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Once upon a time, in Bonn

”If one is to understand the great mystery, one must study all
its aspects, not just the dogmatic narrow view of the Jedi.”

— Chancellor Palpatine
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1 Algebra – A new Hope

We will define the tensor product in terms of its universal property in the first subsection,
then give some further intuition, related to polynomial functions, in the second part.

1.1 Definition and Existence

For the entire subsection, let R be a unitary, commutative ring, which might serve your
intuition best to think of as a field.

1.1 Definition. Let M and N be R-modules. A tensor product for M and N over
R is an R-module T together with a bilinear map1 ξ : M×N → T such that the following
universal property is satisfied:

1i.e. for all (m, n) ∈ M ×N , the maps ξ(•, m) and ξ(n, •) are both R-linear.
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If β : M × N → L is any bilinear map, then there exists a unique R-module homo-
morphism β̄ : T → L with β̄ ◦ ξ = β. In diagram language,

M ×N
∀β

##GGGGGGGGG

ξ

��

T

	

!∃β̄
// L

In other words, the bilinear maps from M ×N to L are in bijection with the homomor-
phisms from T to L, for all R-modules L.

1.2 Theorem. The tensor product T of any two R-modules exists and is generated, as
an R-module, by the image of the associated bilinear map M ×N → T .

Proof. Since we have to prove the existence in the most general case, we have to resort
to drastic means and force the issue. We denote by F := R[M ×N ] the free R-module
generated by all (m,n) ∈ M ×N . Now, let Q ⊆ F be the submodule generated by the
elements

• (m,n+ n′)− (m,n)− (m,n′),

• (m+m′, n)− (m,n)− (m′, n),

• (m,α · n)− α · (m,n) and

• (α ·m,n)− α · (m,n)

for all α ∈ R, m,m′ ∈M and n, n′ ∈ N . We then claim that T = F/Q defines a tensor
product together with the map ξ : M ×N → T , defined by sending (m,n) to its residue
class in T . This map is bilinear by definition of Q.

We now verify that it satisfies the universal property. Assume that β : M × N → L
is a bilinear map of R-modules. Then, we get a unique homomorphism β̂ : F → L
with the property that β̂(m,n) = β(m,n) for all (m,n) ∈ M × N . Since β is bilinear,
ker(β̂) ⊇ Q. Denote by π : F � T the canonical projection. By the fundamental theorem
of homomorphisms, there exists a unique β̄ : T → L with the property that β̄ ◦ π = β̂.
Thus, β̄ is unique with the property that

β̄(ξ(m,n)) = β̄(π(m,n)) = β̂(m,n) = β(m,n).

1.3 Proposition. Any two tensor products forM andN over R are uniquely isomorphic.
Consequently, we write M ⊗R N for “the” tensor product.

Proof. Assume that T and T ′ are both tensor products for M and N over R.

M ×N
ξ′

��

ξ

��

T ξ̄′ //

	

T ′ξ̄oo
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If we denote by ξ and ξ′ the corresponding bilinear maps, they each induce unique R-
module homomorphisms ξ̄′ and ξ̄ by the universal property of the other tensor product,
such that

ξ̄ ◦ ξ̄′ ◦ ξ = ξ̄ ◦ ξ′ = ξ.

Now, we may apply the universal property of the tensor product T to ξ itself and infer
that the R-module homomorphism idT : T → T is unique with the property idT ◦ξ = ξ.
Thus, ξ̄ ◦ ξ̄′ = idT . We proceed analogously to verify ξ̄′ ◦ ξ̄ = idT ′ .

1.4 Remark. Let M and N be R-modules. Let ξ : M × N → M ⊗R N denote the
bilinear map associated to the tensor product. We usually avoid working with this map
and write m⊗n := ξ(m,n) instead. These elements are said to be fully decomposable.
By 1.2, M⊗RN is generated by its fully decomposable elements – but certainly not every
element of the tensor product is fully decomposable.

In general, an element x ∈ M ⊗R N can be written as a finite linear combination of
fully decomposable elements, i.e. x =

∑N
i=1mi⊗ni. Note that this representation is not

unique – the fully decomposable elements are subject to the obvious “bilinear” relations.

1.2 Algebraic Applications

Although it can be defined in such great generality, let us look at some special applications
of the Tensor product.

1.5 Proposition. LetM , N and L be R-modules. Then, we have the following canonical
isomorphisms:

(i). Commutativity:

M ⊗R N −→ N ⊗RM
m⊗ n 7−→ n⊗m

(ii). Neutral Element:

R⊗RM −→ M

a⊗m 7−→ a ·m

(iii). Associativity:

(M ⊗R N)⊗R L −→ M ⊗R (N ⊗R L)
(m⊗ n)⊗ l 7−→ m⊗ (n⊗ l)

In other words, the set of equivalence classes of R-modules modulo isomorphism form an
abelian monoid with neutral element R and binary operation ⊗R.
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Proof. For all three statements, one proceeds equivalently. We prove part (iii): The map

(M ⊗R N)× L −→ M ⊗R (N ⊗R L)
(m⊗ n, l) 7−→ m⊗ (n⊗ l)

is bilinear, so it induces the unique linear map (iii). Equivalently, we obtain the obvious
inverse homomorphism. In the same fashion, one proves parts (i) and (ii).

1.6 Proposition. Assume that {Mi | i ∈ I } is a family of R-modules and N any R-
module. Then, there exists an isomorphism(⊕

i∈I
Mi

)
⊗R N −→

⊕
i∈I

(Mi ⊗R N)

(xi)i∈I ⊗ n 7−→ (xi ⊗ n)i∈I

Proof. The existence of the above map follows from the universal property of the tensor
product. Conversely, the maps

Mj ×N −→
(⊕

i∈I
Mi

)
⊗R N

(x, n) 7−→ (δijx)i ⊗ n

are all bilinear and give rise to an inverse.

1.7 Corollary. If F =
⊕

i∈I 〈fi〉 and G =
⊕

j∈J 〈gj〉 are free R-modules, then

G⊗R F =
⊕

(i,j)∈I×J

〈fi ⊗ gj〉

is free. In particular, rankR(F ⊗R G) = rankR(F ) · rankR(G) which is symbolically true
if either module has infinite rank.

Proof. This follows directly from the above.

1.8 Remark. If ϕ : M → N and ψ : F → G are homomorphisms of R-modules, we
obtain

M × F

((QQQQQQQQQQQQ
ϕ×ψ

// N ×G // N ⊗R G

M ⊗R F
ϕ⊗ψ

66

which is given by

ϕ⊗ ψ : M ⊗R F −→ N ⊗R G
m⊗ f 7−→ ϕ(m)⊗ ψ(f)

Clearly, ϕ⊗ ψ is surjective if both ϕ and ψ are.
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1.9 Proposition. If F is a free R-module and ϕ : M ↪→ N is an injective homomorphism
of R-modules, then ϕ⊗ idF is injective as well.

Proof. If F ∼= R⊕n, say, then

M ⊗R F
ϕ⊗idF // N ⊗R F

M⊕n o
ϕ⊕n

// N⊕n

commutes, which already proves the claim.

1.10 Corollary. Let S be an R-algebra and M some R-module. Then, S⊗RM has the
structure of an S-module via the scalar multiplication a · (b⊗m) := ab⊗m.

If M is free and ι : R ↪→ S, the map

M −→ S ⊗RM
m 7−→ 1⊗m

is an injective homomorphism of R-modules.

Proof. The first statement is obvious and to see the second statement, we simply note
that the above map is the composition

M
∼ // R⊗RM

ι⊗idM // S ⊗RM

1.1 Example. Assume that V is some R-vectorspace. Then, C ⊗R V is a complex vec-
torspace of the same (complex) dimension: Pick some basis b1, . . . , bn of V and consider
the vectors 1 ⊗ bi ∈ C ⊗R V . Certainly any α ⊗ v can be represented as a C -linear
combination of them and

0 =
∑n

j=1
(αj + βji) · (1⊗ bj) =

∑n

j=1
αj · (1⊗ bj) +

∑n

j=1
βj · (i⊗ bj)

implies that αj = βj = 0 for all j by 1.7.

2 Differential Geometry - Revenge of the Sith

(!Todo Basis -> Basis für Boxtensor = Otensor)

2.1 A quick and easy Path

2.1 Global Assumption. For the entire section let K be a field, V, V1, . . . , Vk,W be
finite dimensional vector spaces over K of dimensions

n := dimV, ∀1 ≤ i ≤ k : ni := dimVi, m := dimW.
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We assume that B := (b1, . . . , bn) is a basis of V , B(i) := (b(i)1 , . . . , b
(i)
ni ) are bases of Vi,

1 ≤ i ≤ k, C := (c1, . . . , cm) is a basis of W .
We denote by Hom(V,W ) the space of linear maps V → W , by V ′ := Hom(V,K) the
dual space of V , by B′ := (b1, . . . , bn) the basis dual to B and by B′

(i) = (b1(i), . . . , b
k
(i))

the dual bases of Vi.

2.2 Definition (multlinear). A map

F : V1 × . . .× Vk →W

is k-fold multilinear, if it is linear in all its arguments. The space of all those maps is
denoted by

Mult(V1, . . . , Vk;W ).

Clearly Mult(V ;W ) = Hom(V,W ). We use the notation Bil(V,W ) := Mult(V,W ;K).

2.3 Definition (Tensor). A map

F ∈ Mult(V1, . . . , Vk;K) =: Mult(V1, . . . , Vk)

is a tensor (on V1, . . . , Vk).

2.4 Definition (Tensor product). Let (W1, . . . ,Wl) be another tuple of vector spaces.
For any F ∈ Mult(V1, . . . , Vk), G ∈ Mult(W1, . . . ,Wl), the map

F �G :V1 × . . .× Vk ×W1 × . . .×Wl → K,

(x1, . . . , xk, y1, . . . , yl) 7→ F (x1, . . . , xk)G(y1, . . . , yl),

is the tensor product between F and G. This defines a map

� : Mult(V1, . . . , Vk)×Mult(W1, . . . ,Wl) → Mult(V1, . . . , Vk,W1, . . . ,Wl).

This is a very general definition. Usually people do not consider tensors on an arbitrary
tuple of vector spaces (V1, . . . , Vk), but restrict their attention to the following special
type.

2.5 Definition (Tensor of type (k, l)). Let k, l ∈ N0 be arbitrary. A map

F ∈ Mult(V ∗, . . . , V ∗︸ ︷︷ ︸
l copies

, V, . . . , V︸ ︷︷ ︸
k copies

)

is a tensor of type (k, l) on V . We say F is k-fold covariant and l-fold contravariant. We
define

T kl (V ) := {F | F is a tensor of type (k, l) on V }

and use the notation

T k(V ) := T k0 (V ),

Tl(V ) := T 0
l (V ).
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The direct sum
T (V ) :=

⊕
k,l∈N0

T kl (V )

is the tensor algebra over V .

2.6 Convention. When working with tensors, it is sometimes useful to group the argu-
ments by type to avoid getting lost in them. If we denote

Ω := (ω1, . . . , ωl) ∈ (V ∗)l, X := (x1, . . . , xk) ∈ V k,

we may express the action of a tensor F ∈ T kl (V ) by

F (Ω, X) := F (ω1, . . . , ωl, x1, . . . , xk).

In case we need two tensors or two such groups of vectors and covectors, we will usually
call the second ones H := (η1, . . . , ηl

′
) ∈ (V ∗)l

′ , Y := (y1, . . . , yk′) ∈ V k′ .
In case k = l, we will denote the action of a tuple of covectors to a tuple of vectors by

Ω(X) := ω1(x1) . . . ωk(xk) = (ω1 � . . .� ωk)(x1, . . . , xk).

2.7 Remark. One could specialize 2.4 to tensors of type (k, l) and call this a tensor
product. The only inconvenience here is the order of the arguments: Let k, k′, l, l′ ∈ N,
F ∈ T kl (V ), G ∈ T k

′
l′ (V ), Ω ∈ (V ∗)l, H ∈ (V ∗)l

′ , X ∈ V k, Y ∈ V k′ . Then the tensor
product from 2.4 would be defined by

F �G(Ω, X,H, Y ) = F (Ω, X)G(H,Y ).

According to our definition, F � G /∈ T k+k
′

l+l′ (V ) and the only reason for this to fail is,
that F �G has to act on (Ω,H,X, Y ) instead of (Ω, X,H, Y ). Since there no agreement
on the order of arguments of tensors in the literature anyway one may decide to just
live with that and accept this slight discrepancy. Alternatively one could complicate the
definition of a tensor of type (k, l) even further by requireing it to act on any permutation
of (V ∗)l×V k. We choose to adopt the convention from [1] and just change the definition
of the tensor product that case.

2.8 Definition. With the notation from 2.7 above, the map defined by

(Ω,H,X, Y ) 7→ F (Ω, X)G(H,Y )

is called the (k, l)-tensor product. Usually we will just call it tensor product as well and
we will also denoted by �. This defines maps

� ∈ Mult(T kl (V ), T k
′

l′ (V ), T k+k
′

l+l′ (V )), � ∈ Mult(T (V ), T (V );T (V )).

This should cause no confusion since it differs only slightly. In its finest beauty, this map
looks like

F �G(ω1, . . . , ωl, η1, . . . , ηl
′
, x1, . . . , xk, y1, . . . , yk′)

= F (ω1, . . . , ωl, x1, . . . , xk)G(η1, . . . , ηl
′
, y1, . . . , yk′).
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2.9 Remark. Notice this tensor product is a product beween two elements of two spaces,
not between two entire spaces. The notation � is very uncommon for the tensor product.
Usually the map defined above is also denoted ⊗. We will investigate the relations
between ⊗ and � later in 2.23.

2.2 Attack of the Indices

Tensors have been condemned by the Jedi, because working with tensors leads to indices,
indices lead to index wars and index wars lead to the dark side of the force - to us! A
true Sith Lord is not afraid of indices, embraces their dark powers and ridicules those
who are to weak to deal with them.
Well... at least that is what he tells the others. But between you and me: When it
comes to tensors one should really think about notation and don’t make things even
more complicated than necessary. A standard tool to simplify notation is the so called
Einstein summation convention. Depending on what book you read, the only thing you
might be told about this convention is that it is ”in power”. Since a convention is usually
something more than one people agree on, we should try to state it here as clearly as
possible. This is much more comprehensive than required for this article, but could be
helpful for those who want to delve deeper in the literature.

2.10 Convention (Einstein Summation). If in an equation an index occurs exactly once
as a subscript and exactly once as a superscript, we sum over this index starting from 1
to the dimension of the space.

This convention has obviously been invented by a phisicist (guess who?). Of course
not every object occuring in some formula is something you can just ”sum”. In a far less
general, but much more mathematically precise way, one may state this convention as
follows.

2.11 Convention (Einstein Summation, Take 2). Let x1, . . . , xk ∈ V and λ1, . . . , λk ∈
K. We define

λixi :=
n∑
i=1

λixi.

In almost all cases the x1, . . . , xk are a basis (b1, . . . , bn). So the primary application is
to simplify expressions that occur when expanding vectors with respect to some basis,
i.e.

x = xibi =
n∑
i=1

xibi,

where the xi ∈ K are the components of x.

Here you already see the next problem with this convention: Mathematical objects
may be godgiven, but their indices are manmade. Theoretically you are perfectly free to
index objects with subscripts or with superscripts. In order to utilize this convention in
a senseful manner, there are usually hidden conventions in power that ensure this.
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2.12 Convention (Index Positioning). An index is to be put as a subscript or a su-
perscript according to table 1. Thus, the positioning of the index indicates whether or

vector space V dual space V ∗

subscript vectors x1, . . . , xk co-components ω1, . . . , ωn
superscript components y1, . . . , yn co-vectors η1, . . . , ηl

expansion x = xibi ∈ V ω = ωib
i ∈ V ∗

Table 1: Index Positioning

not we work on the space or on the dual space (yes, a dual space is a space as well, but
we ignore this here.) As you can see, there is another important convention concerning
expansions: Components of a vector are written with the same letter, but they have an
index.

2.13 Convention (Matrices and Homomorphisms). Let f ∈ Hom(V,W ). Then the
coordinate matrix A ∈ Km×n usually has two indices as a subscript namely A = Aij =
Acolumn,row. It is defined by the relation

f(bj) =
m∑
i=1

Aijci.

As you might guess, this is awful when one wants to utilize Einstein summation conven-
tion. Therefore we change this convention and write

A = Aij = Arow
column.

Then Einstein summation works and we may write things like

f(bj) = Aijci, f(x) = f(xjbj) = xjf(bj) = xjA
i
jci.

2.14 Convention (Inverse Matrices). To make things worse, sometimes we do stick
to the old convention, even if we want to use Einstein Summation. This is often done
when there is an invertible matrix A ∈ Kn×n. Then A = Acolumn,row is the matrix itself
and A−1 =: Acolumn,row is the inverse. Theoretically this could cause conflicts, but it is
usually clear from the context, which convention is used. If this disgusts you, notice that
you can now do cool things like

(AB)ik = AikB
k
j , AikA

kj = δji .

2.15 Remark (Typical failures). Despite all this, there are several situations, where
Einstein Summation usually failes.

• Subspaces: If U ⊂ V is a subspace, the expression x = xibi makes no sense, because
it is not clear what ”the dimension of the space” shall be. If it is your very point
that x ∈ U , i.e. that the last k components of x for instance are zero, one should
not use Einstein Summation.
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• Scalar products: If V has an inner product 〈_,_〉 and b1, . . . , bn is an orthonormal
basis, Einstein Summation always fails at the last step of

〈x, y〉 = 〈xibi, yjbj〉 = xiyj〈bi, bj〉 = xiyjδij =
n∑
i=1

xiyi,

thus we have to put a sum there.

• Components: If you really want to consider the number xibi for one fixed i, then
one should absolutely avoid writing this as xibi in that context.

Because of the possible confusion you are perfectly free to condemn Einstein summa-
tion. But you are not free to be able to understand it or not, since otherwise you will
not be able to read a big amount of literature concerning tensors. We will use it in the
following.

2.3 Feel the Force

Now we will systematically study tensors. Our ultimate goal is to understand the relations
bewteen the (k, l)-tensor produkt � and the tensor product ⊗ of the Jedi.

Remember the following crucial fact from linear algebra.

2.16 Lemma (Dual Expansion). Any vector x′ ∈ V ′ has a unique representation

x′ = x′ib
i = x′(bi)bi.

Proof. It is clear that any vector has a unique expansion x′ = λib
i, so we only have to

determine the λi. By definition of a dual basis

x′(bj) = λib
i(bj) = λiδ

i
j = λj .

2.17 Lemma (Canonical identification of the bidual). The map ι : V → V ′′

x 7→
(
x′ 7→ x′(x)

)
,

is an isomorphism. Its inverse is given by

∀x′′ ∈ V ′′ : ι−1(x′′) = x′′(bi)bi.

Proof. Notice that ι(x) : V ′ → K. Since V is finite dimensional,

dimV ′′ = dimV ′ = dimV

is finite as well. Therefore the dual basis B′ is in fact a basis (which can be wrong if V
would be inifite dimensional). We calculate one the one hand

∀x ∈ V : (ι−1 ◦ ι)(x) = ι(x)(bi)bi = bi(x)bi = xibi = x,
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and also

∀x′′ ∈ V ′′ : ∀x′ ∈ V ′ : (ι ◦ ι−1)(x′′)(x′) = x′(ι−1(x′′)) = x′(x′′(bi)bi) = x′′(bi)x′(bi)

= x′′(bi)x′i = x′′(x′ib
i) = x′′(x′).

This proves the statement.

2.18 Convention. Without further reference we will identify V ′′ with V using 2.17
above. In particular we will ”apply” vectors x ∈ V to covectors x′ ∈ V ′ by x(x′) := x′(x).
Furthermoore we regard any basis of V as a basis of V ′′. With this in mind 2.16 can be
formulated for V as: Any vector x ∈ V has a unique expansion

x = x(bi)bi.

2.19 Convention. For any multi-index ν = (ν1, . . . , νk), we will denote

B⊗ν := bν1(1) ⊗ . . .⊗ bνk

(k), B⊗ν := b(1)ν1 ⊗ . . .⊗ b(k)νk
,

Bν := (bν1(1), . . . , b
νk

(k)), Bν := (b(1)ν1 , . . . , b
(k)
νk

),

and the same for �. We will employ the convention that the Einstein summation con-
vention holds for multi-indices as well. If µ = (µ1, . . . , µk) is another multi-index, we will
use the Kronecker-Delta for multi-indicex

δνµ := δνµ := δνµ := δν1µ1
. . . δνk

µk
.

2.20 Lemma (Multi Expansion). For any ν, µ

(i). B�ν(Bµ) = δνµ.

(ii). B�ν(Bµ) = δµν .

Proof. For part (i), we simply calculate

B�ν(Bµ) = bν1(1) � . . .� bνk

(k)(b
(1)
µ1
, . . . , b(k)µk

) = bν1(1)(b
(1)
µ1

) . . . bνk

(k)(b
(k)
µk

) = δν1µ1
. . . δνk

µk
= δνµ

and part (ii) follows equivalently.

2.21 Theorem (Tensor Bases). The set

[{B�ν ∈ Mult(V1, . . . , Vk) | ν ∈ Nk
0} (2.1)

is a basis of Mult(V1, . . . , Vk). Any tensor F has a unique expansion F = F (Bν)B�ν .

Proof. To prove linear independence, assume there are scalars λν ∈ K, such that 0 =
λνB

�ν . For any µ, this implies

0 = λνB
�ν(Bµ)

2.20= λνδ
ν
µ = λµ.
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Thus all λµ = 0.
We now calculate for any F ∈ Mult(V1, . . . , Vk) and any X = (x1, . . . , xk) ∈ V1× . . . Vk

that

F (X) = F (x1, . . . , xk) = F (xν11 b
(1)
ν1 , . . . , x

νk
k b

(k)
νk

)

= xν11 . . . xνk
k F (b(1)ν1 , . . . , b

(k)
νk

) 2.16= F (Bν)B�ν(X).

Thus, (2.1) is a system of generators, proving our claim.

2.22 Definition (Notational Trick). Now we define � for dual spaces: Notice that for any
two spaces V and W , we may write the dual spaces by V ′ = Mult(V ), W ′ = Mult(W ).
Therefore the tensor product is defined and determines a map

� : Mult(V )×Mult(W ) → Mult(V,W ).

Since � is bilinear, its image �(V ′,W ′) ⊂ Mult(V,W ) need not be a vector space. But

V ′ �W ′ := Lin(�(V ′,W ′)) 2.21= Mult(V,W )

is a vector space.

2.23 Theorem (Tensors on dual spaces). The map

V ′
1 × . . .× V ′

k ×W −→ Mult(V1, . . . , Vk,W )

(H,w) 7−→
(
X 7→ H(X)w

)
is itself k-fold multlinear. By the universal property 1.1 of the tensor product it descends
to a map

ϕ : V ′
1 ⊗ . . .⊗ V ′

k ⊗W → Mult(V1, . . . , Vk;W ).

This map satisfies

ϕ(η1 ⊗ . . .⊗ ηk ⊗ w)(x1, . . . , xk) = (η1 � . . .� ηk)(x1, . . . , xk)w (2.2)

and is a canonical isomorphism2.
In particular

(i). V ′
1 ⊗ . . .⊗ V ′

k
∼= V ′

1 � . . .� V ′
k = Mult(V1, . . . , Vk), in wich case

ϕ(η1 ⊗ . . .⊗ ηk) = η1 � . . .� ηk.

(ii). V ′ ⊗W ′ ∼= V ′ �W ′ = Bil(V,W ),

2The word ”canonical” here means that it may be written down without an explicit reference to bases,
although we will require bases to prove that it is an isomorphism. By the way, this is the reason why
we have to work over finite-dimensional vector spaces instead of R-modules.
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(iii). V ′ ⊗W ∼= Mult(V,W ) = Hom(V,W ),

(iv). V ′ ⊗ V ∼= End(V ).

By choosing the basis from 2.1 and employing convention 2.19, the inverse of ϕ may be
explicitely written as

∀F ∈ Mult(V1, . . . , Vk,W ) : ϕ−1(F ) = B⊗ρ ⊗ F (Bρ).

Proof. Equation (2.2) just unwinds the convention (2.6) and applies the universal prop-
erty of the tensor product 1.1. It is obviously written down without a reference to any
basis.
We have to check that ϕ−1 is in fact an inverse for ϕ. Clearly both maps are linear, so
it suffices to check this on a basis. So take arbitrary

v = B⊗ν ⊗ cµ ∈ V ∗
1 ⊗ . . .⊗ V ∗

k ⊗W,

F ∈ Mult(V1, . . . , Vk,W ),
(X,w) = (x1, . . . , xk, w) ∈ V1 × . . .× Vk ×W,

and calculate

(ϕ−1 ◦ ϕ)(v) = B⊗ρ ⊗
(
ϕ(B⊗ν ⊗ cµ)(Bρ)

)
= B⊗ρ ⊗

(
B�ν(Bρ)cµ

)
2.20= B⊗ρ ⊗

(
δνρcµ

)
= v,

(ϕ ◦ ϕ−1)(F )(X) = ϕ
(
B⊗ρ ⊗ F (Bρ)

)
(X)

= B�ρ(X)F (Bρ) = F (B�ρ(X)Bρ)
2.21= F (X).

Thus, we are now done.

This theorem is often stated in a much less general form.

2.24 Corollary.

(i). The map

V ′ ×W ′ −→ V ′ �W ′

(v′, w′) 7−→
(
(v, w) 7→ v′(v)w′(w)

)
descends to an isomorphism V ′ ⊗W ′ → V ′ �W ′.

(ii). The map

V ′ ×W −→ Hom(V,W )
(v′, w) 7−→

(
(v, w) 7→ v′(v)w

)
descends to an isomorphism V ′ ⊗W → Hom(V,W ).

13



Proof. These are special cases of the map constructed in 2.23.

We are not yet able to identify tensor products of spaces themselves, but only on their
duals. Lemma 2.17 guides us the way to solve that.

2.25 Definition. For any two vector spaces V,W , we define

V �W := V ′′ �W ′′ = Mult(V ′,W ′).

Notice that the underlying spaces to define � are V ′ and W ′ here instead of V and W .
Therefore the notation

∀(v, w) ∈ V ⊗W : v � w := ιV (v) � ιW (w)

makes perfect sense.

2.26 Corollary. We obtain

V1 ⊗ . . .⊗ Vk ⊗W ∼= V ′′
1 ⊗ . . .⊗ V ′′

k ⊗W ∼= Mult(V ′
1 , . . . , V

′
1 ;W ).

Proof. This is just a combination of 2.23 and 2.17.

Let’s exhibit this situation for two spaces in more detail.

2.27 Corollary. The map V ⊗W → V �W , v ⊗ w 7→ v � w, is an isormorphism.

Proof. This follows from 2.23 and 2.25.
But because this is so cool, lets recapitulate the construction of this map and unwind
the definitions in a bit more detail: By 2.17 there are isomorphisms ιV : V → V ′′,
ιW : W → W ′′. Therefore (ιV , ιW ) : V ×W → V ′′ ×W ′′ is an isomorphism as well. We
consider V ′′ = (V ′)′ = Mult(V ′) and consequently � : V ′′×W ′′ → V �W = Mult(V ′,W ′)
is bilinear. The universal property of the tensor product yields a commutative diagram

V ′′ ×W ′′

�

&&MMMMMMMMMM

V ×W

(ιV ,ιW )

OO

⊗
��

// V �W

V ⊗W

ϕ

88qqqqqq

By definition the map ϕ satisfies for any (v, w) ∈ V ×W , (v′, w′) ∈ V ′ ×W ′

ϕ(v⊗w)(v′, w′) = (�◦(ιV , ιW ))(v, w)(v′, w′) = ιV (v)(v′)ιW (w)(w′) = v(v′)w(w′) = v′(v)w′(w),

which reveals ϕ to coincide with 2.23 in that particular situation.

To make this perfectly clear:

14



2.28 Corollary. The tuple (V �W,�) is a tensor product of V and W in the sense of
1.1

Proof. Let ϕ : V ⊗W → V �W be the isomorphism from 2.27. Assume F : V ×W → X
is bilinear. By the universal property of the tensor product

V ×W
F //

⊗
��

X

V ⊗W

∃!f

99rrrrrr

ϕ
// V �W

g

OO�
�
�

there exists a unique f , such that ⊗ ◦ f = F . Now define g := f ◦ ϕ−1.
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