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1 Eulers Gamma function

1.1 Definition (Gamma function). The function I' : R5o — Rsg

o
x»—>/ t* L exp(—t)dt
0

is Fulers Gamma function. The integral is to be interpreted as an improper Riemann integral.

1.2 Theorem (Properties of the Gamma function).
(i) The T function is well defined.
(ii) The T function satisfies

ra=1 Ve eRso:z-I'(x)=T(x+1)

(iii) For n € N we have
I'n+1)=n!

(iv) The I' function in strictly increasing, i.e.
Ve,yeR:1<z<y=T(z) <T(y)
Proof.

(i) We have to show that for any = € R+ the integral

0o 1 R
t*~Lexp(—t)dt = lim t*~Lexp(—t)dt + lim t*~Lexp(—t)dt
| esn(=nar = tim [ e+ tim [ expln)

converges. On the one hand

1 1
t* Lexp(—t) §tx_1:>/ tI—lexp(—t)dtg/ t* Lt
0 0



The right hand integral converges if and only if
l-z<lel<ezer>0
which holds by hypothesis. On the other hand

lim t*"!exp(—t) =0

t—o00

so there exists tg € R such that for all ¢t > t;:

1 o0 o0
t"Mexp(—t) <1=t"lexp—t < 5= 2 = t*Lexp(—t)dt < / t2dt

to to

and the last integral converges if and only if 2 > 1 which is clearly true.

(ii) A direct calculation reveals
R
I'(1) = lim exp(—t)dt = lim [—exp(—t)]of = lim —exp(—R) + exp(0) = 1

R—o0 Jo R—o00 R—o0c0

By partial integration we obtain

R R R
/ tTetdt = / t°(—e tdt = —t%e 12 + x/ t*Letdt
15 & €

By sending € — 0, R — oo we obtain the desired result. (Notice that it does not matter which
limit we take first).

(iii) This follows immediately from (ii).

(iv) We just calculate
(0.9} o0
l<z<y=0<z—-1l<y—1=VteRyy:t*! <ty_1:>/ tx_le_tdt</ vl tdt
0 0

O

1.3 Lemma (Asymptotic Behaviour of the I" function).

(i) n!> (2)"
(ii) For any C' > 0:

Proof.

(i) We use induction over n. Clearly the statement holds for n = 1. The induction step follows via

n—+1 ntl n+1\"n+1 n\n 1\"n+1 e
= = 1+ — ! 1)- 1!
< 3 > 3 3 (3) tn) o< rnt by <t

(ii) First consider the subseries of even integers n = 2m. In that case

In other words
e" € o(I'(n))



2 The n-dimensional unit ball

2.1 Definition. For any n € N we denote by
B":= {x € R"|Jal|; < 1}

the euclidian unit ball and by
V"= u(B"™)

its volume with respect to the standard n-dimensional Lebesgue measure.

2.2 Theorem (Integration of rotational symmetric functions). Let I C R be an interval and denote
by K(I) := {z € R" : infI < ||z||2 < supI} the generated ball in R". Let F' : K(I) — R be a

rotational symmatric function, i.e. there exists a function f : I — R such that F(z) = f(||z||2). Then

F is integrable over K (I) if and only if 7 — f(r)r"~! is integrable over I and

/ F(z)dr = nV”/f(r)r”ldr
K(I) I

Proof. Employing polar coordinates (see Appendix) the transformation theorem implies

/K Pl = /I (PP o) det VP((r)ld((r. ) = /I £yt /H Clp)de (1)

So especially

1
V":/ 1dx:/ rnldr/ Ce)dp = / C(p)dy
K(I) [0,1] il nJu

Multiplying by n and substituting (2) into (1) we obtain

/ F(x)dx = nV”/f(r)r"_ldr
K(I) I

2.3 Theorem (Volume of n-balls).

Proof. On the one hand Fubinis theorem implies

/R exp(—la|13)dz = /R exp(> —a?)ds = / [ exp(—a2)dz
" " i=1 =1

:ill /R exp(—22)da; = ( /R exp(—tz)dt>n

On the other hand applying theorem 2.2 we obtain

[ etllelyts = v [ e tar = Byn [T 0260

- gvn /Ooo et3 gt = V“gr (g) — VT (g + 1)

(2)



Combining both calculations for n = 2 we obtain:

(/R exp(—t2)dt>2 = VT <2 + 1) —T(2)=7-1-T(1) =7

2
This implies the equation

/ exp(—t?)dt = /7
R

which is quite famous by the way.

Alltogether we obtain
n
</ exp(—tQ)dt>
R

Rearranging we obtain the desired result.

w3

s

_/)wmwﬂ@msz(”+g
R"L 2

O
2.4 Corrolary (Asymptotics).

lim V" =0

n—oo

Proof. This follows more ore less directly from lemma 1.3,(ii). Alternatively we can use lemma 1.3,(i)
by first considering the subseries of even integers n = 2m:

2m

2 m m 3r\™
Vn_vzm_“_ﬂ<ﬂm_<) m—op
r(e+1) m! o (2) m

For the odd subseries write n = 2m+ 1, use monotony of the I' function and then the sandwich lemma:

gpoee ™ md o owE wlEl | am
(m+1)! I([5]+1) I(5+1) T(5]+1) m!
O
3 Generalization to p-Norm unit balls
3.1 Definition. For any 1 < p < 0o, R > 0 we denote by
By (R) :=A{z € R"[[|z|l, < R}
the n-dimensional ball with radius R respect to the p-norm. We denote by
By = B(1) V' = p(By)

the Lebesgue measure of the unit ball.

3.2 Lemma. We can immediately establish the following relation: For any R > 0
By(R) = R"- B},

Proof. Clearly the map T : R® — R", z — Rz is a diffeomorphism with functional determinant R"
Since T'(B,)) = R"By(R) the transformation theorem yields

/ 1dx :/ 1ldx :/
BI(R) T(BY) B

n
p

B, (R) =

R'dx = R"B’



3.3 Definition (Beta function). The function B : Ry x Rsg — Ry

:Uy'—>/tx1 )Y~ Lat

is Fulers Beta function.

3.4 Theorem. The beta function satisfies

I'()l'(y)

P =Ty

Proof. Applying the theorems of Tonelli and Fubini we obtain existence and equality of the following

integrals:
['(z)T'(y) :/ tzletdt/ sY sds—/ / 2ty lem (5T g st
0 0

We apply the transformation theorem to the map T : RZ — im 7, (s,t) — (s +t,t) =: (0,7) wich is a
diffeomorphism with det V7T'(¢,s) = 1. So

= / / " s+t — ) le 5 dtds = / / (o0 — 1) te %drdo
0 0
oo ro z—1
- / / (Z) ot Dyte o
0 0 g (o

Again we apply transformation theorem to S :im7T — im S, (o,7) = (Z,0) =: (u,v) with det V.S =

oo rl o !
= / / w1 — w)Y eV dudy = / v“‘y_le_”dv/ w1 = w)Y " du
o Jo 0 0

o
and the right hand expression is by definition equal to I'(x 4+ y)B(x, y). O]

3.5 Corrolary.

z ' o _ B 1 . [(a)T(B)
/0 sin(t)**~ ! cos(t)*7dt = QB(O[’ﬂ) T 2T (a+ )

Proof.

us uy
2

/ sin(t)2* L cos(t)?’~tdt = /2 sin(t)2* ! cos ()22 cos(t)dt
0 0

Wl

:/0 sin(£)271(1 — sin(£)2)P ! cos(t)dt | sin(t) = s

1 1
1 _
= / s2711 — $2)f1ds = 2/ (s%)” ! (1—s%12sds | s*> =u
0 0



Proof. This is a rather complex, but direct calculation. Applying Fubinis theorem and lemma 3.2 we
obtain

Vpn:M(Bg):/ ldx:/n 1d / /n ) d(zy...dep_1)dzy,
D Doy wilP<1 1 |z P<1—|zn|P

/ / L d(xy ... doy 1)dxn3—2/ (1—]wn]p) P da? SV !
B _(1—|zal?)P) -1

@ p/ Cos(u)QTJrl Sln(u)%_ldu N V4G i . LA LA A
0

The step (*) follows from:

[y

4 (2 n— 2_ 4 (2 n=1 2_
I:= /2 cos(u)® 7 el sm(u)i Ydu = /2 cos(u)? v sin(u)i ! cos(u)du
b Jo P Jo
- / (1 — sin(w)?)"7 sin(u)? " cos(u)du | sin(u) = s
0
1 n—1 2 1 n-1
= / (1-s*) 7 5o Vs = / (1-s%)> (32)%7123d5 | 2 =t
0 pJo
J

! n=1 (11 ! NP\ 5 /1Y 1
(1—0) v~ dt:2/0 1-1)% (ptp )dt:2/0 (1—<tp)) (tp) ds |y =sv
1
n—1
A=) Fay= [ =T ay

Alltogether we obtain the following recursion formula

Fn+p1F1
L2 TeEhrd)
Poop F(,,+1) P

This equation can now be employed to obtain the final result using telescope products (Notice that
VP =2 for any p. ):

1 Y epp2 T G) F(l)“ﬁ L5y

D =T R B BT S B

S~

oW T r(ien) ) (i)
1 n 1\" i (1
i <1>“ ) TG rG)
Pt \p r(gﬂ) r(g+1)
in(1))" 1
_@ri) (i)
r (g + 1) T (g + 1)
O
3.7 Corrolary (Asymptotics). For any 1 < p < oo
lim V' =
n—oo
Proof. This follows from lemma 1.3 or as in the proof of 2.4. O
The case p = oo is much easier: In that case BY = [—1,1]", so by definition of the lebesgue measure
Vi =2" %o



4 Appendix: Polar Coordinates

4.1 Definition (Polar Coodinate Map). For each integer n > 2 the map P, : R” — R™ which is
recursively defined as follows, is the polar coordinate map:

P = (1m0 ) coslon))

4.2 Theorem (Functional Determinant). For each n P, € €*°(R",R") and

n—1
k=2

Proof. We proof this theorem by induction. The smoothness claim follows directly from the definition.
In the following we drop the arguments of P, in notation, i.e. we write P, = P, (7, ©1, ..., Pn—1).
For n = 2 we have

_ (cosle) —rsin(p) e T =rcos(¢)? +rsin(e)? =r
Vrrp) = (Got) ) = etV o) = reos(e) 4 i)

For n — n 4+ 1 we denote the jacobian of P,1 as a system of columns
VPn+1 = (8TPH+1, e 8(,01,PTL+1 ceey a&pnpn-l-l)

which can we expressed as follows:

([ 0p Py - cos(pn)
aTPn+1 - < Sll’l(g&n) )

Forl1<v<n-1:

0y P = (PPt
and (o)
(=P, -sin(py,
on i1 = < 7 cos(pn) )
Alltogether we obtain
| OrPycos(pn) ...0p, Prcos(en)... —Pysin(py)
det(VEni) = ' sin(pn) 0 r cos(ion)

First we want to proof the following recursion formula
det VP, 11 = rcos(¢n)" * det(VP,)

By the representation above clearly this holds, if cos(¢y,) = 0. If cos(¢,) # 0, we add (rsin(py,) cos(p,) ™)
times the first column to the third and obtain at the top rows:

— P, sin(py) 4 rsin(ey) Cos(gon)_l&Pn cos(¢n) = —Pp sin(yy) + sin(p,)ro-P, =0

The last equality follows since 70, P, = P,. This can be seen by induction directly from the definitions.
In the last row we have

7 cos(pn) 4 7sin(p,) cos(¢n) T sin(pn) = 7 cos(pn) " (cos(pn)? + sin(p,)?) = rcos(pn) !



So alltogether

Or P cos(n) ... 0p, Pycos(pn) ... 0

det(VPn+1) = sin(gon) 0 rCOS(‘Pn)_l

= 1cos(pn) ! cos(pn)" det(V Py)

where we have expanded the determinant into the last row. This proofs the recursion formula which
implies the explicit formula. O

Certainly the map P, : R™ — R"” is not a global diffeomorphism. We have to restrict properly in order
to use it for transformation theorems.

4.3 Theorem. For any intervall I C [0, 00[ and any integer n we define
K(I) :={z e R"|||z||]2 € I}

Define furthermoore

=] — 7, 7[x] —7/2,7/2[" % S :={(x1,0)]r1 € R,z <0} CR? R} ?:={(x1,...,2,-2,0,0)} CR"
Then
P, :IxII— K(I)\ (S xRI?)
is a diffcomorphism. For n = 2 this is to be interpreted as IT =] — 7, 7[, S x Rj ™% = S.
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