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Abstract. The aim of this text is to give an overview of the Index Theorems by
Atiyah and Singer. Our primary motivation is to understand the formulation of
the C`k-linear Index Theorem. The primary reference for this is [LM89].
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1. Reminder on K-Theory

[LM89, I.§9, 10]

Definition 1.1 (K(X)). Let X be a compact space and let V (X) be the isomorhpism
classes of complex vector bundles over X. We define

K(X) := F (X)/E(X),

where F (X) is the free abelian semi-group generated by elements of V (X) and E(X) is the
subgroup in F (X) generated by elements of the form [V ] + [W ] − ([V ] ⊕ [W ]), where + is
addition in F (X) and ⊕ is addition in V (X). This is a ring with respect to

[u] · [v] := ∆∗[u⊗ v],

where ∆ : X → X ×X is the diagonal map. ♦

Definition 1.2 (KO(X)). KO(X) is defined exactly as K(X), but with V (X) replaced by
VR(X), the isomorphism classes of real vector bundles. ♦

Lemma 1.3 (Functoriality). K and KO are functors from TOP to RINGS. In particular,
if f : X → Y is a map, we get an induced map K(f) : K(Y )→ K(X) constructed using the
pull-back f∗ : V (Y )→ V (X). ♦

Definition 1.4 (K̃(X)). Let i : {pt} → X be the inclusion. Let K̃(X) be the kernel of the
induced map K(i) : K(X)→ K(pt). We obtain a split exact sequence

0 // K̃(X) // K(X) // K(pt) = Z // 0. ♦

Definition 1.5 (K−i(X)). For any space X, let Σ(X) := S1∧X be the reduced suspension
of X and Σi(X) ≈ Si ∧X be the i-fold suspension, i ∈ N. We define for any Y ⊂ X:

K̃−i(X) := K̃(Σi(X)), K−i(X) := K̃i(X/Y ) := K̃(Σi(X/Y )). ♦

Definition 1.6 (L-Theory). Let Y ⊂ X be a closed subspace. For each n ≥ 1, let Ln(X,Y )

be the space of tuples V = (V0, . . . , Vn;σ1, . . . , σn), where V0, . . . Vn are vector bundles over
X, σi : Vi−1 → Vi are vector bundle morphisms such that

0 // V0|Y
σ1 // V1|Y

σ2 // . . .
σn // Vn|Y // 0 (1.1)

is an exact sequence. Two such elements V and V′ are isomorphic, if there are bundle
isomorphisms ϕi : Vi → V ′i such that

Vi−1|Y
σi //

ϕi−1

��

Vi|Y
ϕi

��

V ′i−1
σ′i // V ′i |Y

commutes, i = 1, . . . , n. An element V = (V0, . . . , Vn;σ1, . . . , σn) is elementary, if there
exists i such that

Vi = Vi−1, σi = id, ∀j 6= i, i− 1 : Vj = {0}.
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We say V,V′ are equivalent, if there exist elementary elements E1, . . . ,Ek,F1, . . . ,Fk ∈
Ln(X,Y ) and an isomorphism

V ⊕E1 ⊕ . . .⊕Ek ∼= V′ ⊕ F1 ⊕ . . .⊕ Fl.

Denote by Ln(X,Y ) the set of all equivalence classes. This is an abelian group under ⊕.
We get a map Ln(X,Y ) → Ln+1(X,Y ) by extending as squence with the zero bundle and
the zero morphism. We define

L(X,Y ) := lim−→
n

Ln(X,Y )

to be the L-theory of (X,Y ). ♦

Theorem 1.7. There exists a unique equivalence χ : L(X,Y )→ K(X,Y ) satisfying

χ([V0, . . . , Vn]) =

n∑
k=0

(−1)k[Vk],

when Y = ∅. ♦

Definition 1.8 (K-Theory with compact support). Let X be locally compact. Then

Kcpt(X) := K̃(X+),

where X+ := X ∪ {pt} is the one point compactification of X. We also set

K−icpt(X) := Kcpt(X × Ri). ♦

Remark 1.9. One can show that any element in Kcpt(X) can be represented as the formal
difference of two vector bundles over X, which are trivialized outside a compact subset of
X. ♦

Remark 1.10 (Lcpt). One can also define Lcpt in a similar fashion: One replaces the com-
pact space X by a locally compact space X. We require that ?? is exact outside a compact
set. We also get isomorphisms L1(X)cpt → L2(X)cpt → . . .Kcpt(X). Consequently, any
element in L(X)cpt can be represented by a map σ : V0 → V1 which is an isomorhpism
outside a compact set. We denote this equivalence class by

[V0, V1;σ] ∈ L(X)cpt ∼= Kcpt(X). (1.2)

Definition 1.11 (KR-Theory). Consider the category of bundles (V, cV )→ (X, cX), where
V → X is a complex vector bundle cX : X → X is an involution and cV is a C-antilinear
lift of cX . Let V R(X, cX) be the abelian semi-group of isomorphism classes of such bundles.
The resulting Grothendieck group

KR(X, cX)

is the KR-Theory of (X, cX). ♦

Remark 1.12. One can also consider an LR-Theory and KRcpt(X,Y ) in an analogous
fashion. ♦
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2. C`k-Linearity and Real Dirac Bundles

Remark 2.1. In this section, all the bundles and operators are real. ♦

2.1. C`k-linear Dirac Operators

[LM89, II.§7]

Definition 2.2 (/S(X)). Let (X, g) be a Riemannian spin manifold of dimension n and
ρ : Spinn → Aut(V ) be a real spinor representation. Then

/S(X) := Pspin(X)×ρ V → X

is the spinor bundle of X. ♦

Definition 2.3 (C`(X)). Let (X, g) be a Riemannian spin manifold of dimension n. Then

C`(X) :=
∐
x∈X

C`(TxX, gx)→ X

is the Clifford-Algebra bundle of X. ♦

Definition 2.4 (Spinor-Clifford bundle). Let X be a spin manifold of dimension n, l :

Spinn → Iso(C`n) be the left multiplication. We define

/S(X) := Pspin(X)×l C`n .

This bundle carries

• A canonical connection ∇ just as /S(X).

• A canonical right multiplication /S(X) × C`n → /S(X) and therefore, the fibres are
C`n-modules of rank 1. This multiplication is parallel.

• A canonical left action of C`(X) that commutes with the right multiplication.

• A Z2-grading /S(X) = /S
0
(X)⊕ /S

1
(X) over C`(X) satisfying

∀i, j ∈ Z2 : /S(X)i · C`jn ⊆ /S
i+j

(X). (2.1)

This splitting is induced from C`n = C`0n⊕C`1n.

• A Dirac-Operator /D : Γ( /S(X)) → Γ( /S(X)), which is C`n-linear, i.e. it commutes
with the action of C`n. With respect to the splitting, this operator is of course of the
form

/D =

(
0 /D

1

/D
0

0.

)
♦

Lemma 2.5. The operator /D
0

: Γ( /S
0
(X))→ Γ( /S

1
(X)) is a real, elliptic first-order opera-

tor which commutes with the action of C`0n
∼= C`n−1 on /S(X) = /S

0
(X)⊕ /S

1
(X). ♦
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Definition 2.6 (C`k-Dirac bundle). A C`k-Dirac bundle over a Riemannian manifold X is
a real Dirac bundle /S → X together with a right action C`k → Aut( /S) which is parallel
and commutes with multiplication by elements of C`(X). Such a bundle is Z2-graded, if it
is Z2-graded as a Dirac bundle /S = /S

0⊕ /S
1 and the splitting is also a Z2-grading for the

right action, i.e. (2.1) is satisfied. This also yields a Dirac operator /D. ♦

Definition 2.7 (analytic index). Let X be compact and /S→ X be a C`k-linear Z2-graded
Clifford bundle with Dirac operator /D

0
: Γ( /S

0
)→ Γ( /S

1
). Then

indk( /D
0
) := [ker /D

0
] ∈Mk−1/i

∗Mk
∼= KO−k(pt) ∼=


Z, k ≡ 0 mod 4,

Z2, k ≡ 1, 2 mod 8,

0, otherwise.

(2.2)

Remark 2.8 (Explaination of (2.2)). Since /D commutes with C`0k
∼= C`k−1, ker /D

0 is a
finite-dimensional C`k−1-module. Consequently, ker /D

0 determines an element in the Grothendieck
group Mk−1 of isomorphism classes of C`k−1-modules. Let i : C`k−1 → C`k be induced by
the canonical inclusion Rk−1 → Rk. Then [ker /D

0
] simply denotes the residue class. The iso-

morphism to KO−k(pt) is the Atiyah-Bott-Shapiro-Isomorphism, see [LM89, I.Prop. 9.27].♦

Remark 2.9 (Alternative Description of the Index). By [LM89, I. Prop. 5.20] there is an
equivalce between the category of Z2-graded modules over C`n and the category of ungraded
modules over C`n−1 induced by projecting

C`n = C`0n⊕C`1n 7→ C`0n .

Consequently, if M̂k denotes the Grothendieck group of Z2-graded C`k-Clifford modules.
Clearly, ker /D is a Z2-graded module and (ker /D)0 = ker /D

0. Consequently, we can also
define

indk( /D) := [ker /D] ∈ M̂k/i
∗M̂k+1.

This index agrees with (2.2) under the isomorphism M̂k
∼= Mk−1. ♦

Lemma 2.10. indk is a generalization of ind in the sense that

ind0( /D) = ind( /D) = dimR ker /D
0−dimR coker /D

0
♦

Proof. First notice that C`0 = R and C`1 = C. A Z2-graded C`0-module is just a pair of
real vector spaces V = V 0 ⊕ V 1. Now

V ⊕ 0 + 0⊕ V = V ⊕ V ∼= V ⊗ C

is a graded C`1 = C-module, thus [V ⊕ 0] = −[0⊕ V ] and therefore

ind0( /D) = [ker /D]

= [ker /D
0⊕ ker /D

1
]

= [ker /D
0⊕0] + [0⊕ ker /D

1
]

= [ker /D
0⊕0]− [ker /D

0⊕0]

∼= dimR ker /D
0− dimR coker /D

0
�
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2.2. Analytic Clifford Index

[LM89, III.§10]

Definition 2.11 (C`k-bundle). A C`k-bundle on a space X is a bundle E → X of real
right1 C`k-modules, i.e. E → X is a real vector bundle together with a continuous map
Ψ : C`k ×E → E such that Ψϕ : E → E is a bundle endomorphism for all ϕ ∈ C`k and the
restriction C`k ×Ex → Ex makes the fibre into a C`k-module for each x ∈ X. ♦

Definition 2.12 (analytic Index). Let X be compact, E → X be a C`k bundle with Z2-
grading, P be an elliptic graded self-adjoint PDO. Then

indk(P ) := [kerP ] ∈ M̂k/i
∗M̂k+1

∼= KO−k(pt)

is the analytic index of P . ♦

3. Overview of complex Index Theory

3.1. Analytic index of a PDO

[LM89, III. §1]

Definition 3.1 (PDO). Let E,F → X be C-vector bundles over manifold X. A linear map
P : Γ(E)→ Γ(F ) is a PDO of order m ∈ N, if locally

P =
∑
|α|≤m

Aα
∂|α|

∂xα
. ♦

Definition 3.2 (Symbol). For any P as above, we obtain the symbol of P , σ(P ) ∈ Γ(
⊙m

TX⊗
Hom(E,F )) defined loclly by

∀x ∈ X : ∀ξ ∈ T ∗xX : σξ(P ) :=
∑
|α|=m

imAαξα ∈ Hom(Ex, Fx). ♦

Definition 3.3 (elliptic). We say P is elliptic, if σξ(P ) is an isomorphism for all 0 6= ξ ∈
T ∗X. ♦

[LM89, III. §7]

Definition 3.4 (analytic index). Let P be a PDO of order m ∈ N and consider any Fred-
holm extension P : L2

s(E)→ L2
s−m(F ). Then

a-ind(P ) := dim kerP − dim cokerP ∈ Z

is the analytic index of P . ♦

1In [LM89], there is a left here. We use a right action here in order to make this definition more compatible
with Definition 2.6. Of course this is just cosmetics.
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3.2. Topological index of a PDO

[LM89, III. §13]

Again, let E,F → X be complex vector bundles and P : Γ(E) → Γ(F ) be a PDO of order
m.

Definition 3.5 (K-Theory-class of principal symbol). Consider the pullback diagram

π∗E, π∗F //

��

E,F

��

T ∗X
π // X.

We define [LM89, III,(1.9),(13.1)]

i(P ) := [π∗E, π∗F ;σ(P )] ∈ Kcpt(T
∗X) ∼= Kcpt(TX),

see also ??. ♦

Definition 3.6 (topological index of a PDO). Let f : X ↪→ RN be a smooth embedding
for N large enough. This induces an embedding

f! : Kcpt(TX)→ Kcpt(T RN ),

see [LM89, III.(12.7)]. Now, consider T RN = RN ⊕RN = CN and think of CN as a vector
bundle q : CN → pt. Let q! : Kcpt(CN ) → Kcpt(pt) = K(pt) be the inverse of the Thom-
Isomorphism i!, see below, and define

top-ind(P ) := q!f!i(P ) ∈ Z . ♦

Theorem 3.7 (Atiyah-Sinder Index Theorem for an operator). Let P be an elliptic opera-
tor on a compact manifold. Then

a-ind(P ) = top-ind(P ). ♦

Remark 3.8 (Thom-Isomorphism). Let E → X be a complex vector bundle and i : X → E

be the inclusion of X into X via the zero section. Then there exists an isomorphism

i! : Kcpt(X)→ Kcpt(E),

called Thom-Isomorphism, see [LM89, III. §12]. ♦

Lemma 3.9. Let f : X → Y be a proper embedding. Assume that the normal bundle
N → f(X) carries a complex structure. Then there exists a natural mapping

f! : Kcpt(X)→ K!(Y ).

In particular, if f : X → Y is a proper embedding of manifolds, there exists an associated
map

f! : Kcpt(X)→ Kcpt(Y ). ♦
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Proof. For the first claim, we just define the map f! to be the composition

Kcpt(X)
i! // Kcpt(N)Kcpt(Y ).// �

Here, i! is the Thom-Isomorphism, and the second map is obtained by identifying N with a
regular neighborhood of X in Y . For the second claim, notice that if f : X → Y is a proper
smooth embedding of manifolds, f∗ : TX → TY is a proper smooth embedding as well. �

3.3. Analytic Index of a family

[LM89, III.§8]

Definition 3.10. Let E,F → X be smooth vector bundles.

• We denote by Diff(E;X) the group of vector bundle automorphisms of E → X and
by Diff(X) the diffeomorphism group of X. We endow Diff(X) and Diff(E;X) with
the C∞-topology.

• There is a canonical homomorphism

β : Diff(E;X)→ Diff(X)

of topological groups.

• We define D := Diff(E,F ;X) to be the subgroup of Diff(E⊕F ;X), which maps E to
E and F to F .

• Let Opm(E,F ) the space of all PDOs P : Γ(E)→ Γ(F ) of order ≤ m.

• We have a canonical group action

D ×Opm(E,F )→ Opm(E,F ), (g = (gE , gF ), P ) 7→ gF ◦ P ◦ g−1E . ♦

Definition 3.11 (structure group). Let Z → X be a smooth resp. continuous fibre bundle
with fibre type Y . Then a subgroup G of Diff(Y ) resp. Homeo(Y ) is a structure group of
Z → X, if there exists an open cover of X such that all cocycles take values in G. ♦

Definition 3.12 (family of vector bundles). Let A be a Hausdorff space. Then a family of
smooth vector bundles over X paramatrized by A is a fibre bundle E → A such that each
fibre is a vector bundle E → X and the structure group of E → A is Diff(E;X). ♦

Remark 3.13. One should think about X as fixed only up to diffeomorphisms. For any
a ∈ A, the fibre of the bundle E → A over a is a vector bundle Ea → Xa, isomorphic to
E → X. ♦

Remark 3.14. Let E → A be a family of vector bundles and β : Diff(E;X)→ Diff(X) as
above. The associated bundle

X := E ×β X → A

is a bundle with structure group Diff(X) and E → X is a vector bundle, i.e. we have a
sequence

E →X → A

and over any a ∈ A lies the manifold Xa and over Xa lies the vector bundle Ea →Xa. ♦
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Definition 3.15 (continuous pair). A continuous pair of vector bundles over X parametrized
by A is a bundle E ⊕F → A such that each fibre is a split bundle E ⊕ F → X and whose
structure group is D = Diff(E,F ;X). ♦

Definition 3.16 (operator bundle). Let E ⊕F → A be a continuous pair. Then

Opm(E ,F ) := E ⊕F ×D Opm(E;F )→ A ♦

is the operator bundle. ♦

Definition 3.17 (family of elliptic operators). A family of elliptic operators is a section P
of the operator bundle E ⊕F → A such that for each a ∈ A, Pa ∈ Opm(Ea,Fa) is an elliptic
operator. ♦

Definition 3.18 (analytic index). Let P be a family of elliptic operators as above. Then

a-ind(P ) := [kerP ]− [cokerP ] ∈ K(A)

is the analytic index of P . ♦

Remark 3.19. In general, neither kerP nor cokerP are well-defined vector bundles over
A, since their dimensions can jump. Nevertheless, one can show that their formal difference
still gives a well-defined element in K(A). ♦

3.4. Topological index of a family

[LM89, III. §15]

Definition 3.20 (topological index of a family). Let E ⊕F → A be a continuous pair and
P be a family of elliptic operators on the operator bundle Opm(E ,F ) → A, where A is
compact Hausdorff. Let π : X → A again be the underlying family of manifolds. Define

TX :=
⋃
a∈A

TXa

to be the vertical tangent bundle. For N large enough, we can find a map f : X → A×RN

such that for each a ∈ A, fa : Xa ↪→ {a} × RN is an embedding. This induces a map
TX → A× T RN , which induces a map

f! : Kcpt(TX )→ Kcpt(A× CN ). ♦

Analogously, we get a map q! : Kcpt(A× CN )→ Kcpt(A) = K(A). The composition

top-ind(P ) := q!f!σ(P ) ∈ K(A)

is the topological index. Here, σ(P ) is defined fibrewise as σ(Pa). ♦

Theorem 3.21 (Atiyah-Singer Index Theorem for Families). Let P be a family of elliptic
operators as above. Then

a-ind(P ) = top-ind(P ). ♦
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3.5. Index for C`k-family

[LM89, III. §16]

Remark 3.22. In this section, all the bundles and operators are real. ♦

Definition 3.23 (topological index). Let E,F → X be real bundles. Consider π : TX →
X as equipped with the involution TX → TX, v 7→ −v. Consider π∗(E ⊗ C) → TX as
equipped with the complex conjugation. For any real elliptic operator P : Γ(E) → Γ(F ),
we obtain

σ(P ) ∈ [π∗(E ⊗ C), π∗(F ⊗ C);σ(P )] ∈ KRcpt(TX).

Choose an embedding f : X ↪→ RN such that the associated embedding TX ↪→ T RN is
compatible with the involutions. Using the Thom-Isomorphism in KR-Theory, we obtain a
map

f! : KRcpt(TX)→ KRcpt(T RN )

and compose with KRcpt(T RN )→ KRcpt(pt). This gives top-ind(P ). ♦

Definition 3.24 (topological index of a family). Let P be a family of elliptic operators on
a real continuous pair E ⊕F → A. Using local triviality, we get a map

f! : KRcpt(TX )→ KRcpt(A× T RN ) ∼= KRcpt(A× CN )

and there also is a Thom-Isomorphism

q! : KRcpt(A× CN )→ KR(A) ∼= KO(A). ♦

Theorem 3.25 (Atiyah-Singer). Let P be a family of real elliptic operators on a compact
manifold paramatrized by a compact Hausdorff space A. Let a-ind(P ) ∈ KO(A) be the
analytic index of P (as defined for complex P by replacing complex with real objects).
Then

a-ind(P ) = top-ind(P ). ♦
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