Thom-Isomorphism, see [LM89, III. §12].

Lemma 3.9. Let $f: X \to Y$ be a proper embedding. Assume that the normal bundle $N \to f(X)$ carries a complex structure. Then there exists a natural mapping

$$f_!: K_{\mathrm{cpt}}(X) \to K_!(Y).$$

In particular, if $f: X \to Y$ is a proper embedding of manifolds, there exists an associated map

$$f_!: K_{\mathrm{cpt}}(X) \to K_{\mathrm{cpt}}(Y).$$

Proof. For the first claim, we just define the map $f_!$ to be the composition

$$K_{\rm cpt}(X) \xrightarrow{i!} K_{\rm cpt}(N) K_{\rm cpt}(Y).$$

Here, i! is the Thom-Isomorphism, and the second map is obtained by identifying N with a regular neighborhood of X in Y. For the second claim, notice that if $f: X \to Y$ is a proper smooth embedding of manifolds, $f_*: TX \to TY$ is a proper smooth embedding as well. \square

3.3. Analytic Index of a family

[LM89, III.§8]

Definition 3.10. Let $E, F \to X$ be smooth vector bundles.

- We denote by $\operatorname{Diff}(E;X)$ the group of vector bundle automorphisms of $E \to X$ and by $\operatorname{Diff}(X)$ the diffeomorphism group of X. We endow $\operatorname{Diff}(X)$ and $\operatorname{Diff}(E;X)$ with the \mathcal{C}^{∞} -topology.
- There is a canonical homomorphism

$$\beta: \mathrm{Diff}(E;X) \to \mathrm{Diff}(X)$$

of topological groups.

- We define $\mathscr{D} := \mathrm{Diff}(E, F; X)$ to be the subgroup of $\mathrm{Diff}(E \oplus F; X)$, which maps E to E and F to F.
- Let $\operatorname{Op}^m(E,F)$ the space of all PDOs $P:\Gamma(E)\to\Gamma(F)$ of order $\leq m$.
- We have a canonical group action

$$\mathscr{D} \times \operatorname{Op}^m(E, F) \to \operatorname{Op}^m(E, F), \qquad (g = (g_E, g_F), P) \mapsto g_F \circ P \circ g_E^{-1}.$$

Definition 3.11 (structure group). Let $Z \to X$ be a smooth resp. continuous fibre bundle with fibre type Y. Then a subgroup G of Diff(Y) resp. Homeo(Y) is a *structure group of* $Z \to X$, if there exists an open cover of X such that all cocycles take values in G.

Definition 3.12 (family of vector bundles). Let A be a Hausdorff space. Then a family of smooth vector bundles over X paramatrized by A is a fibre bundle $\mathscr{E} \to A$ such that each fibre is a vector bundle $E \to X$ and the structure group of $\mathscr{E} \to A$ is Diff(E; X). \diamondsuit

Remark 3.13. One should think about X as fixed only up to diffeomorphisms. For any $a \in A$, the fibre of the bundle $\mathscr{E} \to A$ over a is a vector bundle $E_a \to X_a$, isomorphic to $E \to X$.

Remark 3.14. Let $\mathscr{E} \to A$ be a family of vector bundles and $\beta : \mathrm{Diff}(E;X) \to \mathrm{Diff}(X)$ as above. The associated bundle

$$\mathscr{X} := \mathscr{E} \times_{\beta} X \to A$$

is a bundle with structure group $\mathrm{Diff}(X)$ and $\mathscr{E} \to \mathscr{X}$ is a vector bundle, i.e. we have a sequence

$$\mathscr{E} \to \mathscr{X} \to A$$

and over any $a \in A$ lies the manifold \mathscr{X}_a and over \mathscr{X}_a lies the vector bundle $\mathscr{E}_a \to \mathscr{X}_a$. \Diamond

Definition 3.15 (continuous pair). A continuous pair of vector bundles over X parametrized by A is a bundle $\mathcal{E} \oplus \mathcal{F} \to A$ such that each fibre is a split bundle $E \oplus F \to X$ and whose structure group is $\mathscr{D} = \mathrm{Diff}(E, F; X)$.

Definition 3.16 (operator bundle). Let $\mathscr{E} \oplus \mathscr{F} \to A$ be a continuous pair. Then

$$\operatorname{Op}^{m}(\mathscr{E},\mathscr{F}) := \mathscr{E} \oplus \mathscr{F} \times_{\mathscr{D}} \operatorname{Op}^{m}(E;F) \to A$$

 \Diamond

 \Diamond

is the operator bundle.

Definition 3.17 (family of elliptic operators). A family of elliptic operators is a section P of the operator bundle $\mathscr{E} \oplus \mathscr{F} \to A$ such that for each $a \in A$, $P_a \in \operatorname{Op}^m(\mathscr{E}_a, \mathscr{F}_a)$ is an elliptic operator. \Diamond

Definition 3.18 (analytic index). Let P be a family of elliptic operators as above. Then

$$\operatorname{a-ind}(P) := [\ker P] - [\operatorname{coker} P] \in K(A)$$

is the analytic index of P.

Remark 3.19. In general, neither ker P nor coker P are well-defined vector bundles over A, since their dimensions can jump. Nevertheless, one can show that their formal difference still gives a well-defined element in K(A).

3.4. Topological index of a family

[LM89, III. §15]

Definition 3.20 (topological index of a family). Let $\mathscr{E} \oplus \mathscr{F} \to A$ be a continuous pair and P be a family of elliptic operators on the operator bundle $\operatorname{Op}^m(\mathscr{E},\mathscr{F}) \to A$, where A is compact Hausdorff. Let $\pi: \mathscr{X} \to A$ again be the underlying family of manifolds. Define

$$T\mathscr{X} := \bigcup_{a \in A} T\mathscr{X}_a$$

to be the vertical tangent bundle. For N large enough, we can find a map $f: \mathcal{X} \to A \times \mathbb{R}^N$ such that for each $a \in A$, $f_a: \mathcal{X}_a \hookrightarrow \{a\} \times \mathbb{R}^N$ is an embedding. This induces a map $T\mathcal{X} \to A \times T\mathbb{R}^N$, which induces a map

$$f_!: K_{\mathrm{cpt}}(T\mathscr{X}) \to K_{\mathrm{cpt}}(A \times \mathbb{C}^N).$$

Analogously, we get a map $q_!: K_{\mathrm{cpt}}(A \times \mathbb{C}^N) \to K_{\mathrm{cpt}}(A) = K(A)$. The composition

$$top-ind(P) := q_! f_! \sigma(P) \in K(A)$$

is the topological index. Here, $\sigma(P)$ is defined fibrewise as $\sigma(P_a)$.

Theorem 3.21 (Atiyah-Singer Index Theorem for Families). Let P be a family of elliptic operators as above. Then

$$\operatorname{a-ind}(P) = \operatorname{top-ind}(P).$$

3.5. Index for $C\ell_k$ -family

[LM89, III. §16]

Remark 3.22. In this section, all the bundles and operators are real.

Definition 3.23 (topological index). Let $E, F \to X$ be real bundles. Consider $\pi : TX \to X$ as equipped with the involution $TX \to TX$, $v \mapsto -v$. Consider $\pi^*(E \otimes \mathbb{C}) \to TX$ as equipped with the complex conjugation. For any real elliptic operator $P : \Gamma(E) \to \Gamma(F)$, we obtain

$$\sigma(P) \in [\pi^*(E \otimes \mathbb{C}), \pi^*(F \otimes \mathbb{C}); \sigma(P)] \in KR_{\mathrm{cpt}}(TX).$$

Choose an embedding $f: X \hookrightarrow \mathbb{R}^N$ such that the associated embedding $TX \hookrightarrow T\mathbb{R}^N$ is compatible with the involutions. Using the Thom-Isomorphism in KR-Theory, we obtain a map

$$f_!: KR_{\mathrm{cpt}}(TX) \to KR_{\mathrm{cpt}}(T\mathbb{R}^N)$$

and compose with $KR_{\rm cpt}(T\mathbb{R}^N) \to KR_{\rm cpt}({\rm pt})$. This gives top-ind(P).

Definition 3.24 (topological index of a family). Let P be a family of elliptic operators on a real continuous pair $\mathscr{E} \oplus \mathscr{F} \to A$. Using local triviality, we get a map

$$f_!: KR_{\mathrm{cpt}}(T\mathscr{X}) \to KR_{\mathrm{cpt}}(A \times T\mathbb{R}^N) \cong KR_{\mathrm{cpt}}(A \times \mathbb{C}^N)$$

and there also is a Thom-Isomorphism

$$q_!: KR_{\mathrm{cpt}}(A \times \mathbb{C}^N) \to KR(A) \cong KO(A).$$

Theorem 3.25 (Atiyah-Singer). Let P be a family of real elliptic operators on a compact manifold paramatrized by a compact Hausdorff space A. Let $\operatorname{a-ind}(P) \in KO(A)$ be the analytic index of P (as defined for complex P by replacing complex with real objects). Then

$$\operatorname{a-ind}(P) = \operatorname{top-ind}(P).$$

REFERENCES

[LM89] H. B. Lawson Jr. and M.-L. Michelsohn. Spin geometry. Vol. 38. Princeton Mathematical Series. Princeton, NJ: Princeton University Press, 1989, pp. xii+427. ISBN: 0-691-08542-0.