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"And the evil that was once vanquished shall rise anew. Wrapped in the guise
of man shall he walk amongst the innocent and terror shall consume they that
dwell among the earth. The sky shall rain fire and the seas will become as blood.
The righteous shall fall before the wicked and all creation shall tremble before
the burning of standards of hell.”

MEPHISTO, 1264
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1. Preface, Introduction, Transcendental Aesthetic



2. PDO: Partial Differential Operators

"Lucky for you I'm a freaking genius.”
SEAMUS ZELAZNY HARPER, 10087 CY
This chapter is designed to give an introduction to the theory of partial differential opera-
tors ("PDO”). The treatment of Pseudo-Differential Operators ("UDO”) later is even more
technical than the one of partial differential operators. So in order to understand the ideas

behind the WDO theory, the PDOs are helpful. Of course they are also useful and nice in
their own right.

2.1. Local PDOs and their Symbols

First we have to establish the local theory on an open subset U C R"™, which is then
generalized to operators on manifolds.

2.1.1 Convention. We denote the partial derivative on R™ in direction 1 < j < n by 0;.
For any multi-index «, we define

o . A« o
0% :=0{"o...00".

For reasons that will become apparent later, we define D; := %83' (here i € C is the
imaginary unit and not an index) and consequently

D* := i~ lelg,
For any vector x = (x1,...,z,) € R"
n
a._ Y
.
i=1

2.1.2 Definition (Differential Operator). Let U C R™ be open. A complex (partial) dif-
ferential operator on U of order k, k € N, (a "PDQ”) is a C-linear map P : C*°(U,C") —
C>(U, C?) such that for every o« € N™, 0 < |a| < k, there exist P, € C*°(U,Hom¢ (C",C?))
such that

P= > P,D"

lal<k

A real differential operator is defined analogously. The set of all such operators is denoted
by

Diff*(U,C",C*)
and we set

Diff(U,C",C*) := | J Dift*(U,C",C*).
keN

If all the P, are compactly supported, we write P € Difflj(U, C",C*%). The quantity
min(k € N | P € Diff*(U,C",C*))
is the minimal order of P.

2.1.3 Remark.



(i) Of course we assume that Home (C”,C?) is given the smooth structure obtained by
identifying it with C**".

(ii) The set Diff% (U, C",C*) itself is canonically a module over C>°(U) and a C-vector
space.

(iii) Chosing a bases {E,} of C" and {F},} of C*®, we can fully expand P in coordinates
as

Ps= YY" " (P*)D(s")e,. (2.1)

ja| <k v=1p=1

(iv) It is clear that any P € Diff*(U,C",C*) may be applied to a function f € C*¥(U).
But since we want to work on smooth manifolds, things will as usual get easier, if we
simply work in the smooth world.

(v) We will occasionally drop the ¢ in notation, since we always work with complex
numbers. Of course one could also use real PDOs.

(vi) We explicitely allow the case k = 0. An operator P € Diff’(U,C",C?) is still called
a "differential operator” although it does not differentiate anything.

2.1.4 Definition (symbol). Let P € Difff (U,C",C*) be an operator

Define ¥p,0p : U x R™ — Home (C",C?) by

Sp(x,&) = Y Po(z)E", op(x,&) =Y Po(z)E".

lo| <k lo|=k
We say 3 is the full symbol of P and o is the principal symbol of P.

2.1.5 Remark.

(i) Since we are working on an open subset of R™ at the moment, it is clear that we
may identify differential operators with their full symbols (§; <+ D;).

(ii) The principal symbol will have a coordinate invariant meaning on manifolds. There-
fore the term ”"symbol” is often used in the literature to refer to the pricipal symbol.
The term “full symbol” is sometimes used for X p. We will establish all the local
theory for the full symbol as well.

2.2. Diffeomorphism Invariance

If there is any chance of defining a PDO calculus on manifolds, the property of being a
PDO has to be invariant under diffeomorphisms.

2.2.1 Definition (Push-forward of operators). Let V, V c R"beopen, P € Dif}“k(V7 Cr,C»)
be a PDO and F' : V. — V be a smooth diffeomorphism. Then the map P := F.P :
C®(V,C") — C>*(V,C?) defined by

5+ P(3oF)oF™!

is the push-forward of P along F.



2.2.2 Lemma (Diffeomorphism invariance). With the notation of Definition 2.2.1 above:
Let « € N”, |a| = k& > 1, be a multi-index and P := D* € Diff*(V,C",C"). Then
P := F,(D%) € Diff*(V,C",C"), thus there exist P, € C>°(V,Hom(C",C")) such that
V5 € C®(V,C7,C"): P(3) = F.(D*)(3) = D*(§0 F) o F~' = )~ P3D"(3)
1BI<k

Denote by I, € Hom(C",C") the identity and let A := VF o F~! € C®°(V,R™*"). Then
the symbols can be expressed by

ope(z,§) = I§%, o, (Do) (7, ) = Z Pa(%)e” = I (A'()6)*,
|B1=k

Proof. We will show the statement by induction over k.
STEP 1 (k = 1): This implies that a = e; for some 1 < j < n. The chain rule for total

derivatives states
V(§oF)=V§oF-VF,

which implies

0j(§0 F)=V3o0F-0;F.
Consequently by definition
F.(0%)(3) = F*(aj)(g) =0j(30F)oF ' =V5-(9;FoF 1

—Z 9;F o F7 10,5 =1, ZA 0;8.
i=1
By multiplying with —i, this shows F,(D®) € Diff}(V,C",C"). The symbols are given by
0o, (,6) = L&, op(o,)(@,6) = I ZAZ Al@)€); = L (AN (2)€)*.
STEP 2 (k — k+1): If |a] = k + 1, there exists @ € N", |&] = k, and 1 < j < n such

that o = & + e;. By induction hypothesis, for any § < a the operator F.(D?) is a PDO.
Consequently

VB <a:3pf eC®(U,CTT): F(DP)= Y PPD (2.2)
[vI<I8
and
VB < aioppsy= Y, pi& =L(A%)". (2.3)
IvI=181

We calculate

FL(0°)(3) = 9%(5 0 F) o F~\ = 9%9;(50 F) o F~! = ad(ZajFi 950 F) o FL

i=1

(Z Z ( )35‘5@? L9595 0 F)) o F1

B<az 1

=> Z < >ad—ﬁajFi o F71. F,(0°)(8;3)

p<La =1

ZZ > Pﬁ< )a@—ﬁAgmai(g).

B<a i=1 |y|<|B]



By multiplying with (—i)**!, this shows F,(D®) € Diff**(V,C",C"). We analyse the
highest order terms. These occure precisely, if |y + e;| = k+ 1 < |y| = k. Since || < |5]
and f < @&, this can only happen, if 8 = & and |y| = k.

ey (@.€) = Y Pz (ZAZ éz)@ N P (a)(Al(2)€);€

lvI=k lvI=k

;i ) Pla (A (2)€); (A (2)€)* = L,(A' ()"

[v|=Fk
O

2.2.3 Theorem (Diffeomorphism Invariance). With the notation of Definition 2.2.1 we
claim: P = F,(P) € Diff*(V,C7,C?), i.e. there exist P, such that

V5 € C®(V,C",C*): P(3) = Fu(P)(3) = Y _ P.D*

|| <k

Moreover the symbol has a representation

= Y Pu@a= 3 (Pao F)@)(A@))" = op(F (&), A'(2)6),

lof=k lof=k
where A := VF o F~ L,
Proof. By definition we obtain

P(5) = Fu(P)(3) = (3 PaD*(s0F)) o F™' = 3 Pao FUE(D%)(3).
|| <K || <k

By applying the first part of Lemma 2.2.2, we conclude P € Diffk(f/, C",C?). By applying
the second part and analyzing the highest order terms, we conclude that the symbol satisfies

op(#,6) = Y (Pao F)(@)op,pey(E,6) = Y (Pao F7)(&)(A'(2)6)".

o=k |o|=k
O

2.2.4 Remark. One might be tempted to look for a transformation formula for the lower
order terms as well. This is extremely difficult and unneccessary for our purposes. The
problem is that there is no really good chain rule for arbitrary partial differential operatos,
i.e. expressing 9%(5 o F) in terms of 9°5 and 9" F is not so easy. This problem is known
as Fad di Bruno’s formula, but has been stated initially by Arbogast in 1800. For some
special cases there exists a formula that is sometimes useful. For our purposes here it is
not.

2.2.1. Global PDOs and their Symbols

Let M be a smooth manifold of dimension m. The suitable setting for PDOs is to let them
operate between the sections of two smooth complex vector bundles over the same manifold

(notice already that this means we will be able to speak about the exterior differential as
a PDO).



2.2.5 Definition (complex vector bundle). A map 7 : E — M is a smooth complex vector
bundle of rank r if the following conditions are satisfied:

(i) E is a smooth manifold.
(ii) The map 7 is smooth and surjective.

(iii) For all p € M fibre over p, E, := 7 1(p), is endowed with a complex vector space
structure of complex dimension k.

(iv) For every p € M there exists an open neighbourhood U C M of p and a local
trivialization, i.e. a diffeomorphism ® : Ey := 7~ 1(U) — U x C" such that pro® =
idy, where pr : U x C” — U is the canonical projection, and for every ¢ € U the
restriction ® : E; — {¢} x C" = C" is a complex vector space isomorphism.

2.2.6 Definition (section). If 7 : E — M is a complex vector bundle, a smooth map
s: M — E such that wo s =1idy; is a section in E over M. The space of all such sections
is denoted by I'(M, E).

2.2.7 Definition (frame). Let 7 : E — M be a smooth complex vector bundle of rank 7.
Let UCM, Ey,...,E, € T'(U,E) such that for any p € U, (E1lp,..., Ey|p) is a basis for
E,. Then (E,...,E,) is a local frame for E.

2.2.8 Lemma. Let # : £ — M be a vector bundle of rank r. For any local frame
FEy,...,E. on U of E¥ the map
.7 YU) - UxCr
v=3"0 VB (7’[’('1)), > i1 viei>
provides a local trivialization on U for E. Conversely, for any local trivialization ¥, the

maps
Ez“p =yt (p7 ei)

provide a local frame Fq,...,E,. on U for E. Thus local frames and local trivializations
are in a one-to-one correspondence.

2.2.9 Definition (associated pushforwards). Let 7 : E — M be a complex vector bundle
of rank r and ® : Ey — U x C" be a local trivialization. Denote by pry : U x C" — C”
the canonical projection. We obtain the pushforward ®, : T'(U, E) — C*°(U,C") defined
by

s prpoPos==Pyo0s
and for any chart ¢ : U — V of M the pushforward . : C>*(U,C") — C*(V,C")

frefop

By composing we obtain a map ¢.®, := ¢, 0 @, : T'(U, E) — C=*(V,C").
2.2.10 Lemma.

(i) By construction the following diagram commutes:

Ey-2sUxcCr

I I

U—".,Cr

-1

V

Notice that ¢,®, transports a local section s : U — Ey to a function V — C".



(i) The map ¢, is bijective with inverse ()™t = (p~1), : C*(V,C") — C®(U,C").

(iii) The map ®, is bijective with inverse ®; 1 : C®°(U,C") — T'(U, E), f + ® toidy x f.
(iv) The map @@, : T'(U, E) — C®(V,C"), s = ®3 050 ! is bijective with inverse
P lop l:C®(V,C") = T(UE), f—~ U loidxfoep.

Proof. The first two statements are clear. To see the third one, remember that any local
trivialization can be written as

D = (&1, By) = (idy, By) = idy xPs.
Therefore we obtain
Vs € T(U,E) : (&7 0 @,)(s) = &, (Py05) =P oidy xPyo s
=d lodos=s
and
VfeC®(U,CT): (P, 0 ®; 1) (f) = (@ L oidy X f) = prgo® o d Loidy xf = f.
O

2.2.11 Definition (Differential operators between vector bundles). Let E, F' be smooth
complex vector bundles over M of rank r and s. A C-linear map P : I'(M,E) — I'(M, F)
is a differential operator of rank k, if for any p € M there exists a chart ¢ : U — V,
p € U, and local trivializations ® : Ey — U x C" and ¥ : Fy — U x C?, there exists
De Diffk(V; C",C?), called a local representation of P, such that

T.(U E) —LX—T.(U,F)

l@*q)* l@*q]*
C(V,CT) 2= C°(V, C)
commutes, i.e.
0, W, 0Po(p,®,) t=D.
We say P satisfies the PDO property on U with respect to p, ®, W. The set of all differential
operators of order k between F and F' is denoted by
Diff*(M; E, F).

Analogously we set
Diff(M; E, F) = |_J Diff*(M; E, F).
keN



2.2.12 Lemma (local PDOs). Let E, F be trivial vectors bundles over U C M with
trivializations ®, ¥. Let Ei,...E,, F1,..., Fs be the associated local trivializations (c.f.
2.2.8).

(i) Assume there exists a chart ¢ : U — V. For any multi-index «, |a| = k,
D := DS 4 = (p«®s) ' 0 D¥ 0 ¢, ®, € Diff*(U; E, E) (2.4)

and we may calculate

Vs € T(U, E) ZDO‘ (2.5)

where D € Diff*(U; C,C) is given by:
Vfe'(U;C,C)=C*(U,C): Dg(f) =D fop Yoo.

(ii) A linear map P : T'(U, E) — I'(U, F) satisfies P € Diff*(U; E, F) if and only if there
are P, € I'(U,Hom(FE, F')) such that

P= > PuDlg. (2.6)
This operator acts on local sections by

Vs € I(U, E) = > ZZ Fy, (2.7)

la|<k v=1 p=1

where the ((P,)},) € €°°(U,C**") are the coordinate matrices of P, with respect to
the local frames (notice the resemblence to 2.1.) Therefore P is a PDO if and only
if there exist local frames and ((F,)};,) € €°°(U,C**") such that (2.7) holds.

(iii) The operators D satisfy the Leibniz rule:

« (0%
Vfe€>(U,C):Vs e (U E): Dg 4(fs) = Z <B>D£(f)D%¢B( ). (2.8)
BLa
Even more general: For any vector bundle homomorphism 6 € I'(U, Hom(E, F'))
(0% « (e
Vs e T(UE) : D2y (0s) = > ( ﬁ) DY 4 (0)DS S (s). (2.9)
BLa

Proof.

(i) The facts that D 4 € Dift*(U; E, E), Dg(U; C,C) follow directly from the definition
2.2.11. By constructlon

ZDM s"Ep) Z( £ @4) TH (D (0u®u(s" Ep)))
pn=1

—Z 0.®,) 1D (5" 0 1)) Zfb (D*(s* 0 1)) 0 )

= Z Dz(SM)EM
p=1

10



(ii) By definition 2.2.11 P is a PDO if and only if there exists a P e Diff*(V;C",C*)
such that p, W, o Po (p.®,)"1 = P. Let

and calculate

-1 Z P.,D%o (psPy)

|| <k
= Z (90*‘1’*)_1]504‘/7*(1)* Dg,qr
la|<k =:P,

We calculate

Pis)E S PaDegs) = 3 ZP D2 o(s"E) & ZP E,DS(s")

|a\<k |a| <k p=1 |a| <k p=1

ZZZ ), F, DY (s").

la|<kv=1p=1

(iii) To see the first equation, we just calculate

Da 25)ZDafS M—ZDafOSO 1SMO(,0 1))OtpEM
p=1 pn=1
AL3 w 1\ ma— _
=N Y (DP(fop D P (st o)) 0 0E,
=1 pB<a
o (25)
SN S SEn T e)
Bl p=1 B<a

To see the second equation, first notice that Hom(F, F') is a bundle of rank rs. Using
the local frames F1,..., E, and Fi,..., Fs, we obtain a local trivialization (®,¥) of
Hom(FE, F') by mapping any element §(p) € Hom,(E, F') to its coordinate matrix
O(p)z with respect to these frames. Therefore, we may calculate analogously

08 25 ZDQ 98 V_ZZDQ HVS/,L 1/ :)

v=1 p=1

—ZZZ ( )Dﬁ (04) D2 (s")F,

v=1p= 16<oz

= Z < > ZZDWD\I' Dg_ﬂ(S“)Fu
B<a v=1 p=1

[0
S (DL o 0)DSL (5) Fy

™

M( )3
e <a>Dg,¢>w )D% 4 (5).

B

11



O

2.2.13 Convention. It is very common to use the notation D for Dg o etc. as well. This
notation convention is very convenient, but you have to keep in mind that this operator
depends on the chosen chart and trivialization.

2.2.14 Theorem (local independence). Let P : I'(M, E) — I'(M, F') be a linear map, let
p:U—=>V, ¢:U—=V beany charts and ®,®: Fy - U xC", U, U : Fiy - U x C*® be
local trivializations.

(i) Then

D=, ¥, 0Po(p.®,)" ! e Diff*(V,C",C*)
— D :=,P, 0 Po (¢,®,) ! € Difff(V,C",C*).

So the local property of beeing a differential operator does not depend on the choice
of charts or trivializations, but only on the smooth structures of M, E and F'.

(i) Denote by F := o™t : V — V the transition map between the charts, A :=
VFoF~! and by gg and gr the transition functions between the local trivializations
(see equation (2.10)) and let

D= Y P,D*eDiff*(V,C",C").
<k

Then the symbol satisfies

VieV VEER™ 1op(3,6) = Y (9rPagp ) (F~H(2))(A (2)€)°.
la|=k

Proof.

STEP 1 (Independence of trivializations): First we fix the chart ¢ and consider differ-
ent trivializations. There exist functions (c.f. [4, 5.4])) gr € C®(V,GL(r,C)), gr €
C>(V,GL(s,C)) such that

(2.10)

VeeV:YoeC : (Pod N a),v) = (¢ (z), ge(z)v)
Ve eV :Ywe C®: (VoW ) (p (), w) = (¢ (), gr(z)w).

We redefine D := go*\i/* oPo (go*@*)*l (valid for this step of the proof) and remark that
the following diagram commutes:

C>(V,C") D C>(V,C*)
[\
0xPr0(pu®y) ! F(U, E) L>F(l‘j, F) 0x W0 Wy) 1
ol
C>(V,C") D C>®(V,C%)

We calculate

D= w*\il* oPo (go*i)*)_l = w*\il* o (cp*\Il*)_l oDop,d, 0 (go*ci)*)_l

:(p*o\il*o\l»';1o¢;10Dog0*o(b*oci);1o<p;1,

12



The map @, 0 W, 0o Wy o, ! : C®(V,C") — C®(V,C") can be simplified drastically: For
any f € C>®(V,C"), we conclude from 2.2.10

e (W (W (0 (1)) = (W (W (f 0 9))) = @u(Wu (T 0idy X(f © )
:ap*(prQO\iJo\P_loidU X(f o)) :gFfOon<p_1 =grf

and analogously 3
(ps0 @0 @ ool )(f) = g5 f.
Since D € Diff*(M; E, F) by hypothesis, there exist P, € C°°(V,Hom(C",C*)) such that

D= > P,D* € Difif. (V,r,s).
la <k

Alltogether, we obtain

Df =gr( > PaD*) (95" 1) = > grPaD(g5"f)

|| <k lo| <k
Als ZQFP <Z< > (D> Py )D5f>
la|<k BLla
=> Z( )gFP (D*Pgp"YDf,
la|<k B<La

which shows D € Diff*(V,C", C*).
We analyze the highest order terms: These occur precisely, if |3| = k. But since f < «
this happens if and only if f = «. So the symbol is given by

= gr@ 9p (2)€%.

|al=k

STEP 2 (Independence of the chart): Now fix the trivializations ®, ¥ and consider the two
different charts ¢,. Analogously we redefine D := 1, ¥, o P o (1.®,)~! (valid for this
step of the proof) and calculate

D=¢,U,0Po (V@) = 10U, 0 (0 T,) "t 0 Do,y 0 (Y ®y) !
:w*o\If*o\IJ*_lo(p*_loDogo*o(I)*oCI)*_low*_l :w*ogo*_loDogo*ozﬁ*_l.

Thus for any f € COO(V, C",C*), we obtain
D(f)=D(fo F)o F~" = F.(D)(f),

which implies D € Diff* (‘7, C™,C*) by Theorem 2.2.3. It was already shown there that
the symbol is given by

= 3 PP @)(AY(@))".

|laf=k

Redefining D := ¢, ¥, 0 P o (4. ®,)~! as in the statement of the theorem and combining
both steps, we obtain both claims. O

13



2.2.15 Definition (symbol). Let P € Diff*(M; E, F) be a PDO. For any p € M and any
§ € Ty M, define op(p, &) € Hom(E,, F},) to be the homomorphism given as follows: Choose
a chart ¢ : U — V near p and local trivializations ® : Ey — U x C", W : Fy — U x C*.
Let D be the local coordinate representation of P with respect to this chart and these
trivializations and define

Ve € By : op(p,€)(e) == ap(§)e := U (p,op(p(p), 9+&)(P2(e))),

We call op the symbol of P. (For an alternative approach see Theorem 2.2.19.)

2.2.16 Remark. This definition produces two problems: First of all, the homomorphism
op(p,§) is defined in terms of various non canonical choices, so we have to show that it is
well-defined, c.f. Lemma 2.2.17 (assume for the moment this has been done). Secondly, we
would like to state more precisely, what kind of op is. Recall that the symbol of the local
representation D as defined in 2.1.4 is a smooth map op : V x R™ — Hom(C",C*®). This
is no longer possible. On a manifold op is not a map on M x T M, since it is only defined
for those (p,&) € M x T*M such that 7(§) = p. This problem can be easily circumvented
by thinking of ¢ as a map on T* M, since we can recover the base point of any £ € T*M by
p:=m(§). We can also no longer think of op as a map with range Hom(C",C*#). For any
§ € T*M the map op(§) is an element of Hom(Ey (), Fir(¢)). To define a suitable image
space, let
Hom(E, F) := | | Hom(E,,F,) = E* @ F
peEM

and endow this set with the canonical topology and smooth structure from the tensor
product bundle, which turns it into a smooth vector bundle over M. Then

o:T"M — Hom(E, F).

Now we have a suitable domain and range for op, but this map satisfies a bit more. We have
not yet encoded the condition o(¢) € Hom(E,, F},), p = w(€). This condition almost looks
like the condition for a section. In fact o is a section, but not of the bundle Hom(FE, F)
(since this is a bundle over M). Therefore, we just have to think of E and F' as bundles
over T*M which are "constant” on any T; M. This enables us to think of Hom(E, F') as a
bundle over T*M.

One can make this rigorous: Denote by m : T*M — M the cotangent bundle and let
g :E — M, np: F — M be the vector bundles and consider the pull-back bundles 7*F
and 7 F . By construction, we obtain a commutative diagram

m™(F)——F

T*M —"— M,
where 7}, is the projection of the pull-back bundle 7*(E) and the fibres satisfy
V€ cT*M : (W*E)é = {6 ek ‘ 7TE(€) = W(f)} = Eﬂ.(&)

by definition. Consequently op is a section of the bundle Hom(7*(E), 7*(F')) over T*M.
We will use the notation op(§) and op(p, ) interchangably.

2.2.17 Lemma. The symbol is a well-defined section

op € I'(T*"M,Hom(n*E, n* F)),
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ie: Let ¢: U — V be another chart, ®, U be other local trivializations for E and F and
let 6p be the symbol defined in terms of this chart and these local trivializations. Then
using notation from Definition 2.2.15

VpeUNU: Ve T, M :Ve € Ep:op(p,§)(e) =ap(p,§)(e).

Proof. By shrinking the coordinate neighbourhoods if necessary, we may assume that
U = U, and calculate there. As usual, we define F := @ o o' € C®(V,V), A =
VFoF~! € C®(V,GL(n)). Denote by = := (&1,...,&,) € C¥(T*U — R™) the coordinate
vector function of £ with respect to ¢ seen as a column vector in R™ (define = analogously).
The transformation law for the cotangent bundle states that

¢ = &idy' = §idg",
where Z = VF* o - Z. This implies Z = A 0 ¢ - Z, which is equivalent to

Z=(AY"top B (2.11)

Remember the defining equations (2.10) for the transition functions. Define 7: U x C" —
UxC", (p,v) = (p,gr(e(p))v). We can reformulate

Pod =7 D=7100,
which implies in particular
Vpe U :Ve€ Ey: d(e) = (1(®(e))) = 7(D1(e), P2(e)) = (p, gu((p))P2(e))  (2.12)

and analogously for U. Now let D be a coordinate representation of P with respect to P,
®, W. We calculate for any p e U, £ € T*U, e € Ey,

O

2.2.18 Remark. This theorem is precisely the reason why the symbol is defined on the
contangent bundle rather than on the tangent bundle.

There is an alternative approach to the symbol, which is more coordinate invariant and
therefore sometimes useful. For reasons of completeness, we establish this symbol from
scratch.

2.2.19 Theorem (Alternative approach to the symbol).
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(i) Let U € R™ be open, p € U, f € C>*(U,R), such that f(p) = 0, df|, = £ Let
k € N, k> 1. Then for any multi-index o € N, 1 < |a| < k,

ke, |al =k,

o (1)) = {0 AP

(ii) Let f € C®(U,R) satisfy f(p) = 0 and df|, = & as well. In addition let e € C7,
5,5 € C®(U,C") such that s(p) = 5(p) = e. Then for any P € Diff*(V,C",C?)

P(f*s)(p) = P(f*3)(p).

(iii) Let P € Diff*(U,C",C*), e € C" and s € C*(U,C") such that s(p) = e. Then

ik
op(p,§)(e) = Ep(fks)(p)-

(iv) Let E — M, F — M be smooth complex vector bundles and P € Diff*(M; E, F).
Let p € M, £ € TyM, e € E, and let f € C*°(M,R) such that df|, = £ and
s € I'(M, E) such that s(p) = e. Then

ik

)
op(p,§)(e) = EP(ka)(p)- (2.13)
We could have used this as a definition for op as well.

Proof.

(i) We prove the statement by induction over k. In case k = 1 the only multi-index «
satisfying |a| = 0 < 1 is @ = 0. Consequently

9*(f*)(p) = °(H)p) = f(p) =0.
In case |a| = 1, there exists 1 < j < n such that a = e;. Consequently
9*(f*) () = 9;(f)(p) = &-

For the induction step k — k + 1 consider a multi-index « with || < k + 1. Then
we may split @ = § + e;, where || < k and 1 < j <n. We calculate

(1)) = 7@, ) = (k + VP (F0,1)(p)
AL () Y (f ) 57 (1) ()0, ) (p)

v<B

(2.14)

and first analyse this term for |o| < k + 1. In that case || < k and since all v < 3,
this implies |y| < k as well. Therefore (2.14) reveals 0%(f**1)(p) = 0 by induction
hypothesis. In case |a] = k+ 1, the only relevant multi-index v < § in the remaining
sum is is f = . Thus we may continue (2.14) by

(ki 1)(?) 0% (%) ()@, 1) () = (k + DKERE; = (k + 1)IE™,

where we used the induction hypothesis.
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(ii) Obviously
fes—frs = (F* = fM)s+ (5 - )

and therefore we may calculate

P((f* = M)s)p) = Y Pal)D*((F* = 1*)5)(p)

la|<k
= 3" Palp) X (D)) - DO () () D" (s) ) £ 0
lo|<k B<a
and
D(fk Z P Doc fk ))(p)
|a| <k
= 3 Pale) 3 DO )05 - s) ) D0,
|| <K B<a
(iii)) We calculate
ik
EP (*s)( %! Z Pa(p)D*(f*5)(p)
|a\<k:
i ST (Z) D (f4)(p) D" s(p)
" al<k B<a
Z P k'fae = O'P(p f)( )
|a| k

(iv) Choose a chart ¢ : U — V near p and local trivializations ® : Ey — U x C",
VU : fy — U x C3. Let D be the local coordinate representation of P with respect
to this chart and these trivializations. We calculate for any p € U, £ € T*U, v € Ey

! K :
—op(p,&)(v) = ¥ (p,op(e(p), &ie') (Pa(v)))

(g) -1 (p, D((f o H)*(®y(s) o w_l))(SO(P)))

=0 (p.(D o P a(5)) ()
= (T toid xD o ®y 0 fFs)(p)

2'2:'10 ((90*\]:’*)71 oDo (p*@*)(fks)(p) = P(fks)(p)

2.2.20 Theorem (Symbol via exponential function). Let P € Diff*(M; E, F), p € M,
§ €Ty M, e€ Ey, geC®(M,R) such that dg|, = £ and s € I'(M, E) such that s(p)
Then
op(p,€)e = lim (71 P(e95)) (p).
t—o0

Proof.
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STEP 1 (Preparation): We prove the following claim by induction over k: In case M =
UcCR",

, . a =k
Vla| < k: lim ¢t (e 9 D2 (9 _ )&% lel=k, 92.15
jal < &+ Jim 17 (79D () ) (p) {O, ol < (2.15)

STEP 1.1 (Induction start £ = 0): No multi-index « satisfies |o| < 0 and the only multi-
index « such that || = 0 is a = 0. Therefore

tim 1 (<19D%(619)) (p) = im ¢=90)H90) =1 = €0 — g0,

t—00 t—00

STEP 1.2 (Induction step k — k4 1): Assume |a| < k + 1. Then we may decompose «
into o =  + e, where |5| < k and 1 < j < n. We calculate

lim ¢~ *+1) (e_itha(eit9)>(p) — lim ¢~ *+D —itg(p) (D’BDj(eitg)> (»)

t—00 t—o0
= tlg]& t—k=1—itg(p) pB (eitgm‘Dj (g)) (p) = tligg t~ke—9(p) b <e”giDj(g)> (p)
W —k_—itg(p) B v itg : B—v+e;

Jim e 0 5 (T e i () ) (216)

v<B
= Z <ﬁ> tllm t*kefitg(p)DV(eitg)(p) iDB—Yte; (9)(p)
’)/ o
<8

=:(+)

By construction || < k. Consequently, the expression (x) certainly equals zero for all
v < B by induction hypothesis. In case |8| < k, the entire equation (2.16) equals zero,
which we wanted to show. In case |f| = k (& |a] = k + 1), we may continue (2.16) by

= &iD% (9)(p) = €70, (9) (p) = €7¢; = €.
STEP 2 (in case M =U C R™): We calculate

lim ¢t=* <e_it9P(eitgs)) (p) = lim t_ke_itg(p)( Z PaD“(eitgs)) (p)

t—o00 t—o0

o<k
= Jim e (50 ) 3 () DD 0 0)
°° jal<k f<a
= 2 X () (Jim e te D7) 0)D* 4 6) )
la| <k B<a
PN P ()€ = op(p. ©)e.
|a|=k

STEP 3 (general case): Let D be a local coordinate representation of P with respect to
a chart oy — V and local trivializations ®, W. The function § := go ¢~! € C®(V,R)
satisfies

gl (g o @ ") (0(p)) = udgly = ©u
and the section § := @, P.(s) € C*(V,C") satisfies §(p(p)) = P2(e). Therefore by what
we have proven so far:

oD((p), 9:) (@2(€)) = lim (7 D(T) ) (o(p)) (2.17)
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By definition of the symbol

op(p,€)0 = UM (p,0p(9(0), 94) (@2(0)) “= W (p, lim (e ID(E5)) (o(p)) )

= Jlim U (.M e D) (¢ (p) )

t—o0

= lim t 7R 0 (0, 0,) 7" 0 D o ., (e5))(p)
—00

T —k( —itg itg

—tlggot (e P(e s))(p)

2.2.21 Lemma (calculating symbols). Let P € Diff*(M; E, F) be a PDO and let

P =Y P.D" € Dift*(U; E, F)

laf<k

be a local representation of P as in (2.6). Then the symbol of P has a local representation

- Y R 219

la|=k

where

§o = ((px(£)*

Proof. Let ¢ : U — V be a chart and ®, ¥ be local trivializations of E and F'. It follows
directly from the definitions that for any p € U, e € E, £ € T;U

ope , (E)(€) “E7 W (p, 0 pa (9(p), 9:6) (Ba(e))) =1 U (p, (9.8)" (®a(e))) = E2e (2.19)

Now let f € €°°(U) such that df|, = { and s € I'c(U, E) such that s(p) = e. By 2.2.19,
we obtain

-k
(2.13) @ 2 2.19(
or(©)(e) L P = L S P, 'Y R Do)
’ \a|<k: la|=k
(2. 19
Z P, O’Da Z Pa‘&p
|la|=F laf=k
U

2.3. Properties of the PDO-Algebra

The set Diff(M; E, F') has much more hidden structure than just beeing a set. One of
them is rather obvious.

2.3.1. Vector Space Structure

2.3.1 Definition (Linear combinations of PDOs). Let P,Q € Diff(M;E, F), A € C,
feC®(M,C). Wedefine P+ Q:I'(M,E) - I'(M,F) by

(P +Q)(s) := P(s) + Q(s),
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AP :T(M,E) — T'(M, E) by
(AP)(s) == AP(s),

and fP:T'(M,E) —» T'(M,E) by
(fP)(s) := fP(s).

2.3.2 Theorem (Vector space structure). Let P € Diffk(M;E, F), Qe Diffl(M;E, F),
feC>*®(M,C). Then
P+ fQ e Diff">kD (VB F)

and
op+fQ =0p + foq.
Thus Diff(M; E, F) is a complex vector space and a module over C*(M,C).

Proof. By setting P, := 0, if |a|] > k, and @, := 0, if |«| > [, the local representations of
P, Q satisfy
D PaD*+f D QD= Y (Pat fQa)D%

|al<k la|<k |l <max(k,l)
Now the statement follows from the local definition of the symbol. O
2.3.2. Sheaf Axioms
2.3.3 Definition (restriction). Let P € Diff(M; E, F) considered as a linear map
P :Tu(M,E) — To(M, F).
Let UC M. Define

Ply :To(U,E) — To(U,F)
s = P(s),

where s € I'.(U, E) is extended by zero to an element of I'.(M, E). We say
P|y € Diff*(U; E, F)
is the restriction of P to U.

2.3.4 Theorem. Diff*(_;E, F) is a sheaf of C-vector spaces on M, i.e. for any open
cover {U;};ecs of M that is countable and locally finite, we obtain

(i) first sheaf axiom: Any P € Diff(M; E, F') satisfies
VjeJ:Ply,=0=— P =0.
(ii) second sheaf axiom: For any system P; € Diff(Uj; E, F)
Vi ke J: Pj|U]ﬂUk = f),1€|Uij}C = dP € Diﬁ(M;E,F) Ve d: P|Uj = PJ

Proof. Let {1;};e; be a partition of unity subordinate to the cover {U;};cs, p € M.

(i) Since the cover is locally finite there exists a finite subset J C J such that s €
Le(M; E)

P(s)lp = P( D wss)lo = D Plu,(55)lp = 0

jEJ Jej
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(ii) Define
)=y Pits)
JjeJ
which is well-defined since the sum is locally finite. Let ¢t € I'.(U;) and K := suppt.
Since K is compact, there exists a finite subset J C J such that

K C U Uy.
keJ

We calculate

Ply,(t) = Pe(tbrt) =Y Peluynw, (rt) =Y Pilu;au, (Vet)

keJ keJ keJ

:Pj(quks) = P(t

keJ

2.3.3. Compositions

It is very natural to ask, if the composition of two PDOs is again a PDO. The answer is
always "yes” and locally, we even have explicit formulae for the symbol of the composition.

2.3.5 Theorem (Local compositions). Let U C R™ be open and
P= > PD"eDiff"(U,C",C*) and Q=) @D’ eDiff'(U,C* C)

o] <k 18I<l
be two PDO with symbols
Yp(x, &) = ZP and Yoz, &) =q(z,8) = ZQ/B
|| <k 1B1<l

Then the composition Q o P € Diff**!(U,C",C?) is a PDO with symbol

EQOP(x7§) = Z (_,;)W(ang)(x>f)(a;ZP)(xv§) = Z Z(DgZQ)(xaé)(D;ZP)(x7§)

<t ly| <

and principal symbol

ogor(,) = Y > Qpw)Pa(@)6™ = oz, 0p(x,)).

1BI=l o=k

Proof. For any f € C>*(U,C")

(QoP)(f)(=) =) Qs(z)DJ (ZP D"‘f) )

18It o <k
=3 Y Qsx)DI(P.Dyf) ()
. 1Iilsl laf<k 5 (2.20)
Y Y X (2)0re)@ms e
1BI<T || <k v<B

=Y 2 % ((awwr@ o).

BI<l|e|<k~<p
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This implies Q o P € Diff**(U, C",C*). Furthermoore (2.20) implies that the full symbol
is given by

Seered) = ¥ ¥ ¥ (F)saoimwes

I8I<l|a|<k v<B

—ZZ<> &0y ( Y Pale)e)

IBI<U|vI<B |a|<k

_zz()gwﬁ Dyl Y - 10267 Qule) D)
IBI<iy<B |/3\<I’Y<B

2 Y @D 8 = 3 (5013 Qul@’) i)
1BI<l \’Y|<l <t 1B1<l

= ¥ @O0 = Y S 0@ 99w ¢
‘W‘Sk [v|<k

Remember from Lemma A.1.6, that for any two multi-indices 3, ~, we have
B\ +B—

a’yé.ﬂ — 7'(7)§ﬁ ’Y) 0 S B?

¢ 0, otherwise.

This is the justification for (1) and also for (2) since we only added zero summands!
Analysing the highest order terms in (2.20), we see that

oQor(,§) = Z Z Qp(x) Po ()7

1B1=t lol=F
= > Q@€ D Pa(2)e™ = og(,0p(,€)).
|8l=t |o|=Fk

O

2.3.6 Theorem (Global composition). Let P € Diff*(M; E, F) and Q € Diff'(M; F,G).
Then Q o P € Diff**!(M; E,G) and

VE €T M : 0gop(§) = 0q(§) o op(&).

Proof. Clearly Qo P :T'(M,E) — I'(M,G) is a linear map. To check the PDO property
choose an open set U C M such that there exists a chart ¢ : U — V and local trivializations
& U, 0 for £, F', G over U. Let P, Q be local representations of P, (). Then the equation

Qo P = (p.0:) " 0Qop.Vso (p.W,) "o PopWl, = (p.0.) T oQo Pop, ¥

holds on U. This proves that Qo P is a PDO with local representation Qo P. By definition
the symbol satisfies for any p € M, { € Ty M, e € Ep:

00er(€)(€) = 05 (1.0 p(P(0), £:) (@2(c))

2.3.5
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2.3.4. Adjoints

In this subsection let (M, g) be a smooth oriented Riemannian m-manifold and let (£, h¥),
(F, ht") be hermitian vector bundles over M.

2.3.7 Convention. A PDO P e Diff*(M; E, F) can be thought of as a linear map
P:T(M,E) - (M, F), P :T.(M,E) — To(M, F).

In this section, we will always choose the later one. Nevertheless one may apply such an
operator P to a section s that is not compactly supported.

2.3.8 Definition (induced L?-space). For any two sections s,t € I'.(M, E), define
(5,8) 2 up) :—/ WP (s,1)d,V € C,
M
the L2?-scalar product on T'o(M, E) induced by h¥. This induces a norm via
”S”%mﬂ) 1= (5, 8) L2 (nE)-

We will sometimes drop the index and just write (_, ), || |

2.3.9 Lemma. The L?-scalar product is bilinear even over C*°(M, R ) respectively sesquilin-
ear over C*°(M,C).

2.3.10 Definition (formally adjoint). Let P € Diff*(M; E, F) be a PDO. A linear map
Q:T(M,F)—T.(M,E) is formally adjoint to P, if

Vs € To(M; E) : Vt € To(M; F) < (P(s),8) 2007y = (5, Q1)) L2

2.3.11 Remark. We will later define the hilbert space L?(E) to be the completion of
all sections s € I'o(M, E) such that ||s||;2 < co. The problem is that this space contains
sections that are not differentiable and therefore P does not (yet) operate on this space.
This is the reason why we speak of formally adjoint and why we can’t just take the Hilbert
space adjoint of P. Our ultimate goal is to show that there exists a unique formal adoint
Q = P* € Diff*(M; F, E).

The uniqueness is the much easier part.

2.3.12 Lemma (Uniqueness of formal adjoints). Any formal adjoint to P € Diff*(M; E, F)
is unique.

Proof. Assume Q, Q are adjoint to P. Then for any s € To(M; E, F),teT.(M;F)

(P(s).t) = (5,Q(1)) = {5,Q(1))

This implies

thus Q = Q. O
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2.3.13 Example (standard L? scalar product). In case M = U C R" is endowed with
the Euclidean metric, C" is given the the canonical hermitian form

r
w> = Z V; W; .
1=1

The induced L?-scalar product on the trivial bundle M x C7 is given by
Vf,ge€ Fc(MaM X (Cr) = (gcoo(Ua(CT) : <f>g>L2 = <f>g>L2(U) = /U <f(.%’),g($)>d$

2.3.14 Lemma (Euclidean adjoint operator). In the situation of 2.3.13 above, let P €
Diff* (U, C""*") be a PDO with full symbol

7,6) =Y Pa(x)¢

o<k

Then there exists a unique PDO P* € Diffk(U, (C”"XT,), which is formally adjoint to P and
which satisfies

Vg € €>(U,C" =Y D*P, (2.21)

o<k
In particular, D¢ is formally self-adjoint. The symbol is given by
Spe(r,6) =Y ﬁlpﬁpﬁzp(gg £).
18|<k
In particular

op«(2,§) = op(,§).

Proof. Uniqueness follows from Lemma 2.3.12.
STEP 1 (Existence):
STEP 1.1 (P = Dj): Let 1 <j <nand P = D, € Diff (U,C",C"). We claim

VfeCrU,C) Vg e CE(U,CT) - (Dj(f) 9) 12 = (f, Dj(9)) L2, (2.22)

hence the analogous statement is true for the operator D% € Diﬁk(U, C",C"). To prove
this consider any f € C°(U,C"), g € C°(U,C") and consider

D= [ Di(D.a)de =35 [ o(hade =3 = [ £o,@ )
v=1 v=1
= ;/Uqujgudx = (f,Dj(9))r2

STEP 1.2 (general case): Now let P € Diff*(U,C",C"") be arbitrary. For any f € C°(U,C")
and any g € C®°(U,C"") we calculate

9) e = /ZPD“ dx_Z/ (D*(f), Ptg)dz

la|<k |a| <k

(222)2/ (f, D*(P d:z:_/ (f, Zpa >g9))dz = (f,P*(9)) 2

la|<k la|<k

=:P*(g)

24



Now, the Leibniz rule implies

=> Z( >Dﬁ (PYD* P (g), (2.23)

|a|<k B<a

thus P* € Diff*(U, C™"").
STEP 2 (full symbol): This allows us to calculate the full symbol by Consequently

2.6 2 5 S a5 et Y X pien jolee

\oz|<l~cﬁ<a la| <k BLa
2) Z Z 'Dﬂ P* 866(1_ Z 'D585< Z pP* ga)
|| <k |,8|<k B 1BI<k ﬁ la|<k
=Y B'DﬁD'BE* (z, ).
1BI1<k

(1),(2): Remember from Lemma A.1.6 that

. )8 (“) g8 B<a,
ofe” = B

0, otherwise.

This justifies (1) and it also justifies (2), since we only added zero summands.

STEP 3 (principal symbol): From (2.23) we conclude directly

op+(z,€) = Zpio‘— (z,8).

lal<k

O

2.3.15 Theorem (global adjoints). For any PDO P € Diff*(M; E, F) there exists a unique
P* e Diﬁk(M ; I, ), which is formally adjoint to P. If P has a local representation

as in 2.2.12(ii), then

VteT.(M,F): P ﬁ Y D(VgPit), (2.24)
Ja|<k

where /g := \/det(g;;) # 0 is the Riemannian volume function. The principal symbols
satisfy

VE €Ty M :op«<(§) = op(€)"
Proof. Uniqueness is clear. We will establish a local version of this result first. So assume

U C M such that p:U — Vis achart and Fy,..., E,., F1,...,Fs are local orthonormal
frames of F and F. Let ®,¥ be the associated local trivializations as in 2.2.8.
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STEP 1 (Dg 4): The local trivializations map the ONB E; € E, to the ONB ¢; € C",
therefore for any s,t € I'.(U, E)

he(Dea(s)t) = 3 DA he(Eu E,) = Y DA(sH)t hp(eue)

“’”T:l “’::1 ) (2.25)
= Z (Dg(s")eu,t"ev)cr = <Z Dg(s“)eM,Zt”ey>
p,v=1 pn=1 v=1 cr
Define and calculate
(D2a(s) D2y = [ 1e(D2a(s) 0V = [ he(D2a(s)t) 0w Vio ' da
(2:29) Z/ Da st),tVey)cr o \/gogp Ldx
pn,rv=1
= 3 [ Do i) o e
p,v=1
2 g [0 e D i) 0 e (2.26)
p,rv=1
-y | e JFDEE e ey
p,r=1
(2.25) 1 .,
2 [ et ED%@((R@)))%V
1 (67
= (s, %D%@((t\@))ﬁ?(hl@)

STEP 2 (local adjoint):

(P(3), ) 2 o) 2”Z/hFPDM, t)d,V = Z/hE & o (s), PL(£)dyV

| <k lo| <k
Z/hEsD )dgV =Y (s, —D2 o(Pity/9)) 12(h5),
la|<k la|<k \/>

wich proves (2.24). Since for any ¢t € T'.(U, F))

ZD‘“, (vapst) = ZZ( )\f DY 4o (VaPDE L (1),

\a|<k: |a|<k B<a

we obtain on the one hand that P* € Diff*(U; F, E) is the adjoint of P € Diff*(U; E, F).
By analyzing the highest order terms, we conclude on the other hand that for any £ € T*U

0\ 1
072 Y (1) TV = Y P oyl

o=k |o|=k

STEP 3 (global result): Now take any open cover {U;};cs of M that is countable, locally
finite and such that any U; satisfies the hypothesis of the previous step. By what we have
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proven so far, for any j € J there exists an operator P]Tk € Diﬁk(Uj; F, E) that is formally
adjoint to P|y,. Since formal adjoints are unique by 2.3.12, we obtain for any k € J

Pilunu, = (Plu;nu,)™ = Prlujnu,- (2.27)

Consequently, by 2.3.4, there exists a unique P* € Diff*(M; E, F) such that Py, =
Pr. Let {®j}jes be a partition of unity subordinate to the cover {U;};cs and let x; €
¢>°(U;,R) be a smooth bump function that equals 1 in a neighbourhood of supp ;. We
claim that

P*(s) =Y Pf(tys)

jed

is indeed the global adjoint of P. To see this let s € I'.(M, E), t € T'.(M, F), notice that

' 0, on supp v, o '
ViP(s) = {ij(l -s), oustide supp; = ¥iP0us), (2.28)
X; P (it) = P; (;t) (2.29)

and calculate

(Pls) e = ( 3 wiPls)t) "2 S P Gs) e = 3 (Plus(x9), bithe

jeJ jeJ jeJ
% % (2.29) %
=3 0Gs Prit) e = Y (s, Pt = Y (s, PF(wt)) 12
jed je el
(2.27)

=" (s, P*(t)) 2.
O

2.3.16 Corollary. Let P € Diff*(M; E, F) and P* € Diff*(M; F, E) be formally adjoint
to P.

(i) P** = P.
(i) If either s e T'o(M;E,F)andt € I'(M;F,E)ors e I'(M; E,F)and t € I'.(M; F, E)
(P(8)st) p2nry = (8, P*(1)) L2(nr).- (2.30)
Proof.

(i) By 2.3.12 formal adjoints are unique. Consequently, it suffices to check that for any
s€T(M,E), teT.(M,F)

(P*(t). 5)12 = {5, P*(D) 2 = (P(5),0) 2 = (£, P(s)) 2.

(ii) By definition (2.30) holds, if both sections are compactly supported. In the first case
let K :=supps € M and let x € €>°(M,R) be a smooth cutoff function, i.e. x =1
in an open neighbourhood U 3 K. Clearly tx € I'.(M, F'). Using the facts that

supp P(s) C K, supp P*(xt) C U,
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we obtain:

(P(s). £z = /M he(P(s). 00,V = [ xhr(P(s).0d,V = /M L (P(s), xt)dyV

— (s, P*(xt)) s = /MhE<s,P*<xt>>dgV= /U hin(s, P ())dgV

:/ hg(s, P*(t))d,V = (s, P*(t)) 2.
M
The other claim follows from (i). O

2.4. Ellipticity

2.4.1 Definition (elliptic PDO). An operator P € Diff*(M; E, F) is called elliptic, if its
symbol is invertible outside the zero section, i.e.

Vpe M :V0#§€TyM:op(§) € Iso(Ep, Fp).
2.4.2 Lemma. If there exists an elliptic operator P € Diff*(M; E, F), then
g =rgkF.

Proof. This follows directly from the definitions. O

2.4.1. The Hodge Laplacian

We would like to discuss a famous example of an elliptic operator, namely the Hodge
Laplacian. We assume some basic familiarity with the de Rham complex and the Hodge
operator in this section. From now on M is a smooth oriented Riemannian manifold
without boundary.

2.4.3 Definition (complexified de Rham complex). For any 0 < k& < m the bundle
AL T*M := A*T*M ®p C
is the complexified exterior algebra of order k. Its sections are denoted by
QK (M) ;=T (AR T*M).
Notice that any complex valued differential form w € QF (M) can be decomposed into
Vp € M :w(p) = wi(p) ® 1+ wa(p) @i =: wi(p) + iwa(p).
In particular, we have a complex exterior differential d : Q¢ ¥(M) — Q¢ *+1(M) by defining
d(w) := d(w1) + id(w2).

2.4.4 Definition (hermitian metric). We assume that the Riemannian metric g on M is
canonically extended to a fibre metric on A*T*M. Now we extend it further by complexi-
fication to a metric ¢ = ¢©, defined by

g% (w1 + iwa,m + in2) = glwi, m) + glwa, n2) +i(g(n2, w1) — g(m, w2))

We assume that A(’E T*M is endowed with this metric.
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2.4.5 Definition (hermitian form on de Rham complex). For any two differential forms

w,n € QU (M) define
<w777>L2 ::/ w A *1),
M

where * is the Hodge operator. This defines a hermitian scalar product on Q{E (M).

2.4.6 Theorem (duality of int and ext). For any & € Q*(M) define the exterior multipli-
cation

exte : QF(M) —  QFI(M)
w = EAw
and for any X € T'(M) define the interior multiplication
inty : QY (M) — QFM)
w — wlX, )

(i) Forany X € T(M), £ € T*(M)
int% =0, extf = 0.
(ii) On any Riemannian manifold (M, g)
exty = intg, (2.31)

where the adjoint is taken with respect to the canonical fibre metric in A¥T*M.
(iii) Furthermoore
exte o intg, + intg o exte = 1€]1%1d. .
Proof.
(i) This is clear.
(ii) We prove this locally and choose a local ONF Ej, ..., E,, of TU. Hence E',... E™
is a local ONF of T*U and

{E"A.ANE™|[1<i1<...<i<m}

is a local ONF for A*T*M. Now choose any 1 < pp < m, i1 < ... <ip, j1 < ... <
Jk+1. We calculate on the one hand
(extpu (B A ... NE®)EN A A EJk+t)
= (E*NE" A...NE"%, E7" AN BT (2.32)
— /'Lvilw"vik
IR S PR ]

To calculate intgu, notice the following useful formula

1

E
+

intg, (B A ... A B =S (<1)" LB (B, )EN A .. Eiv ... A Blen

g

. . , (2.33)
—1)VTIER AL ER L ANERL Jup =g,

otherwise.

I
——
—~

@)

Y
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Therefore, we distinguish two cases: If there exists 1 < v < m such that u = j,, we
calculate

<Ei1 /\...Ei’“,intEu(Ejl /\."/\Ejk+1)>

235) (B A B (—1)" BN AL B AL\ B

= (=1 l/—l(;il,...,i/]s — (-1 I/—l(s#»ih...,i& — /'J,,il,..:,ik '

( ) Tl JuseeJk41 ) JusJlse s JusesJk+1 Il s Jk+1

(2.32) ; : 4 ,
=" (extpu(E" N ... \NE") EV A .. A\ EJRHL).
In case o & {j1,---,Jrt1}, We obtain
j ; j ; 3
(extpn (B AL A EW), B AL A By 2D g
3 - . . ,
(2:3) (Ezl A ..Elk,intEu(Ejl A... A Ejk+1)>_

Since (E*)’ = E,, and both sides of (2.31) are linear in all arguments, the claim
follows.

(iii) Both sides are linear in the argument, so let E* A ... A E%, ¢ € TU, be arbitrary.
We calculate for any 1 <v,u <m

; : intg, (E” AET A ... A\E™), ey
intg, (extpy (E" A...ANE™) = {m B, ( ), v&{i i}

0, otherwise
EUW N NE™, v {iy,...ikh,v=np
=S (-1)"EYAEYA...Eir . AE% v {in, ... g}, p =i,
0, otherwise

(2.34)

~ - tn((—1) " B AL B A B, =
extpu(intg, (B A ... A EW)) = {ex Br((=1) ), i =,

0, otherwise
EU N .. NE™, ir=v=u,
= (1) YEFAEYC AN B ANE*% d.=v,u ¢ {i1,..., 0L}
0, otherwise

(2.35)

Now we distinguish several cases, in which we calculate using (2.34) and (2.35).
CASE 1 (v = p): Now exactly two subcases may occur.
Case 1.1 (v € {iy,...,ix}): We calculate

(intpg, oextpr + extpu ointgy)(EU A ... A E™)
= (extpuointpy ) (E™ A ... A E%)
=E" A ANE*
CASE 1.2 (l/ §7_f {Zl,,lk})
(intpg, o extpy + extpu ointpe)(EU A ... A E™)
= (intp, oextpy)(E™ A... A E%)
=E" A ANE*
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In both subcases we obtain
(intg, oextpn +extpx ointgpu)(EXA...ANE*)=E*N\...AE% (2.36)
CASE 2 (v # p): Several subcases occur.
CaAsE 2.1 (v € {i1, ... i}, p € {i1,...,ix}):
(intg, oextpy +extpn ointpy ) (E™ A ... A E')
= (extpu ointpy ) (E™ A ... A E%)
=0
CASE 2.2 (v € {i1, ... g}, & {i1,... ik }):
(intp, o extpy +extpn ointpy ) (E™ A ... A E')
= (extpw ointpy ) (E™ A ... A E%)
= (1) 'EFAEY A .. Eir .. \E*
We will write » = r(v) in order to stress that r depends on v.
Casg 2.3 (v ¢ {i1,... ik}, p € {i1,...,i}):
(intg, oextpy +extpu ointgy)(EL A ... A E™)
= (intg, oextpy)(E™ A ... A E%)
= (=1)'E" AE" A ... Eir .. \E%
We will write » = r(u) in order to stress that r depends on .
CAsE 2.4 (v ¢ {i1, ... ik}, o & {i1, ..., }):
(intpg, o extpy + extpu ointpe)(EU A ... A E™)
= (intp, oextpy)(E™ A... A E%)
=0

Combining all these subcases, we obtain

m
Z §uéy(intp, oextpr +extpu o imtEu)(Ei1 AN E““)

=1

H#V

- Z E L (~1)TWTLER A B A L ERe) AL B
VE{h,...,ik}
ru'i{ilv“ﬂik}

+ Y &L WEYAEY AL EYW AL E™
v {in..in) (2.37)
wE{i1,.ix}

= Z £, (~1) TR A B AL Ere) AL B
I/E{i1,...,ik}
@it ikt

T Z §V§V<_1)T(V)Eu A Eil VAN Ei’"(”) VAR Elk
lIE{il,...,ik}
pg{in, ik}

=0
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Combining both cases, we obtain
(extg ointg + intg o exte)(E™ A ... A\ E™)

m
= Z §u€u(intg, oextpr +extpu OintEu>(Eil AN E”“)
p,v=1

m
2.37 . .
(227 E §i(intEH oextpu +extpu ointpu)(E A ...\ E'™)
p=1

m
(2.26) Y EEUAAES =[E[PEM AL AER
pn=1

O

2.4.7 Theorem (de Rahm complex). Let (QF (M), d) be the complexified de Rahm com-
plex over a Riemannian manifold (M, g).

(i) The exterior derivative d satisfies d € Diff' (M; QK M, Qfé‘*‘l M) and
Ve € O (M) : 04(€) () = i exte (W)

Clearly d is not elliptic. Locally d is given on functions by
Vf €COWU,C) d(f) =) d;(f)de’.
j=1

(ii) Let d* = (=1)"+D+1 s gx © Q&L (M) — QF (M) be the codifferential. Then
d* € Diff!(M; Q(IEH M, Q{E M) is the adjoint of d and its symbol is given by

o4 (&) (wlp) = —iinte(wlp).

Clearly d* is not elliptic. Locally d* is given on functions by

m

m . . 1 :
Vo= widg €t 1 (V) d"(w) = 0, (V39" wr)

j=1 Y jik=1

(iii) The Dirac operator

D :=d+d* € Diff}(M; AL M, AL M)
is elliptic and has the symbol
op(&) = i(exte —inte).
(iv) The Hodge Laplacian

A:=D?=dod" +d* odec Diff’(M; Ak M, AL M)

is elliptic and has the symbol

oa(€) = —[¢]*id

Locally A is given on funtions by

A(f) = (d o d)(f) = jg S 0;(v3g 00k f)).
Gk=1

32



Proof.

(i)

In any chart ¢ of M dw =Y, > 0p;(wr)wrdel, where the sum is taken over all
increasing multi-indices I. Thus d is a differential operator. Using 2.2.19 we choose
a function f € C>°(M) such that f(p) = 0 and df|, = ¢ and calculate

oa(§)(wp) = id(fw)lp = i(df Nw)|p +i(f A dw)(p) = i§ Aw(p) = iexte(w)]p.
By d* is adjoint to d. Therefore 2.3.15 implies ref
d* € Diff' (M; QE M, QE M).

Its easyier to calculate the principal symbol directly instead of using 2.3.15. But
first of all, we establish a Leibniz rule for d*. For any f € €°(M,R), n € Qfé (M),
w e Q(IEH (M):

(d*(fw),n) 12

fw, dn)Lzz/Mfw/\Mln:/Mw/\*fdn
dn) 2 = (W, fdn) 2 = (w,d(fn) —df An) e

=
= (w,
<d( ), fn) = (w,extar(m) 2 *=° (fd*w, m) — (intr w, m) 2
= (fd"(w) — it (w), ) 2

Since 1 was arbitrary, we obtain

d*(fw) = fd*(w) — intgr(w) (2.38)
In case f(p) =0, df|, = £, we obtain
2.38 .

04-(€) "2 id* (fw)(p) 2 i(f(p)d"(W)]p — int gy (Wlp)) = —iinte(w],).

To obtain the local coordinate representation for functions, notice that for any local
chart ¢ : U — V and any f € €(U)

df = 0p;(f)de’ = d;oe;(f),
Jj=1 J=1
where d; : €>°(U) = AT U — AT U is the homomorphism f — fdg’. We have
to calculate its adjoint di. We choose the coordinate frame 1 on for AT, ¢ U and the

coordinate frame {dy’} for AYT{: U. Then the coordinate matrix of d; with respect
to these frames is e; € C mx1 The coordinate matrix of the fibre metric in AOTéU is
(1) € C™! and the coordinate matrix of the fibre metric in A'TZ U is by definition
the same as the coordinate matrix of the fibre metric in A'T*U, which is given by

m m
(dg?, dg') = g((dp?), (de")) = D 9(g"' 0w, 9" 00 = Y 99" gup
v,u=1 v,u=1
m m
Z GG = Z5wgw = gY.
pn=1 pn=1

Using A.3.1 the coordinate matrix of dj is given by
1 (G =(g7",....¢"™).
Therefore
(2.24) 1

% L) - % . k'w
d*(w) "= \/gj%::l@%(\/ﬁgj k)
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(iii) It follows from (i) and (ii) that
op(§) = i(extg — intg).

It remains to show that D is elliptic. By definition we have to show that for any
€ # 0, op(&) is an isomorphism. It will be more convenient to proceed with the next
part first.

(iv) We obtain
A=D?>=(d+d)V =d>+dod +d* od+ (d*)
=dod" +d* od e Diff>(M; AL M, AL M)
by 2.3.6. This theorem also implies for any § € T),M
oa(€) = (i(exte —intg))? = —(extg — extg ointe — intg o exte + intg)
= int¢ o ext¢ + exte ointg 2480 €)1 id .

This implies that oa(€) is an isomorphism for any £ # 0. In turn this implies also
that op is elliptic: If it were not ellitplic, there would be a & # 0 such that op was
no isomorphism. But then oa(§) = op(€) o op(§) would not be an isomorphism as
well.

O

2.4.8 Definition (elliptic complex). Let M be a smooth compact manifold. For any
j€J CZlet m; : E; — M be a smooth vector bundle over M and

P € Diff (M; Ej, Ej11)

be a PDO. We say (Ej, Pj)jc is a complex over M, if for any j € Z, Pj11 0 Pj = 0. The
complex is elliptic, if for any j € J, D; := P; + P~ is an elliptic operator.

2.4.9 Corollary. The de Rham complex is an elliptic complex.
Proof. This is just a reformulation of 2.4.7. O

2.4.10 Lemma. Let (Ej, Pj)jes be a complex and let o := op;.
(i) For any € € T*M
imo;(§) C keroj1().

(ii) Denote by m : T*M — M the cotangent bundle. In view of 2.2.17, we may
also consider the bundles 7*(E;) over T*M and think of o; as a section o; €
F(T*M;W*(Ej),ﬂ*(Ej+1).

(iii)

2.5. Locality

2.5.1 Definition (local). A linear map P : I'(M, E) — I'(M, F) is local, if
Vs € I'(M, E) : supp P(s) C supp(s).

2.5.2 Theorem (Peetre). A linear map P : I'(M, E) — I'(M, F) is a PDO if and only if
it is local.
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3. Basics from Functional Analysis

Topological Vector Spaces and Basic Properties: Separation Axioms, Basis for Topology,
Morphisms, Characarization of Continuity, Completeness, Frechet Spaces, Locally Con-
vex Spaces, Minkowski-Functionals, Half-Norms => Vector Space Normed, Semi-Normed,
Banach, Hilbert Spaces: Definitions Notation Konvergenz, Konvergenz und Folgenkon-
vergenz, Abzihlbarkeitsaxiome Dicht Definierte Operatoren Fourier-Transformation und
Faltung

3.1. Topological Vector Spaces

3.1.1 Definition (Topological vector space). A topological vector space X is a real or
complex vector space endowed with a topology such that every point is closed and that
addition X x X — X and scalar multiplication K x X — X are continuous (w.r.t. the
product topology). We define TVS to be the category whose objects are topological vector
spaces and whose morphisms are continuous linear maps between them.

3.1.2 Definition (operations on sets). Let X be any vector space, A,B C X, z € X,
A € K. We define

r+A={x+alac A}

r—A={x—alac A}

A+A:={a—-blac A be B}
M :={Xa|a€ A}

3.1.3 Definition (special subsets). Let X be a vector space.

(i) Y C X is a subspace if it is itself a vector space with the restricted vector space
operations.

(i) C C X is convez if
vte[0,1]:tC+(1—-t)C CC.

This is equivalent of stating that for any two points z, y € C' the entire line tx+(1—t)y
is contained in C. Notice that it is superflous to check this condition for ¢t € {0,1}.

(iii) B C X is balanced if
VAeK:|[\|<1= ABCB.

3.1.4 Lemma. Topological vector spaces are Hausdorff.
3.1.5 Definition. For any topological space X and any x € X we denote by

U(xz) :=={U C X | U is a neighbourhood of =}
O(z) :={U C X | U is an open neighbourhood of =}

A subset B(z) C U(x) is a local base at x if
VU € W(z) : 3B € B(z) : BC U.

3.1.6 Lemma. The topology of a TVS X is completely determined by its topology at O.
More precisely:

Ve e X : (x) =z + 4(0).

Therefore the word "neighbourhood”, "local base” etc. always refer to the point 0 and we
write H := $(0).

35



3.1.7 Definition. Let X be a TVS and (zy,)nen be a sequence in X.
(i) We say (zy,) is a Cauchy sequence if

YVUeU:dANeN:Vn,m >N :z, —xp €U

(i1) We say (z,,) converges in X if
JreX:VUelU(z):INeN:Vn>N:x, € U.

We denote this by

n—oo
Ty ——— T

(iii) A subset E C X is bounded if
YU el:35s>0:Vt>s: ECtU.

A sequence (z,,) is bounded if {z,|n € N} C X is bounded.

3.1.8 Remark. The definition of boundedness may eventually seem odd. If (X,| ||) is a
normed space, we temporariliy define a set £ C X to be || _||-bounded, if

3R> 0: E C Bg(0).

This is the usuall definition of boundedness. Now || || induced a topology O on X. Let’s
say E is O-bounded, if the definition 3.1.7,(iii) holds. Then a set E is | _||-bounded if and
only if it is O-bounded:

"=" Assume E C Bg(0). Let U € U be arbitrary. By definition there exists r > 0 such
that B,(0) C U. Define s := R/r. Then for any ¢ > s

Vee E:|jz|| < R=sr<tr=z€tB.(0) CtU.
"< Conversely consider B1(0) € 4. There exists s > 0 such that for any ¢ > s
E C tB1(0) = By(0).

3.1.9 Corollary. Let X be a TVS.
(i) X has a balanced local base.

(ii) If X is locally convex, then X has a balanced convex local base.

Proof. [5, 1.14] O

3.1.10 Definition (Operator). Let X, Y be topological vector spaces. A continuous linear
map T : X — Y is an operator. An operator X — K is a functional.

A linear map T : X — Y is bounded, if for any bounded set E C X, the set T(E) C Y is
bounded.

3.1.11 Theorem (Characterizations of Operators). Let X, Y be TVS and T': X — Y be
a linear map. Among the following properties

(i) T is continuous.
(ii) T is bounded.
(iii) If =z, — 0 then {T'(zy)|n € N} is bounded.
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(iv) If =z, — 0, then T(xy) ——0.
the implications
are always true. If X is metrizable, the implications
(7i1) = (iv) = (4)
are also true. Hence in that case all properties are equivalent.

3.1.12 Definition (invariant metric). A metric d on a vector space X is (translation-
Jinvariant, if
Ve,y,z€ X td(z+ 2,y + 2) = d(z,y).

3.1.13 Definition (Types of TVS). Let (X,O) be a TVS.

(i) X is locally convex if there exists a local base B whose members are all convex.

(ii) X is metrizable if O is induced by some metric d.

(iii) X is an F'-space if it is complete and metrizable by an invariant metric.

)
)
)
(iv) X is a Fréchet space if it is a locally convex F-space.
(v) X is normable if O is induced by some norm.

)

(vi) X has the Heine-Borel property if every closed and bounded subset is compact.

3.1.14 Definition (seminorm). Let V' be a vector space. A function p : V — R is a
seminorm if

(i) Subadditivity: Vz,y € V : p(x +y) < p(x) + p(y).
(ii) Semi-homogenity: Yz € V : VA € K : p(Az) = |A|p(z).

A seminorm is a norm provided
VeeV :px)=0=2=0

and usually is denoted by p = || ||. The tuple (V.|| _||) is a normed space. The category
Nrm consists of all normed spaces and continuous maps between them.
A family P of seminorms is separating, if

VeeV:z#0=3pecP:plx)#0.

3.1.15 Definition (absorbing, Minkowski functional). A set A C X is absorbing, if

LJtA:X.

t€]0,00]
In that case we call pg : X — [0, 00],
z—inft > 0|z € tA,

the associated Minkowski functional.

3.1.16 Theorem (properties of seminorms). Let X be a vector space and let p be a
seminorm on X.

(i) p(0) =0.
(ii) Vz,y € X : [p(y) — p(x)| < p(y — o).
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(iii) Vo € X : p(z) > 0.
(iv) {x € X | p(x) =0} C X is a vector space.
(v) The set B := {z € X | p(z) < 1} is convex, balanced, absorbing and pp = p.

Proof. |5, 1.34] O

3.1.17 Lemma (operations on seminorms). Let X be a K vector space, let p,q: X — R
be semi-norms and A € R >. Then

(i) p+aq,
(ii) cp,
(i) max(p,q)
are seminorms on X as well.
If X is a topological vector space and p and ¢ are continuous, so are p+¢, c¢p and max(p, q).

3.1.18 Theorem. Let A C X be a convex, absorbing set in a vector space X.

(i) Vo,y € Xt pa(z +y) < pa(x) + pa(y)-

(il) Ve € X :Vt > 0: pa(te) = tua(z).

(iii) If A is balanced, then p4 is a seminorm.

(iv) f B:={z € X | pa(z) <1} and C :={z € X | pa(x) <1}, then A C B C C and
HA = BB = [C-

Proof. [5, 1.35] O

3.1.19 Theorem (seminorms induced by local base). Let X be a locally convex TVS. By
3.1.9 X has a convex balanced local base 8. For any V € B let up be the associated
Minkowski function.

) VWeB: {reX|u(x)<l}=V.

(ii) {puy | V € B} is a separating family of continuous seminorms on X.

Proof. [5, 1.36] O

3.1.20 Theorem (Topological vector spaces induced by Seminorms). Let B be a family
of seminorms on a vector space V. For any p € P and every positive n € N define

B(p.n) = {z €V | plz) < %}.

Then the collection B of finite intersections of those B(n,p) is a convex balanced local
base for a topology O := Ogp on V, which turns V' into a locally convex space such that

(i) Every p € *B is continuous.
(ii) A set E' C X is bounded if and only if every p € B is bounded on M.

(ili) A sequence (x;) in X converges to x with respect to the induced topology if and only
if

j—
Vp e P a;j%x.

The analogous statement holds for Cauchy sequences.
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If additionally P = {p; }ien is countable, then Oy is metrizable. If (¢;) is any positive real
sequence, such that ¢; — 0, the function d: X x X — R

d(z,y) = maxe;—PE=Y)
N 1+ pi(z—y)

is a translation invariant metric such that Oy = Og.

Proof.
STEP 1 (Construction of O): We just declare

O ={0OCX|VxeO:3BeB:x+ B CO}.

STEP 1.1 (Topology Axioms): Clearly (), X € O. It is also clear that O is closed under
arbitrary unions. It is closed under finite intersections by construction of 8B (this is the
reason why we defined 98 to be the set of finite intersections of the B(p,n)). Thus O is a
topology. By construction O is translation invariant.

STEP 1.2 (Closed points): We show that {0} € X is closed: Let 0 # z € X be arbitrary.
Since P is separating, there exists p € B such that p(x) > 0. Thus there exists n € N,
such that p(z) > 1. Therefore x ¢ B(p,n), thus 0 ¢ z + B(p,n). Consequently X \ {0} is
open and therefore {0} is closed.

STEP 1.3 (Continuity of Addition): Denote by A : X x X — X the addition. It suffices to
show that A is continuous at (0,0) € X x X. Let U € 4(0) be any neighbourhood. Then
there exist n1,...,nm € N, p1,...,pm € B, such that

U D B(p1,n1)N...N0 B(pm,1m) (3.1)
Define
V= B(p1,2n1) N ...N B(pm, 2nm) (3.2)

and observe

1 1

V(ﬂc,y)6V><V:V1§z/§m:pl,(3:+y)§pl,(l‘)—|—p,,(y)=2n m n

Therefore V +V C U, ie. (0,0) €V xV Cc AYU).

STEP 1.4 (Continuity of Scalar Multiplication): Let (a,x) € K x X and U,V as in (3.1)
and (3.2) above. There exists s > 0 such that « € sV. Define ¢ := s/(a + |a|s). Denoting
the scalar multiplication by SM : K x X — X we claim that (o, z) € By/s(a) x (z+tV) C
SM~Y(U). Therefore let (8,y) € By/s x (x +tV) be arbitrary. We calculate

Bl = P12 als + 55 _
I1+]als — 14+ |als
=0y—ax=0y—z)+(B—-—a)ze|fitV+|B—alsVCV+V CU,

since V' is balanced.

STEP 2: Now we proof the additional properties.

STEP 2.1 (Continuity of the Semi-Norms): This follows directly from the definitions.
STEP 2.2 (Bounded Sets): Let £ C X and U,V as in (3.1) and (3.2) above.

"=": Let p € B be arbitrary. Sicne B(p, 1) is a neighboorhood of 0 by construction there
exists k € N such that £ C kB(p,1). Therefore any = € E satisfies p(x) < k. Therefore p

39



is bounded on F.
7<= The definition of V and the hypothesis implies

Vi<v<m:3IM, eR-p:Vz € E:p,(x) < M,.

Take any n > maxi<,<m(M,n,). This implies

VwEE:Vlgugm:py(:E)<Ml,<nni:>x6nU,

14

thus £ C nU and F is bounded.

STEP 2.3 (Sequential Convergence): If f; converges to 0 with respect to the induced topol-
ogy, item (i) implies converges with respect to all the seminorms. Conversely, assume a
sequence converges with respect to all the seminorms. Let U € $4(0) be arbitrary. By
definition there exists B € 9B, such that B C U. By definition there exist p1,...,pr € B,
ni,...,n, € N such that B = B(p1,n1) N...N B(pk,ni). By hypothesis

1
Vi<y<Ek:3N,:Vj>N,:p,(fj) <—.
ny
Consequently for any j > maxi<,<x N, : fj € BCU.
STEP 3 (Metrizability): We now assume that B is countable.
STEP 3.1 (Metric Axioms): Since p; > 0 the sequence

pi(r —y)
ErEn

is bounded and non-negative. Since ¢; is positive and converges to zero, the sequence
d(x,y) is positive and converges to zero from above. Therefore d is well-defined. It is clear
that d translation-invariant and symmetric. Since B is separating

dz,y) =0z =y.
To see the triangle inequality, notice that the function f: R — R, z + 1-1%:’ satisfies

_1+x—x

f/(l')— (1—|—(IZ>2 >0

and therefore f is monotonously increasing. Consequently since every p; is subadditive

A He = ) = =) < Fie =) + e )

_ pi(r —y) pi(z —y) < _pilz—y) pi(z —y)
L+pi(z—y)+pi(e—y) 1+pi(z—y)+pi(e—y) ~ 1+pilz—y) 1+plz—y)

Therefore d satisfies the triangle inequality.
STEP 3.2 (Ogp = Oq): First we claim that the balls

B, :={rx e X |d0,z) <r},0<r < oo,

are a convex balanced local base for Oy. This basically follows from the identity

Vo<r<oo: B, = m {xGX\pi(x)< - }
) GG —rT
iEN:¢c; >r
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First notice that since ¢; converges to zero, the intersection is finite. Since all the p; are
Og-continuous, the right hand side is an Op-open set. The identitiy follows from the fact,
that if ¢; > r,

cipi() r

< T <= Cp; < i = (¢ — i <r<p; < .
1+ pz(x) T Clpl(w) r +pz(x)r (CZ T)pz(x) r pz(x) P

This proves B, € Op. The B, are also convex and balanced (!ToDoRef).
Now assume that W € Og is an open neighbourhood of 0 € X. By definition there exist
Pl Pk €B, 01,...,0; €]0, 1] such that

k
W > ﬂ B(pi,(si) =: B.
=1

Choose 0 < r < 0o, such that 2r < min{c;d1, ..., cxdx}. This implies

) cipi(x) c;i0;
Vi<ie<k:—— i i(1+pi i —0; i
Ve e B,:V1<i<k 1 pi($)<T< 5 = 2pi(z) < 0;(1 +pi(x)) = pi(z)(2—6;) < 9§
= pi(x) < 5 i(g. < 1=z € B(p;, ;).

Therefore B, C B C W. Consequently the B, are a local base as claimed, W is an
Og4-neighbourhood of 0 and alltogether Oy = Ogp.

O

3.1.21 Lemma (continuous seminorms). Let X be topologized as in 3.1.20 above with a
family P = {p; }ier of seminorms. Let ¢ : X — R be an arbitrary seminorm. The following
are equivalent:

(i) g is continuous on X.

(ii) There exists a finite subset J C I and a constant C' > 0 such that

Ve e X :q(x) < Cmaj(pj(:v). (3.3)
j€

(iii) There exists a finite subset J C I and a constant C' > 0 such that

Ve e X :q(z) < Cij(x).
JjeJ
Proof. ”(i)=-(ii)”: Let ¢ be continuous. By definition

0€q '(I1(0)CX,

where I1(0) =] — 1,1[C R is open. Consequently there exists an open neighbourhood U of
0 such that V C ¢~ 1(1,(0)). By definition 3.1.20 of the topology on X there exists a finite
J C I and €; > 0 such that

0eV:=(1BCU,
jeJ
where B; := BL?(0). Define

1 .
€:= zming; > 0.
JjeJ
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Now let € X be arbitrary. Clearly x = 0 satisfies inequality (3.3), so let z # 0. Define
, ex
ri=—".
max;e s pj(x)
This implies

: pi(z) 1 €
VieJ:pi(ad) = —"—""A = i< = <eg.
! pi(@) maxcjpj(z) 2 rgnel? =g e

Consequently 2’ € B; for any ¢ € J. By definition this implies

9

1>q()= ———q=
(') ) (),
thus
q(x) < e ' maxp;(z) = L max p;(x).
- jeJ minjej€; jeJ
—_———

=:C

"(i1)=(1)”: We show that ¢ is continuous at 0 € X: Let € > 0 be arbitrary. The set

V= () B2(0)

2C
JjeJ
is open by construction and it satifies
VreV ()(?’f’)c () <O
x tq(x max p;(x — <c
A = VHEFPIT) =255 =5

thus
V Cq ' (1:(0)).

"(ii)<>(iii)”: This follows from

maxp;(x) < (x) < |J|maxp;(z).
ma )_jeszg( ) < || maxp ()

O

3.1.22 Theorem (Characterization of continuous maps). Assume X,Y are locally convex
spaces, let {g;};cs be a family of seminorms on Y that generate the topology on Y as
in 3.1.20 and let {p;}icr be the analogous family for X. Let T': X — Y be linear. The
following are equivalent:

(i) T is continuous.

(ii) For any continuous seminorm ¢ on Y there exists a finite subset I € I and a C' > 0
such that

Ve e X : q(T(z)) < Cmaxp;(x).
el

(iii) For any continuous seminorm ¢ on Y there exists a continuous seminorm p on X
such that
Vo € X : q(T(z)) < p(z).

(iv) For any j € J there exists a continuous seminorm p on X such that

Vo e X :qj(T(x)) < p(x).
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(v) For any j € J there exists a finite subset I C I and a C' > 0 such that
Vo e X :¢j(T(x)) < Cmaxp;(z).
el

Proof.
"(i)=(ii) Let ¢ be a continuous seminorm on Y. By 3.1.21 there exists a finite subset
J C J and C’ > 0 such that

Ver:deC“%?%@) (3.4)
J

By hypothesis 7 is linear and continuous. Thus for any j € J, the map gioT: X — R
is a continuous seminorm on X. Again by 3.1.21 this implies that there exists a constant
C; > 0 and a finite I; C I such that

Ve e X :qj(T(x)) <Cj Iféanpl(w) (3.5)

Define I := L, U...U f|J|. Combining both, we obtain

(3.4) (3.5)
Ve e X : q(T(z)) < C'maxgj(T(z)) < C'maxCjmaxp;(x).
jed jed iel
—_———

"(ii)=>(iii)”: By 3.1.17
(@) i= Cmaxpi(0)
i€l
is a continuous seminorm on X.
"(ili)= (iv)": By construction g; is a continuous seminorm on Y.
"(iv)=>(v)”: Follows from 3.1.21.
"(v)=(i)": Let J C J be finite, B; := B&(0) and

V:ﬂ&

jeJ

be an element of the local base for Y. By hypothesis, for any j € J there exists a finite
I; C I and C; > 0 such that

Vo e X :qj(T(x)) < Cjmaxp;(x).

iEIj
Define
- - 1 . ) °
I::]LGJJIJ-, C = ?Ga}()j, 5::§Ijn€1§1ej, U::QBSZ(O)QX

For any x € U we calculate

4;(T(2)) < Cjmaxpi(x) < Cmaxp(z) < e,
i€l; i€l

Thus U C T71(V). O
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3.1.23 Definition (equivalence seminorms). Let X be a K vector space and let P :=
{pi}ier, Q :={qj}jes be two families of seminorms on X. Both induce a topology 7p, ¢
on X according to 3.1.20. We say P is equivalent to Q, if Tp = 7q.

3.1.24 Lemma. In the situation of 3.1.23 above: P is equivalent to @ if and only if
id : (X, 7p) = (X, 7¢) is a homeomorphism.

3.1.25 Remark. That statement is of course totally trivial. Its strength comes from the
fact that one may check the continuity of id and id~' using the various characterizations
given in 3.1.22.

3.1.26 Definition (weak-*-topology). Let X be a TVS and X’ be its topological dual
space. For any =z € X, let

pe: X' — K
a2 (2)]

be the seminorm on X’ induced by X. The topology on X’ generated by the family
{pz | € X} via 3.1.20 is the weak-*-topology on X'.

3.1.27 Theorem (Topologization of the Dual). Let X be an F-space and assume X' has

the weak-*-topology.
(i) For any sequence (%) in X'

/ / . / /
Ty = VreX: m](z:)T):n(x)

(ii) X' is complete.

Proof.

(i) It suffices to check this for 2’ = 0. By 3.1.20 the sequence (z’;) converges in X" if and
only if it converges with respect to all the seminorms p,, x € X. By construction

|2(2)] = po ().

(i) Let (z) be a Cauchy sequence in X’. By 3.1.20, this implies that 2’ is a Cauchy
sequence with respect to all the p,. So let x € X, € > 0. There exists Ny € N such
that

Vi k> No : ol () — af(2)] = pu(a); — 27) <e.
This implies that z} (x) is a Cauchy sequence in K. Thus

32’ () € K = 2(x) Tw'(x) :

This defines a linear map 2’ : X’ — K. By construction
/

. —— .
J X/

The fact that 2’ € X’ follows from the Banach-Steinhaus theorem, c.f. |5, 2.8].

44



3.1.28 Theorem (Dual Operator). Let X, Y be TVS and T': X — Y be linear. Let
X', Y’ be the topological dual spaces endowed with the weak*-topology (i.e. the topology
of pointwise convergence). Then T" : Y’ — X’ defined by T"(y')(z) = ¢/(T(z)) is a
continuous operator Y’ — X'

Proof. Assume
Y/
By definition this is equivalent to

YyeY: yz(y)Tm

Thus

and therefore

3.2. Completeness and dense subspaces

3.2.1 Theorem (Extension of Operators). Let (X, || ||x) be a normed space, such that
D C X is a dense subspace with the induced norm || _||p := || _||x|p- Let (Y,||_|lv) be
a Banach space and T € Z((D, || _|Ip), (Y,|| _|ly)) be a continuous linear operator. Then
there exists a unique continuous operator T' € Z((X, || _|lx), (Y, || _|ly)), such that

Tp=T 1T 2xv) = T 2(p.y)-
3.2.2 Theorem (Continuity of bilinear forms). c.f. Rudin 2.17

3.2.3 Theorem. An operator 7' € Z(X,Y) between Banach spaces, that is norm-
preserving has closed image.

Proof. Assume
Jj—0o0
Tr, —vy .
J oy

Since T preserves the norm,
l2j — millx = [|Tz; — Taily.

Since (T'z;) is a Cauchy sequence in Y, this implies that (x;) is a Cauchy sequence in X.
Since this space is complete,
dXeX: Enighy
X
Since T is continuous
Trx = lim Tx; =y.

j—00

O

3.2.4 Theorem. Let T' € Z(X,Y) be an operator between Banach spaces. For any subset

D c X, we obtain T'(D) C T(D). In case T is an isometry, T'(D) = T'(D).
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Proof. Let z € D. Then there exists (z;) € D, such that

Since T is continuous,
Ty ——Tx,
Y

thus Tx € T(D). In case T is an isometry, its image is closed by 3.2.3. Therefore

T(D) = T(D) c T(D).

3.3. Complex interpolation method
3.3.1 Theorem (Hadamard-3-Line-Theorem). Let
N:={2€C|0<Rez<1}
and let f: Q) — C be continuous and bounded and let f|o be holomorphic. Define

M; :=sup|f(0+1it)], j =0,1.
teR

Then
Vz € Q:|f(z)] < M3~Rez Moz,

Proof. We proceed in two steps.
STEP 1 (Case My = M; =1): Assume My = M; = 1. Define

fa: ) = C
z exp(ié) f(z).

Then f, is continuous on € and holomorphic on .

STEP 1.1 (|fn] <1on Q\[0,1]x] — R, R[): Since f is bounded, there exists C' > 0 such
that B
VzeQ:|f(z) <C.

This implies for any x € [0,1] and any y € R

2 2Ny — 2_1 .2
exp (x el et >’§C’exp (y) (3.6)

[fu(z+iy)| <C
n n

Choose R > 0 such that Cexp(—R?/n) < 1. This directly implies
VzeQ:Im(z) > R=|fu(2)| < 1. (3.7)

STEP 1.2 (|fn| <1 on [0,1] x [-R, R]): On the other hand, we estimate for any y € R:

exp <_y1_ 1>‘ |f(iy)| < exp <_y2n_ 1) :

1+iy)*—1 : 14 2iy —y* — 1
oxp (V=2 04 i) = e (FEEE) <

[ fnliy)| =

|fu(1+dy)| =
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Consequently,
_ 2
Vz € 00 : | fn(2)] < exp <IH:L(Z)> <1

Combining this with (3.7), we obtain the same estimate on 9(]0,1] x [-R, R]). Thus by
the maximum principle, we obtain

Vz € [0,1] x [-R, R] : [fu(2)] < 1.
STEP 1.3: Alltogether we obtain
VzeQ:|fulz)] <1

Since for any z €

Fal2) "5 1(2)

this implies
VzeQ:|f(2)] < 1.

STEP 2 (Reduction to the case My = M; = 1): Define

Then g is continuous on ), holomorphic on 2. Since f is bounded and Re(z) € [0, 1], the
estimate - " . 5
Vz e Ot g(z)| < MEET 0 o) £ ()

shows that ¢ is bounded. Furthermore
Vy € R |g(iy)| = [Me" " M| f(iy)] < My f(iy) <1
Yy € R :|g(1+iy)| = |Mg! M7 Y| F(1+ )] < M F(1+iy)| < 1.

Thus the first step implies B
VzeQ:|g(z)| <1.

Consequently
Vae Qi |f(2)] = M Mig(z)] < MResMRe,

O

3.3.2 Theorem and Definition (Existence of interpolation spaces). Let E and F' be
Banach spaces and assume there exists a continuous inclusion £ < F. Define

N:={ze€C |0<Rez <1},

H(F,E) = {u € C)(Q, F) | u is holomorphic on Q and
VieR :u(l+it) € E and sup ||u(l+it)||g < oo}
teR

and for any v € H(F, E)

lullarp) = Sup [u(2)lle + Sup lu(1 +it)l|F = llulleo@,z) + 1w +i_)leow -
zE
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Then H(F, E) is a Banach space.
For any 0 < 0 < 1, define the interpolation spaces

[F, E]g = {u(@) ‘ u e H(F, E)}, [E, F]g = [F, Eh,g.
The map
@Yo . H(F, E) — [F, E}g
u — u(h)

is surjective with kernel ker gy = {u € H(F, E)|u(f) = 0}. Therefore it descends to an
isomorphism

- i H(F,E
QOQ:H(F,E) . k(cq'spe) — [F,E]Q

The space [F, E]y is a Banach space itself by declaring ¢y to be an isometry, i.e.

Vu(9) € [F, Elg : [u(®)|lir,z5, = 185 " (w)ll52(r 5):

Furthermore there are isomorphisms [E, F|o = E, [E, F|; = 1.

Proof.
STEP 1 (H(E, F) is Banach): Since F and F a vector spaces, the triangle inequality im-
mediately implies that H(F, E) is a vector space. We have to check that it is complete.
Therefore, let (u;) be a H(F, E)-Cauchy sequence. This implies that (u;) is a Cauchy
sequence in Cp(Q, F) and (u;(1+i_)) is a Cauchy-sequence in Cf (R, E). Since these space
are complete,

0/ -

~ 0 . ) . ~
Ju e C(R,E): u;(1 —i—z_)(m)u .

By continuity

Vit e R :u(l+idt) = a(t).
Weierstrass’ convergence theorem states that the uniform limit of holomorphic function is
holomorphic. Therefore u : Q — F' is holomorphic, u € H(F, E) and

Uj —>7-L(F,E) u .

STEP 2: The statements concerning ¢ and ¢ follows directly from the defininitions. It is
also clear that [F, Fy is a Banach space.
STEP 3 (0 € {0,1}): For any u € H(E,F), u(0) € E and u(1) = u(l +i-0) € F. Conse-
quently

@0 : H(F,E) — [F, Elo, ¢1:H(F,E) — [F, E;.
O

3.3.3 Theorem (Interpolation operators). Assume E, E’ F, F’ are Banach spaces such
that there are continuous inclusions £ <« F, E' < F’'. Let T : F — F’ be a bounded
linear operator, such that T'(E) C E'. For any 0 <6 <1

T: [F, E]g — [F’,El]g

is a bounded linear operator.
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Proof. Let u(0) € [F, E]g. Since T is linear and continuous T o u € H(F', E’). Thus

IT (@)l 51, = o™ (T 0 @) llaaer, )y < T Hll7,2,-
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4. Function Spaces

4.0.4 Definition (compactly contained). Let X be a topological space and A C B C X.
Then A is compactly contained in B,

AEB <= AcC B°

and A is compact.

4.1. Continuously differentiable functions

4.1.1 Definition. Let U € R™ be open. For any k € N let €*(U,C") be the space of
k-times continuously differentiable functions.
Let UCR™ be open and bounded (hence U is compact). For any k € N let

€ U,CT):={f e6°(U,C") | flv € €"(U,C")}
endowed with the norm

I/

or@y = Y 10°f

|| <k

0(0)-

4.1.2 Definition. Let w : E — M be a smooth vector bundle of rank r over a compact
manifold M. Denote by I'*(M, E) the space of €* sections in E. The topology in I'*(M, E)
is defined as follows: Let {¢; : Uic M —V,C R™}er be a finite cover of M by compact
coordinate neighbourhoods such that there exist trivializations ®; : E; := Ey, — U; x C".
For any section s € T*(M, E) define

Isllgninry =D l@inins
i€l

“k (Vi)
4.1.3 Lemma. The €* topology on I'*(M, E) is independent of the choice of charts and

trivializations.

Proof. Assume {(; : U; — V;}jes is another such cover of M. Clearly, for any j € J and
any ¢ € I such that U; NU; # 0

Z [0+ ;s

jeJ

Er(V;)

< pin®inslligr iy
iel

4.2. The Space of smooth (compactly supported) Functions

4.2.1 Definition (&,%,%k). Let U C R™ be open. Define
EU,CT):=C>®(U,C"):={f:U— C" | f is smooth}.

Remember that if X is any topological space and f: X — C is a function

supp f :={z € X | f(z) # 0}.
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If K C U is compact
-@K(U7Cr) = {f € E(U,(Cr) | Suppf C K}v

and
2(U,C"):=CxX(U,C"):={f € &U,C") | supp f is compact}.

To simplify notation, we will sometimes just write &, Z, Pk .

It makes no apparent sense to introduce the new letters &, & for the well-known spaces
C™>, C2°. The reason for this is that both are sets at the moment. We use &, ¥ in order
to stress the fact, that we see them as topological spaces, where the topology is given by
the next theorem.

4.2.2 Theorem (Topologization of &,%k). Let ) # U C R™ be open and K C U be
compact. Let (Kp,)men be a compact exhaustion of U, i.e. all K,,, C U are compact,
K, € K1, U = U, ey Km- Then the maps p,, : £(U,C") = R

pm(f) == fllemx,y = max _ [[0%f||(x)

CCEKm,lalsm
assemble to a separating family B := {pm }men of semi-norms and induce a Fréchet-space
topology on &, such that & has the Heine-Borel property and such that g C & is a

closed subspace. Therefore Pk is a Fréchet space as well and its topology is induced by
the semi-norms

Pr = {ll _llemw) [ m e N}

Proof.

STEP 1 (Topologization): The family 3 is a countable family of separating seminorms.
By Theorem 3.1.20 they induce a topology on &, which turns & into a topological vector
space that is locally convex and metrizable by a translation-invariant metric.

STEP 2 (Completeness): So the only property & does not yet posses in order to be a
Fréchet space is the completness. Therefore let (f;) be a Cauchy sequence in &. Thus for
any m € N, the (f;) are a ||_[|¢m)-Cauchy sequence. Since this is a Banach space, f;
converges uniformly on every compact subset with all its derivatives to some f € &.
STEP 3 (Closedness of Zk): For any z € U define 6, : £U,C") — C", f — f(x).
We claim that 4, is continuous. By 3.1.11 is suffices to show that it is bounded. So let
E C &£(U,C") be bounded. By 3.1.20 this is the case if and only if all the p,, are bounded
on E. Since z € U and (K,,) is a compact exhaustion, there exists m € N such that
x € K,,. This implies

Ve E: 5N =17 @) < lleorn) < ;‘;gpm<f> = I,

thus 0,(F) C Bgr(0). So all the §, are continuous and

Ix(U,C") = () kerd,
zeU\K

is closed as an intersection of closed spaces.
STEP 4 (Heine-Borel property): Let E C &(U) be closed and bounded...

o1

a sketch
of proof is

in Rudin,
p-35




4.2.3 Convention. Without further reference we will always assume the spaces & and
9K to be topologized as described in the previous Theorem 4.2.2.

We now proceed to the topologization of &, which is a bit more subtle. We could see &
as an LF-space, i.e. an inductive limit of Frechét spaces (c.f. 6, 13]). This would require
an even deeper discussion of the general theory of topological vector spaces. Therefore we
follow [5, 6.3-6.6] for a more direct yet less general approach.

4.2.4 Theorem (Topologization of Z). Let ) # U C R™ be open. For any compact
subset K C U let Tk be the Fréchet space topology on Zk (U,C"). For any m € N define
the norms

0%F()

= max
Hme |o| <m,zeU

on 2(U,C"). Define

B:={W C 2(U,C") |W is convex, balanced and for any
KeU:WnIgU,C") e ).

Then B is intersection stable family of sets all of which contain 0 (since balanced sets
always do) and the family

{(f+W | fe2U,C"),W e B}.

is a basis for a topology 7 such that (Z(U,C"),7) is a locally convex topological vector
space and B is a local base for 7.

Proof. For simplicity we write Yk := Zx(U,C"), 2 := 2(U,C").
STEP 1 (topology): Let V1,Vo € 7 and f € V) N Va. It suffices to show that

IWeB:f+WcC(Vinh). (4.1)
By definition of 7, there exist f, € 2, W, € B, v = 1, 2, such that
fe(fy+W,)CV. (4.2)
Choose a K € U such that f, f1, fo € Zk. By construction
f—f,eW,N 2k < Pk. (4.3)
Now we claim
36, >0: f—f, € (1—6,)W,. (4.4)

The existence of 4, follows by contradiction: If for all §, >0, f — f, ¢ (1 —6,)W, N Pk,
this implies

—f, 00
{_gyTj()f_fu %WI/7

since the complement of W, N Pk in P is closed. This contradicts (4.3).
By hypothesis W, is convex, thus

(4.4)
F—f +6,W, C (1-06,)W,+6,W, =W, (4.5)

Thus

(4.5) (4.2)
f+oW, C fL+W, C V,.

Therefore the set W := §; W1 N §. Wy € B satisfies (4.1).
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STEP 2 (Hausdorff property): Let fi # fo € 2. Define
Wi={fe2|flcow) <Ilfi = fallllcoqwn} € B,
—_——
£0

since W is clearly convex and balanced; the fact that W N Yk € 7x follows from the
definition of 7x by the family of norms, which includes || _[|corny. Clearly fi1 ¢ fo + W,
thus {f1} is closed in 2.

STEP 3 (addition): Since all the W € B are convex,

Vfl,fQG.@IVWGB:(fl—i-%W)—i-(fQ—i-%W):fl—i-fg—i-W

This shows that addition is continuous.

STEP 4 (scalar multiplication): First we claim
1
VfOE@:VWGB:EI§>O:5fOG§W (4.6)

Again this follows by contradiction: Assume there exists fy € Y C Z such that for all
0>0,0f ¢ %W This implies
2% fo—550 ¢ W,
fo5o5? 0 #W,
which contradicts the assumption that W is balanced.
So let g € C, fop € Z and choose W € B, and ¢ > 0 such that (4.6) holds. Define
1
ci=——.
2¢(|ap| + 9)
We calculate for any « € Bs(ap) and any f € fo + cW

of —aofo = a(f — fo) + (@ — ag) fo € acW + 2=

d.fo

0
1 — 1 1 1
o W+ e W W =W
2 c(Jao| + 0) j 2 2 2
—_——— S——
|_|<1 |_I<1

O

4.2.5 Convention. From now on we will always assume that 2 := Z(U,C") is endowed
with the topology 7 defined in 4.2.4.

4.2.6 Theorem (Properties of Z(U,C")). The space (2 := 2(U,C"), 1) has the following
properties:

(i) A convex balanced subset V' C Z is open if and only if V € B, c.f. 4.2.4.

(ii) The topology Tk conicides with the subspace topology 7N Pk .

(i) If E C 2 is bounded, then there exists a K € U such that E C Pk and E is bounded
in k. Consequently there are numbers My € R such that

VfEE:VNGN:H(p”NSMN.

(iv) Z has the Heine-Borel property.
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(v)
(vi)

(vii)

If (f;) is a Cauchy sequence in &, then there exists a K € U such that {f;} C Zx
and for any N € N (f;) is a || _||x-Cauchy sequence.

Let (f); be a sequence in . Then

if and only if there exists a compact subset K C U such that for all: € N supp f; C K

and

The space Z is complete.

Proof.

(1)

1 C B Let V € 7 be convex and balanced and K € U. For any f € Zx NV, there
exists W € B such that f + W C V by 4.2.4. Thus

fH(@xNW)=2xN(f+W)C ZxNV.

By definition Zx N W € 7k, hence Y N W is a neighbourhood of f. Since f was
arbitrary, we have shown

Wer:VKeU:P9xkNV e 1x . (4.7)

Consequently 7 C B.
"B C 7 This follows from the definition.

"(1 N Pk) C 7”7 This follows directly from (4.7).
"t C (P NT)": Let E € 7c. We have to construct a V' € 7 such that E = ZxNV.
By definition of 7k via a family of norms, for any f € E there exists m € N, § > 0
such that

{9€ Zx|llg— fllm <0} C E.

This uses the fact that the semi-balls in 7x are actually balls since || |l < || _|lm+1
(c.f. 4.2.4). Now define

Wi={g€ 2||gllm <} €B.
This implies
.@Kﬂ(f—i—Wf) :f—i-(.@KQWf) CF
by definition of W; and m. Consequently the set

V=] wy
fer

satisfies
DNV = U QKﬂWfCE.
fEE

Since £ C Zx NV anyway (note that 0 € Wy), this implies the statement.
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(iii) Assume that E' C Z is a set such that F C Pk for any K € U. Then there exists a
compact exhaustion K, € U, fn, € Pk,,, Tm € K \ Kin—1 such that f,, € Pk,
fm(xm) # 0 and such that the sequence (z,,) has no limit point in U. Define

1
W:={feZ[VmeN :|f(xn)l < Ellfm(fﬂm)ﬂ}
We claim that W € B: Notice that
VK eU:3dNyeN :VYm > Ny : zp, ¢ K.

Therefore, by choosing
o1
0<e< min —|fm(zm)l,
m

m<Np

we obtain that for any f € g N W
B(f) c W,

where the ball is formed with respect to the || _||p-norm. Thus Zx N W € 7y, hence
W € B. Now this implies that for any m € N

ECmW,

since f, ¢ mW. Consequently F is not 7-bounded in Z.
For the second part, recall that by definition £ C & is 7-bounded, iff for any 7-
neighbourhood W of 0:

ds>0:Vt>t: ECtW.

Let Wk C Pk be a Ti-neighbourhood of 0. By (ii) there exists a 7-neighbourhood
W such that Wi = W N Yk. Thus for s,t as above

E=FEN%k Ct(WnNPk)=tWg.

Since Y carries a Frechét space topology, the rest follows from 3.1.20.

(iv) Assume F C Z is closed and 7-bounded. By (iii) there exists K € U such that
E C Pk and FE is 7x-bounded. By (ii) E is also Tx-closed. Since Pk is Heine-Borel
by 4.2.4 E is Tix-compact. Again by (ii), £ is 7-compact.

(v) By the Cauchy sequence (f;) is 7-bounded. By (iii) there exists K € U such that
{fi} € Pk and by (ii), (fi) is also a 7x-Cauchy sequence. The rest of the claim
follows from 3.1.20 defining the topology 7.

(vi) Since any convergent sequence is Cauchy, the existence of K follows from (v). By (ii)
(fi) is a T-Cauchy sequence. Since Pk is complete by 4.2.4 (f;) converges in Py,
which implies that it converges in all the €¥-norms by 3.1.20. Since Pk carries the
subspace topology and since 2 is Hausdorff, the two limits agree.

(vii) Any Cauchy sequence in Z is a Cauchy sequence in some Zk by (v). Since Pk is
complete, it has a Tx-limit in Yk and again this equals the 7-limit of the sequence.

O

4.2.7 Theorem (charactarization of linear operators). Let Y be a locally convex TVS
and T': 2 := 2(U,C") = Y be linear. Then the following are equivalent:

(i) T is continuous.
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(ii) T is bounded.
(iii) For any sequence (f;) € 2

fi*f 0 = T(fi)*w 0.

(iv) For any K € U, T'|9k : Zx — Y is continuous.

Proof.
"(i)=-(ii): This follows from 3.1.11.
"(ii)=-(iii): Let T be bounded and let (f;) be a sequence such that f; —, 0. By 4.2.6,(vi)

there exists K € U such that

Clearly T|Zk is also bounded. Therefore 3.1.11 applied to T'|Zk implies the claim.

"(iil)=(iv)”: Since Zk is metrizable T'|Z is continuous if and only if it is sequentially

continuous. Thus if f; > 0, thus by 4.2.6,(ii) f; — 0 . By hypothesis, this implies
K

T(f) — 0. Thus T|Z2k is continuous.

"(iv)=-(i)" It suffices to check that the reversed images of a local base in Y under T'
are open in 4. So let W C Y be a convex balanced neighbourhood of 0. This implies
V :=T~1(W) is convex and balanced in 2, since T is linear. Now for any K € U

VNx =T'(W)N Ik = (T17x) " (W) € 7
by hypothesis. By 4.2.6,(i) this implies V' € 7. O

4.2.8 Corollary. For every a € N, |a| = k, the operator D* € Diff*(U,C",C?) is a
continuous map D® : 2(U) — 2(U).

Proof. By 4.2.7 it suffices to check that D® is continuous from Zx(U) — Zx(U). But
for any m € N
Vi€ ZrU,CT)  [|ID% fllm < 1 llktm.

thus D¢ : 9 — Dk is continuous by definition 4.2.4 of the topology on Zk. O

4.2.9 Theorem (Smooth Urysohn). Let K C U C R"™, K compact, U open. Then there
exists ® € Z(U), such that
Dl =1.

4.2.10 Theorem (Sum Decomposition). Let Uy,...,Ur C R™ be open and let U :=
U§:1 U;. For any ¢ € 2(U) there exist p; € 2(Uj), such that

k
o=
o

4.3. L,-Spaces

We assume the reader to be familiar with the notion of L,-spaces. We will nevertheless
introduce some notation and briefly discuss the vector-valued case. For a very elaborate
discussion of this topic, the reader may consult [1].
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4.3.1 Definition (L,-space). Let (X, A, 1) be a measure space and let (Y,|_||) be a
K-Banach space. Define

LO(X,Y):={f: X =Y | f is measurable},

and for any 1 < p < o0

DXY) = {f € L) LI = 1 ey o= [ 15 < oc).
In case p = co, we define

L¥X,Y) = {f € L2XY) | Ifler(xy) = ess suppex | f(2)]ly < 00}

In both cases LP(X,Y’) denotes the space of all those functions modulo equality a.e. In
case X is a topological space, we define

LP

loc

(X,Y):={fecl’(X,Y)|VK € X : f € LP(K,Y)}.

Notice that equivalent norms on Y produce equivalent associated L,-norms. In particular,
if Y is finite dimensional, the topology generated on L,(X,Y") does not depend on the choice
of the norm on Y. In particular, if ¥ = C", a natural choice would be ||_|ly = ||_||,,
where || ||, is the p-norm on C". On the other hand, by choosing the maximum norm on
CT" one may treat the integration of function f : R™ — C” almost as if one had r functions
fi : R™ — C, which is often convenient.

4.4. Convolution, The Schwartz-Space and Fourier Transform
4.4.1. Convolution
4.4.1 Theorem and Definition (Convolution and Young’s Inequality). Let f € L}(R™)

and g € LP(R™), 1 < p < oo. The integral

(fxg)(z) = - flx—y)g(y)dy

exists for almost every © € R™. Therefore it defines an LP-class f* g € LP(R™) called the
convolution of f and g.
Furthermoore the convolution satisfies Young’s Inequality

1F* gllp < 1 11llgllp-

The same holds if f € LP(R"), g € L}(R™).

Proof. The proof works slightly different for the various cases of p, but the structure of
argumentation will always rely on the two arguments: A function is integrable if and only
if its absolute value is integrable and [y h(x)dz < co implies |h(z)| < oo for almost every
reX.

STEP 1: Let 1 < p < oo and define h, : R™ —C
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Il = [ hol@lide = [ [ \ra = lla@)Pduda = [ low)P [ 1f(e = pldady
=171 [ latw)Pdy = 11l

Therefore hy(z) < co for almost every x € R™. Since

J.

both statement are already proven for p = 1.

STEP 2 (1 < p < 00): Let g be the Holder conjugate index of p, i.e.
Holder’s inequality implies

flz - y)g(y)dy‘dm < / hi(z)dz < oo,

n

Rn

| e =wllatwldy = [ 1@ =I5 = o) )y

< ([ 1=l ([ 15— ullalar)” = I Iyl < o

This proves the existence claim and Young’s inequality is proven by

ieatg= [ | [ ra-vawifasz [ ([ 1=l as
< [ (] =l 1 =)o) da

1

< [ =la) ([ 1ita=latra) ) as
<11 Il < 1F17 112,

thus [|f + gllp < [[fll1llgllp-
STEP 3 (p = 00): In that case we may simply argue that

/ @~ 9)llg®)ldy < llglo / @ — )y = gllocll Fl1-
Rn Rn

4.4.2 Theorem (Properties of Convolutions). Let f,g,h € L*(R™).

(i) Bilinearity: VA, u € C : (Af) x (ug) = A - f * g.

(ii) Integral Identity: [p. (f*g)(z)dz = [p. f(z)dz [z, g(y)dy.

(i) Associativity: (fxg)«h = f* (g*h).

(iv) Commutativity: f*xg=gx* f.

(v) Support: supp(f * g) C supp f + suppg.
4.4.3 Theorem (Differentiation Theorem). Let f € LY(R™), g € CF(R™). Then fxg €
CH(R™) and for any o € N, |a| < k,

o%(f*g) = f=(0%).

4.4.4 Definition (Dirac sequence). A sequence of functions 0, € L'(R") is a Dirac-
sequence if
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(i) Vk €N : 6, > 0.
(ii) Yk €N : [p, Op(x)dr =:c € C.
(iii) For any ball B,(0) : limg_eo fRn\BT(O)ék(:c)da: =0.
In case ¢ = 1 the sequence is normalized.

4.4.5 Theorem and Definition (Existence of Dirac sequences). Define ¢ : R — R g
by

_1
. exp(—3) ,t>0
0 <0

and for any € > 0 define n,7. : R™ — R by

o= [ = fePn )=o) ) = (2,

Then 7. is the standard mollifier and satisfies
(i) ¥ € C®(R),
(i) 1. € C2(R™),
(iii) suppn. C B:(0),
(iv) 0<9<1,0<n<c 0<n < 5,
(V) Jgnne(x)de =1

In particular §; := 71 is a normalized Dirac sequence, the standard Dirac sequence.
k

Proof.
STEP 1 (¢ € C*°(R)): This is the decicive point! We will show by induction over n that
there are polynomials pg, € R[X] satisfying deg(p2,) < 2n, such that the n-th derivative
of v satisfies

U (t) = pan(t)U(L).
In case n = 0 this is clear. For the induction step n — n + 1 consider any ¢ > 0 and
calculate

P (@) = @Y (1) = (ot e ™) = —t (7 e T = pan (TP

_ _ _ _ _4—1
— (o ()2 — 72 (7)) e

=D2(nt1)(t71)

Clearly deg py(n41) < 2(n +1).
In case t < 0 we obtain (") (t) = 0 by definition. Since the exp growth faster than any
polynomial
lim () = lim pan (t71) exp(—7) = 0 = lim P (8).
This implies that every (™) exists and is continuous. Therefore 1 is smooth.
STEP 2 (c well-defined): If |z| > 1, then ¢(1 — |x|?) = 0. Therefore

0< (1 — |z} dx = (1 — |z?) < oo
R7 0)

B (

STEP 3 (suppn. C B:(0)): First we analyse the support of 7. Since ¢ # 0, we obtain

P(1—]z)=0c1— 22 <0e |z)* > 1<z ¢ B(0).
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Therefore suppn = B1(0). Similar
x
0 =n.(z) = e"p(1 — |z/e]?) & - ¢ B1(0) < = ¢ B:(0).
STEP 4 (Range): By definition if ¢ < 0, ¢ (¢) = 0. Since ¢'(¢) >0 on R |

0=1limu(r) <4 < Jim (1) = 1.

This implies the estimates.
STEP 5 ([ n. = 1): By the transformation theorem

/nns(:v)dx _ /Rnn(m/s);ndx _ /Rnn(z:)dx _ C/Rnd)(l ~e2)de = 1.

The other statements follow directly from what we have proven so far. O
4.4.6 Theorem (Approximation). Let J; be a Dirac sequence. For any f € L'(R")

k—
f*(sleoo>Cf,

where ¢ = [, 0p(z)dx.

4.4.7 Theorem. For any open set U C R"™ the inculsion C°(U) — LP(U) is continuous
with dense image.

4.4.2. Schwartz Space

4.4.8 Definition (rapidly decreasing). A function f € C>*(R",C") is rapidly decreasing,
if

Va € N™: sup [[z%f(2)] < oc.
T€R™

Various other characterizations are used throughout the literature.

4.4.9 Lemma (Characterization of rapidly decreasing functions). Let f € C*(R" C")
be arbitrary. The following are equivalent.

(i) f is rapidly decreasing.
(ii) Yo € N™ : lim|y o0 2% f(x) = 0.
(iii) For all polynomials p: R™ — C: lim ;o p(z) f(7) = 0.
(iv) Vm € N : lim ;o0 |2|™ f(z) = 0.
(v) Vm € N :sup,cpn (1 + |2]™)]| f(2)] < oo.
(vi) Vm € N :sup,epn (1 + |z|)™] f(x)] < oo.

In the last three conditions one may replace N by an arbitrary unbounded subset of N.

Proof.

"(i)=(ii)”: Let o € N and let (x;) be a sequence satisfying lim; . |z;| = co. Then there
exists at least one 1 < i < n such that the i-th component satisfies lim;_,, |x;| = o0 as
well (in particular this implies mz # 0 for large j). Apply (i) to 5 := a + ¢; and obtain

3C >0:VzeR"™: ||2Pf(z)|| < C.
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For large j this implies ||z f(z)| < C’/]:n;\ and therefore

0< hm |25 f(z)]| < C hm

o Jai]

”(ii)=-(iii)”: Any polynomial p has a representation p = » ;" ngkcaxa for some con-
stants ¢, € C. Therefore (ii) implies

lim p(z Z an lim z%f(x) =0.

— —
|zl o0 k=0 |o|<k lz[=o0

"(iii)=-(iv)”: Since the limit approaches infinity and since
Ve > 1+ |27 < faf™ < Ja|™F,
we may restrict our attention to even m. In that case
n m/2
p(@) = (Dat) = ol
k=1

is a polynomial and therefore (iii) implies

lim |2 f(z) = lim p(x)f(x) = 0.

m—0o0 m—0o0
"(iv)=-(v)”: Applying (iv) to 0 and m, we obtain

0= lim |z[°|f(z)| = lim |f(2)l and 0= Tlim [z[™[f(z)].

|z =00 || =00 |z[—o0

Since f is smooth, this implies (v).
"(v)=(vi)”: By the binomial theorem and (v)

el =3 () )il < .
k=0
"(vi)=-(i)”: Follows from
29 2" el < (14 [z,
OJ

4.4.10 Definition (Schwartz space). A function f € C*°(R™,C") is a Schwartz-function,
if all its derivatives (including f itself) are rapidly decreasing. The collection .# of these
functions is the Schwartz space. Somewhat more explicitly

S 1= {f €C¥R™,CT) [V, B €N": p5(f) = sup [+*DP(f)(@)]] < oo}

4.4.11 Theorem (Topologization of the Schwartz Space). The set

P={p 5|, BeN"}

is a separating family of seminorms, which induce a Fréchet space topology on .7 .

Proof. Denote p, g := pfﬁ.
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STEP 1: It follows directly from the definition that pay 3 Is a semi-norm and thus .7 is a

vector space. If f # 0, then pgf o(f) # 0 and therefore B is separating.

Consequently we may apply Theorem 3.1.20 to the family 8 and obtain that .# is a locally
convex topological vector space. Since P is obviously countable, the topology is metrizable
by a translation invariant metric.

STEP 2 (Completeneess): Let (f;) be a Cauchy sequence in .#. By 3.1.20 this is equivalent
to (f;) being a p,, g-Cauchy sequence for all o, 3 € N™. On the one hand, this implies

Vo, € N":3C, 5> 0:Vj €N :pa5(fj) < Cap, (4.8)

since Cauchy sequences are bounded. On the other hand this means that for every «, 5 the
sequence (z*DP?(f;)) is a C) := C)(R™,C")-Cauchy sequence. Since the later is a Banach
space,

n o j—00
Va,8 € N":3g,5 €C): x*DP(f;) ]Tga,g : (4.9)
b

In particular this holds for o := 0 and all 8. By a standard theorem from calculus,this
implies f := goo € C* and gos = DP(f). Since uniform convergence implies pointwise
convergence, we deduce from (4.9)

Va,8 € N":Vz € R" : gy p(x) = lim anB(fj)(x) = 2% lim gpg(x) = 2 DP(f)(z).
j—00 j—o00
By (4.9) this pointwise convergence is uniform, i.e.
2 DA(f;) —— a2 DH().
b
Thus
n . 3
Va, ﬁ S N™: f] T,B) f s
which by 3.1.20 on the one hand is equivalent to
n . .
Vo, € N™: f; — f

and on the other hand implies

_ (4.8)
Vo, € N" 1 pas(f) = jgrgopa,ﬁ(fj) < Cop.

Consequently f € .7.

Sometimes another topologization of the Schwarz space is used and useful.

4.4.12 Theorem (Equivalent seminorms). For any m € N, g € N™ define

VS e EFR™CT) am () = sup (L4 |e])"IDf (@)

We claim that the families of seminorms
P :=A{pas|a,BeN"}, Q:={gmp|meN,BcN"}

are equivalent on % in the sense of 3.1.23.

62

reference



Proof. We already know from 4.4.9 that for any f € €°°(U,C")
Va,B : pas(f) <oo <= Vm e N : V3 e N": g, 5(f) < 0.

But this is not enough. We will prove the equvialence using the strategy explained in 3.1.25.
To that end we choose any f € €°°(U,C") and carry out the following calculations:

STEP 1: For any o, 3 € N"

A21
Pas(f) = sup [2°DP(f)(z)| < sup [« D°(f)(x)]

TER™ zeR™
< zseuan (1+ |=)) DA (f) ()| = o), 5(f)-

STEP 2: Let m € N, 8 € N™. By Lemma A.2.2 for any 0 < k < m there are constants
(k)
co’ > 0 such that

o < Y el

o] <2k

Consequently there exist constants ¢, > 0 such that

Sl <3 S Pl < 3 (4.10)
k=0 k=0 |

al<2k |a|<2m

Thus

Gm,p(f) = sup (1+[z)"[DI(f)(x)] < sup > 2D (f)()|
Te nk:O

zeR™
(4.10) 5
< Z sup ’CaxaHD (f)($)| < max cq Z pa,ﬁ(f)'
xeR™ || <2m
|| <2m —_—— |a]<2m
=:C

O

4.4.13 Theorem (Schwarz space and friends). The Schwartz space . := Z(R",C") is
related to various other important function spaces in the following manner.

(i) For any k € N
Ckcercorcckcer.

(ii) The inclusion .% < CF is continuous.

) The inclusion 2 := Z(R",C") — . is continuous and
)

)

has dense image.
(v) Forany 1 <p <o0,.¥ C LP := LP(R™,C") and the inclusion . < L? is continuous.

(iii

(iv

Proof. Let p, g := pfjﬁ.
(i) This follows directly from the definitions of the p, g, in particular pg g.
(ii) This follows from the fact that for any f € .%

I fllee =D sup [DP(f)(x)] < Cmax pg ).
|ﬁ|§kx€R” 1BI<k
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(iii) By 4.2.7 it suffices to check that for any K &€ U the restriction Zx — .¥ is continuous.
For any f € Yk we calculate

Va, 8 € N": pos(f) = sup [[2*DP(f)(w)| = sup [«* D (f)(x)]|
zeR™ zeK

< o] .
= gleé}%dﬂ HfHC\B\(K)
c

Now the claim follows from the definition of the topology on P and ?77.

(iv) To show that ¥ C % is dense, let f € % be arbitrary. Choose a smooth bump
function p € Z such that p|p, ) = 1. The existence of such a function is discussed
in more detail in . For any 0 < € < 1 define p.(z) := p(ex). This function satisfies
pe € 9 and p€|B1/s (0) = 1. Clearly, the function f. := p.f € Z satisfies

ref

e

We calculate for any a, 3 € N7, k := ||, z € R™
22 D%(f. — )(@)| = [2°D7(p- — 1 f)(a)|
<3 (D)0 - D@0 (1))

v<B

(4.11)

Now we distinguish two cases: If v # 0,
29D (pe — 1)(2) D~(f) ()| = |°D" (p) ()" D77 (f) ()]

e — O
<& lpllexlz* DV (f)(@)] < ellpllerpas—(f) < Ce —=0.

In case v = 0, we claim that

2%(p — D@D (N < sup  [DI(F)(y)] 0.

yeRn\Bl/a(O)

To see this last convergence, we argue by contradiction: If this does not hold, there
exists a sequence (y;), y; € R™\ B;(0), such that |y]0~‘D6(f)(yj)| > ¢ for some 6 >.
This is due to the fact that ife — 0, By /. (0) becomes larger and larger. This sequence
satisfies |y;| — oo and therefore this sequence directly contradicts 4.4.9,(ii).

Both cases together imply that (4.11) tends to zero as well.

(v) For p = oo this follows from the definitions. So let 1 < p < oo, f € . and

m o= [(n+1)/p].
Using the fact that z — |z|~("*D € LY(R™\ B;(0)) by A.2.4, we obtain

1y = [ @Par= [ (e [ (1) e
< [B1(0)|po,o ()P + o (F)P 1z~ "V 1y g\ Br (o) < C 00,0 (f)P + Pnso()P).

This shows f € LP(R™) and the continuity of the inclusion.
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4.4.14 Lemma. Let LP := LP(R"™). The map
():LP — &
fo= (@ g f@)e(z)dr)

is well-defined, linear, injective and continuous.

Proof. For any f € LP, ¢ € ., we obtain using Hoélder’s inequality

| [ @ot@yda| < 178l < Ifllzsy 6o (4.12)
where ¢ is Holder conjugate to p. By 4.4.13(v) this quantity is finite. Thus (f) is well-
defined. It is clear that () and (f) are linear. To see that (f) € ./, we have to check
continuity: But

¢j—5—0
implies

(z)j T 0 )
by 4.4.13(v). Thus

()(65) ——0

by (4.12). Similar if

L0
we obtain

Vo eI (fi)d) — 0,

again by (4.12). Consequently ( ) is continuous. O

4.4.15 Theorem. The Fréchet Space . := S (R",C") is closed under the following
operations:

(i) complex conjugation,

(i) scalar products and products in case r = 1,
)
)
)

(v) convolutions.

(iii) differentiation,

(iv) polynomial multiplication,

Proof. Assume that f,g € .%.
(i) Clear.
(ii) In case r =1 the Leibniz rule A.1.3 implies

Vo, e N":Vx e R™: a:a(‘)ﬁ(fg) = Z <g>a:a87fm0857g,
v<B

thus fg € . The general case follows from the formula

j=1
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(iii) Follows from the definition of p‘i 5
(iv) Follows from 4.4.9.
(v) It suffices to check this for » = 1. For any x € R™, o, 8 € N™, we calculate

2@ (f ) @)] L 0w o)) < [ 1607 (1) = o)l

< swp o900 | 107w = n)ldy < sup o)l [ 107 w)ldy

yeR™ yeR ™

5 4.4.13(v)
=Pa 0N (Nl < oo

O
Although we have already established all this wonderful properties of ., the most famous

one is yet missing. As we will see in the next section, the Schwarz space is ideally suited
for the Fourier transform.
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4.4.3. Fourier Transform

4.4.16 Definition (Fourier Transform). Let f € L'(R™,C). Depending on the context
both of the functions )
fR* — C
£ = fR" e‘i<x’5>f(a:)da:

F(f):R* — C )
¢ = (@2m)T2f(9)

are the Fourier transform of f. For functions f € L'(R™,C") these operations are defined
component wise.

4.4.17 Remark. Notice that the notation conventions concerning the Fourier transform
are far from coherent throughout the literature. We have chosen this convention since f is
very quick to write and usually the constant in F(f) does not change anything substantial.
The constant is relevant for the Inverse Theorem 4.4.26, the fixed point theorem 4.4.23 and
the Theorem of Plancherel 4.4.27. The constant in F is chosen such that it is an isometry
(and not only an isometry up to constants).

4.4.18 Lemma (Elementary properties of the Fourier transform). The Fourier transform
satisfies the following properties:

(i) For every f € L' := LY (R",C"), f exists and is well-defined and || f(€)]l1 < || f] 11
(ii) Fourier transform defines an operator F € L(L',C).

Proof. For r = 1 the simple estimate

f@l< [ 169 p@ide < [ 1f@lde = 1w

n

shows that the integral f always exists. It also shows that F is a bounded function.
Together with the continuity theorem of parameter-dependent integrals , this calculation
also implies that F(f) is continuous. It is clear that F is linear. To see that F itself it
continuous, assume

This implies

VEESR™: |f;(€)] < / |8 f3()|dw < || £l 1

Rn
Consequently
b
Applying this in all the components yields the statement for general 7. O

4.4.19 Theorem (Convolution Theorem). Let f,g € LY(R™,C). Then

—

frg=1F-9
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Proof. By Theorem 4.4.1 f x g € L'(R™). By definition and Fubini’s theorem

n

/ / Tl f (2 — y)e W g (y)dyda
foe

i g)a)da = [ e | T = y)g(y)dyds

g(y)/ne 198 (2 — y)dwdy

4.4.20 Definition. For any function f:R™ — C" define the

(i) translation
VyeR" :7y(f): R" — C7
z = flzty),

(ii) rotation
Vy e R" :my(f):R™ — C”
o el f(z),

(iii) scaling

(iv) reflection

of f.
4.4.21 Theorem. Let f € L'(R",C"),y € R™, X € C*. Then 7,(f), my(f),sr(f),R(f) €
LY(R™ C) and
(i) Flry(f)) = my(F(f))-
(i) F(my(f)) = 74(F(f))-
(111) F(sx(f)) = [AT"s 1 F(f)-
(iv) F(f)=RoF(f), FoR=TRo F.

The same is true for "~ instead of F.

Proof. It suffices to check these statements for r =1. It is clear that 7, (f), my(f), sx(f), R(f) €
L', since f € L' by hypothesis. Since all operations are linear, the prefactor (27)~ 2 does
not matter. We verify the various formulas using the transformation theorem.

(i) We calculate
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(ii) We calculate

(iii) We calculate
SE© = [ s ()w)dn = [ O AN " da

=W [ e s = (S) = W)

1
X

(iv) We calculate

flo)= / e f(a)dr = / e ile =8 F

n

(=€) = R(H)(E)-

0
IS8
8
Il
-

4.4.22 Theorem (Differentiation Theorem). Let f € . = ./ (R™,C"), a € N™. Then
F(Df)(&) = E*F(f), DYF(f)(&) = F((=2)*f)(&),
F(0*f)(&) = (i) F(f), I*F(f)(E) = F((—iz)* f)(E)-

Proof. Clearly it suffices to check the last line for 7 = 1. Integrating by parts yields

IO = [ 00 pa)da = (-1 [ o) pada

= () [ (e f@)de = (i€)°(0).

The boundary terms vanish since f € ..
For the second statement we calculate

o8O =08 [ = [ o) fa)da

—

= [ (i)t fayde = (Z(E)

4.4.23 Theorem (Fixed Point). The function
fiR" = R
x = e 2

satisfies

F(f) =1
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Proof. We will require the equation

22
/ e zdr =2, (4.13)
R

which is proven in elementary calculus courses. ref

STEP 1 (n = 1): Using partial integration we calculate
A~ . . . Z2
= e r)dr = e r)dr = —ixe e 2 dx
R e e O
R R R
(e 9] . z2
—2‘/ Bz(e_mg)e_%da;
R

[e.e]

2 2
=]

. i _ =l P ]
:z/ TP, (e 2 )da = ie” e 2
R

¢ /]R e~ () da = —E(€).
Therefore the Fourier transform satisfies the ODE

F() () +EF ()€ =0

as well as the function f. Since

1 . 1 _a? . (4.13)
F Oz/ewo xd:l::/e zdr ="1= f(0),
(N0 === [ @ = [ )
we obtain F(f) = f, i.e.
1 . 22 52
—igf —Z I
— [ e e 2dr=¢e 2, 4.14
V2T /]R ( )
by uniqueness of initial value problems.

STEP 2: For general n this is a consequence of Fubini’s Theorem:

2 n 2

2 n_ x4 x%
f(é.) = / e_i<x7§>€_%dx = / 6_7; Z;LZI xjgj 6_ ]El . dx = / H e_ixjfj 6_7](1%'
R" n n

j=1
n

j=1

w|3
~~
—
o
SN—

. 2 n &2
/ e_wfgfe_%dwj (529 H Vore 3 = (2)
j=1

R

4.4.24 Theorem (Adjoint Formula). For any f,g € L}(R",C"),
(F(f)s D r2mncery = (fs(RoF)(9) r2mncr

and both sides are finite. In particular for » = 1, we obtain the adjoint formula

F©o(©de = [ fa)F (o))

Rn
Proof. First of all, the calculation

L 1En©.a@nie< [ IFRO©lg©l < [ IFAOhlae s

4.18

4.4.
< HfHLl/Ran(ﬁ)\hdé: £ 1|z gl 1
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shows that all the integrals exist. Therefore by Fubini’s theorem for » = 1

(F()9) 2gnc) = / F()(©)g(€)de

E [ e e ge)a

(4.15)
= (2n)" %2 / f(x) / e 48 g (&) deda
n Rn
=L f(@)F(g)(x)dz = (f, F(9)) 2 )
This implies
4.4.2
<]:(f)ag>L2(R"(C <f, F@)e@nc) = YL R(F(g ) L2 ®ny- (4.16)
Applying this to all the component functions yields the statement for general 7. O

4.4.25 Definition (Inverse Fourier Transform). Let g € .¥ = . (R™,C). Then
g:R*" — C
T o fga @ g(E)de

and
Flg):R" — C
r — (2m)72g

are called inverse Fourier transform of g. For g € #(R™,C") this is again defined com-
ponent wise.

4.4.26 Theorem (Inversion Theorem). The Fourier transform is a linear homeomorphism

F.: =7

and its inverse is given by

Fl1=FoR.
Here ./ = S (R",CT").

Proof. It suffices to check this for » = 1. The linearity of F is clear.

STEP 1 (range): We have to show that for any f € ., Z(f) € . as well. Therefore let
a, 8 € N™ and calculate

CDPF(f) " e F(—aP f)(&) ME? (DS (=2 1)(€).
Now D& (—zPf) € .# C L' by 4.4.13 and therefore

v € R™ 1 € (DPF())(€)] = [F(DI (=" 1)) (©)]
4.4.18 n (4.17)
< 2m) 31D (=2 sy < oo

STEP 2 (bijectivity): It is clear from the Definition 4.4.25 that the inverse Fourier trans-

form F~! satisfies F~! = F o R. We have to show that it really is an inverse to F. So let
f € . and consider

FUFMN@) = Ca)E [ O R ()@ (1.18)
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Denote by ¢ the fixed point of F described in Theorem 4.4.23. Let ¢ > 0, z € R™ and
define

2)¢)2
2

(4.19)

_In—=|?

M (e s () () = e e 2
Therefore
L@ =@ F [ g@F(d E ent [ Florede
" e R (4.20)

D emt [ eme S (e = (2m) (S g 0)

where () := e "p(x/¢e) is a Dirac sequence. By Theorem 4.4.6

_n _n _ = 4.13
I. = (2m) 2f*g0€%10>(277) 2 [pne 2 d:cf(:)f.
By the Theorem of Riesz/Fischer there is a subsequence €5 > 0 such that ref
k
Iy~ f -

Thus for almost every € R™, Lebesgue’s dominated convergence Theorem implies
e21¢)?
2

f(x) = lim I, (z) = (27)"> lim oim6)—

k—o0 k—oo Jrn

—en7E [ a9 FUED) @),

F(F)(€)d¢

Since both sides are continuous, equality holds for all z € R™.
By Theorem 4.4.21, the operator R commutes with F. This implies

id=F 'oF=FoRoF=FoFoR=FoF .

Therefore F~! is indeed the inverse of F and F is bijective as claimed.

STEP 3 (continuity): It is clear that R : ¥ — .7 is a linear homeomorphism with inverse
R~ = R. Therefore it suffices to check that F is continuous. So let f; € ., such that

f]7>0

Using the Leibniz this implies that for any «, 8 € N"

DE((~a?)f;) ——0.

By Theorem 4.4.13 this implies

D2((~a)f;) —0.

Now the claim follows from

, (4.17) n
P p(F(F)) = S E*DEFUNEO < 2m) 2D ((=2”) f) |y = 0.
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O

4.4.27 Theorem (Plancherel). The Fourier transform F : .# — .# is an L*-isometry.
Therefore it extends to an L?-isometry

F:L*— L2
Here L? = L?>(R™,C").
Proof. By Theorem 3.2.1, we have to check

Ve S FD)ez = 112

We calculate

(FU) F ()1

W~
15

4.2 4.4.21

LA RoFoF) (N " (FoRo F)(f))a
2 F Lo F) )z = (. f) e

4.

=~

4.4.28 Lemma (Riemann/Lebesgue Lemma).
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4.5. Symbols and their asymptotic expansions

4.5.1 Definition (Symbol). Let U ¢ R™ and k € R. A function o € €°(U xR™, C"'*")
is a symbol of order k, if

Vo, €N":3Cop > 0:Y(x,6) € U x R™ 1 0200 0(x,8)| < Cap(1+[E)F P (4.21)
The space of all those symbols is denoted by S* := S¥(U x R™, C"'*"). Define

Stee= | J 8%, S =) 8"
keR kER

Furthermore if ¢ € S* has compact z-support, we say o € S¥. Define

php(0) = sup |95070(x,&)|(1+ €))7,
(z,£)€EUxR™
4.5.2 Theorem (Elementary Properties of Symbols). Let k € R.
(i) S* is a complex vector space.
(ii) For any k € R and the family

{pZ,B | a?ﬁ € Nn}
is a countable separating family of semi-norms, which induce a Frechét space topology
on Sk,
(iii) If k1 < kg, then S*1 c S*2 and the inclusion is a bounded linear operator.

(iv) If o1 € SF(U x R™,C**7), 09 € S¥2(U x R™; C***), then o907 € SF1FF2(R™; C1*T)
and multiplication
Sk Sk2 _y  Gkitka
(01,0'2) = 0102

is bilinear and continuous.
(v) Ifo € S¥ = SFH({U XxR™ C**"), a, B € N", then 8§‘8§’8(0) € §# 18 and differentiation
Sk — Skl
o = 838?(0)
is a bounded linear operator.
(vi) If 0 € SK(U x R™,C**") and f € .#(CT), then
T:UxR"™ — C*
(z,8) = o(z,8f(E)

satisfies 0 € S™°.

Proof.

(i) If 0,0’ € S¥, A€ C, a, 3 € N® and C, C’ are the constants from (4.21), we simply
calculate for any x € U, £ € R"

IDEDE (01 + Aoa)(, )] < C(1+ €)1+ X[C'(1 + [e])* 1
< (C+ )+ e 1.
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(ii) It is clear that this is a family of semi-norms and that it is countable. It is separating
through p’&o. By Theorem 3.1.20 it is a locally convex space. To check completeness,
assume that o; is a Cauchy sequence in S, i.e. in all the p'; g-seminorms. T his
implies that 83‘8?(@)(1 + [€])IBI=* is a Cauchy sequence in €°(U x R™, C**"). Since
this space is complete

300,86 € €U x R™,C*X7) : 0200 (00)(1+ [E)AI~F 2% 005 . (4.22)

Define o := g - (1+¢ IPI=F. Remember that a sequence of differentiable functions,
which converges pointwise, and whose derivatives converge uniformly, has a limit
that is differentiable and the limit and differentiation may be interchanged. Since
the convergence above holds for all « and (14 |£|) is obviously independent of z, this
implies 0;,00,8 = Oa+e, 3. This defines functions og, such that dfog = 043. To
obtain the statement for 5, we have to ensure the derivatives converges uniformly.
Therefore take any 0 < v < n and calculate

|0k, (3?8§oi(x, O+ |§|)—k+p|ﬂ|—5|al)|

< 8?+eu8§ai(x,§)(1 + |g|) Rl es=dlal)

1020203, €) (1 + |g) ANl (s 1 pl 8] 6\ar>fg,<1 e,

<const

By (4.22) both summands converge uniformly. Therefore, we obtain a function o,
such that (‘3? o = og. Alltogether this implies

0; 2% (1 + |¢])k—rlBI+dlal
[

a,B,K;

(iii)) We simply remark that for any A € R, A > 1, the map

R — R
Tz = N

is monotonously increasing. Therefore, if ¢ € S¥1, then
VzeU:V¢eR™: (0097 <501 -8l < o (1 ka—|8]
zeU:VEER™ 070 0(x,&)| < Cap(l+[€]) < Cap(L+ gD,

thus o € S*2.
(iv) Let a, 8 € N™. By hypothesis there exist C1, Cy > 0 such that for any x € U,£ € R"

0507 (1) (w, €)| < Cr(1 + €)1,

0207 (2)(, €)] < Ca(1 + [¢])*=17. (4.23)
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We calculate

\asaf@mxx,m = %3 (7)o 0o
ZBZ () (5 oo tonezapion)
“”Z%Z( )(5)erta-+lercy(a-+ el
= (Lt Jg)ten 'ﬁ';ﬁ;&( )(5)erca

(v) We just calculate for any o/, 5/
10507 (020 o) (3,€)| = |02+ 0" o(2,€)| < Coar s (1 +€))F I,
(vi) Since f € .#(C"), we obtain from 4.4.9

YmeN Y €N": sup (14 €)™ |0%(A)(O)] == Cms(f) < oo

Those constants exist also for all [ € R~g. Choose any such [ and calculate

1020 7(2,6)| = 0202 (o (2, ) F(E) < 3 (f) 10007 (o), )20 () (€)]

v<B
<% ()t + ke Pog o)
: ZB( Jrha(@)1+ 1) )10 ()
<Z( )pw Y1+ [N 5 (f)
v<p

< O(1+ g1,

thus 7 € S*¥!. Since | € R+ was arbitrary, this proves the result (remember that
SF ¢ S anyway.)
O

4.5.3 Definition (positively homogenous). Let X be a real vector space. A function
f: X\ {0} — R is positively homogenous of degree k € R, if
Vt>0:Vz e X\ {0} : f(tx) = t" f(x).

4.5.4 Lemma (Properties of potivitely homogeonous functions). Let f,g: X \ {0} = R
be positively homogenous of degree k and &'
(i) If k =k and A € R, then f + \g is positively homogenous of degree k.
(ii) The function fg is positively homogenous of degree k + k.
(iii) A function f € €1(R™\ {0}, R) is positively homogenous of degree k if and only if

Ve e R"\ {0} : Vf(z)xr = kf(x).
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(iv) If f € €1(R™\ {0},R) is positively homogenous of degree k, any 9;f is positively
homogenous of degree k — 1.

(v) If f € C°(R™{0},R) is positively homogenous of degree k, then

Vo € R"\ {0} : |f ()| < Claf*, C:= max [f(y)|

y€§n—1

(vi) If f € C{(R™\ {0},R) is positively homogenous of degree k, then for any o € N,
la] <1, 0% f is positively homogenous of degree k — |a| and

3C > 0: Ve e R\ {0} : |89 f ()| < Cyla|Fle] (4.24)

Proof.
(i) We just calculate

Ve e X\ {0}:Vt>0:(f+ Ag)(tz) = f(tx) + Ag(tx) = t*(f(z) + \g(x)).
(ii) This is also very simple:
Vo € X\ {0} : Vt > 0(fg)(tz) = f(tz)g(tz) = " f(2)t" g(z) = ¥ (fg)(x).
(iii) ”=": By differentiating, we obtain
Vo € R"\ {0} : 0= 9y(f(tz) — " f(2))li=1 = (V| — kt* ™ f(2))|i=1 = V flow — kf(2).

"< Let x € R™ and define F : Rvg — R, t s t % f(tx). Clearly F(1) = f(x). We
calculate

OF = 0,(f(tx))t* — kt 1 f(tx) = V f|ipat - 5 — kt~F 1 f (k)
= kf(tz)t " — kt R L f(tz) = 0.

Therefore F' = f(x).
(iv) Consider any x € R™\ {0} , t > 0 and calculate

f(tz + hej) — f(tx) I f(tz + the;) — f(tz)

> T = 1. =
0 fli hI{f(lJ h hI{f(l) th
xS @t hey) — (@) g flathe) — (@) i
-1 k J — 1 1 J — k—149. )
Rt th i h £ 03 fla
(v) We calculate for any z € R™\ {0}
@) = |7 (Zlall)| = el = |7 ()] < Cllel
(vi) This follows from the previous claims.
O
4.5.5 Theorem (Famous Symbols).
(i) "Any symbol of a bounded PDO is a symbol”, i.e. if
o(z,6) = Y Pa()€°, Vja| < k: Py € CF(U,CT77),

o <k

then o € SF(U x R™;C"*7).
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(ii) "Schwarz functions”, i.e. if 0 € €>°(U x R™, C"'*") satisfies

Ya,B €N": VK € U:¥d €N : sup |920 o (2, &)|(1+[¢|™) < oo,
zeK

then o € §7°°. In particular, if ¢ has compact £-support, o € S™°.

(iii) ”A positively homogenous function”, i.e. let o € €°(U x R™, C"'*"), which depends
only on & and which is positively homogenous of degree k € R in &. Then o € S*.

(iv) The function R™ x R"™, (z,&) — (1 + \§|2)§, k € R is a symbol in S*.

Proof.

(i) Since o is a polynomial of degree k, 35’80 =0, if |3] > k (see Lemma A.1.6). For any
|8] < k and any o € N™ we calculate

02000(x, 01 < Y loa(P @)l " S jae(p, Hﬁ'()é” d

[vI<k [vI<k

A.2.
2y 6!(})||Py||w.|ar'7"5

[vI<k

< max || Pyl > Bl(ﬁ) (14 €)1 < Co (1 + [€])F 1A,

<
Iv[<k

(ii) This follows directly from the definition of the Schwarz space and the symbols.
(iii) This follows from Lem:PropPosHomo.

(iv) The function
fR™ =R xR"” — R

k
(a,8) — (a®+]¢*)2
is smooth on R™™1\ {0} and positively homogenous of degree k. Therefore by (4.24)
Yo e Ng™ 30, > 0:Y(a,€) € R x R™ 198 f(a,€)| < Call(a, &) F1

Specifying to those « satisfying ag = 0 and to a = 1, we obtain

|9 (1 + §2)%)] = 102 F(L,O] < Call (LM < Ca(t + [l
O

4.5.6 Definition (Exhaustion function). Let 0 < ¢; < ¢o. A function x = Xe;c0 €
¢>*°(R™), such that

0 [l <a

eranx(Q:{l €] >

is an exhaustion function.

4.5.7 Lemma (Family of exhaustion functions). Let y be an exhaustion function and
Xe : R =5 R, & x(g€). Then

Vo e N™:3C, > 0:Y0 <e < 1:|086(6)] < Ca(l+ €)1,

So the functions . are symbols of order zero with symbol estimates that are independent
of e. In other words {x.|0 < & < 1} C 8? is bounded.
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Proof. Let a € N™ be arbitrary.
Casi 1 (Ja| = 1): If [a| > 1, then O x. is compactly supported and smooth. Therefore

sup |9 x(€)(1+ €)1] = Cy < 0.
EER™

Since 1+ [£| # 0, this implies

108 (xe)(€)] = 102 (O ©)]el* < € Ca (1 + [~

Since € < 1, this implies the statement.
CASE 2 (a = 0): We just have to show that {x-|0 < e < 1} is uniformly bounded. Define

C':= max
e 1x(€)

By definition of an exhaustion function
VEER™: [x(6)] < max(1,C") =: Cy.
Now by construction for any £ € R™

€] < ete = €] <e1= |x:(§)[ =0
€] > e ey = 6] > e = xe(6)] =1
5_101 <EL 6_162 =0 <ef <= |X€| <C.

In all cases x| < Cp.
O

4.5.8 Definition (Asymptotic expansion). Let o € S*. Suppose (k;) is a real sequence,
which diverges monotonously to —co. Assume there are o; € S*i, such that

N-1
VN €N ZU—ZO’jGSmN.
=0

Then we call Z;io oj an asyptotic expansion of o (some authors call it a formal develop-
ment). We denote this by
o0
g~ Z gj.
§=0

4.5.9 Theorem (Asyptotic expansion). Let (k;) be a real monotonous sequence such that
k; — —o0, and let 0 € S*i. Then there exists o € S*, such that

o
g~ Z O'j.
§=0
Moreover, any two symbols o, 7 with the same asyptotic expansion satisfy
oc—17€S™.

Proof.
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STEP 1 (Construction of o): Let x = x1,2 be an exhaustion function as in 4.5.6 and define
Xe(§) == x(€€), 0 < e < 1. By 4.5.7 for any § € N™ there exists a constant Cz > 0, such
that

VE € R™ 2 107 (xe)(€)] < Cal1 + [€)) 717,
The Leibniz rule implies
3Cjap > 0: Ve € U 2 V6 € R™ 070 (xepy) (. )] < Cap(1+ )77
(L4 €)1+ gyl (4.25)
Choose a monotone sequence (¢;), such that 0 < e; <1, ¢; — 0 and

VieN:Va,BeN":|a|+|8| <j=¢e; <279C]

J7 ’/B (4.26)

Define x; := xe; and
ZXJ )oj(z,€).

Since |¢] < 5]-_1 = x;(§) = 0, this sum is locally finite. Hence o is a well-defined function.
STEP 2 (Estimates): Now let N € N be arbitrary. We may decompose

N-1 00
O’—Z(T] Z '—1)0'j—|—ZXjO'j.
Jj=0 j=N
—_———
=pN =N

For any &, such that [£| > 25]_\,1_1, we obtain py(§) = 0 by construction. Consequently py
has compact support and therefore py € ST by 4.5.5. Therefore it suffices to analyse
qn: By construction, we obtain

W(x,8) € U x R™:V]a| + |B] < j 1 050 (x;0,) (2, )| < Cjap(l+ €)1 (1 + ¢kt 1P

(4.26) 1 i 1
< 2751+ DTN )BT < 279 (1 gt (4.27)

Now choose any fixed «, 8 € N™. Choose jo € N, such that
Jjo > max(N, |a| + |B]), kj, +1 < kn. (4.28)

Since x;p; € S*i and since kj Ny —o0

Jo—1
qN = Z Xj0j + Z Xj03j -
Jj=jo
\ﬁ,_z —_——
eSkN =:qj0

By the choice of jy in (4.28) and (4.27), we calculate

o0 o0
0500 qjo (2, )] < 3 2791+ eI < 37 27T (14 gy RO < (14 ¢RI,
J=jo J=Jjo
Consequently gy € S¥~¥. For N = 0, we obtain in particular

oo
o= ijaj = qp € S™.
j=0
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STEP 3 (Uniqueness): Assume that

oo
O, T ~ E 0j.
Jj=0

By construction

N—1 N—1
VNGNIU—T:<O'—ZO'j)—<T— Jj)ESkN.
§=0 §=0

Since k; N\, —oo, this implies 0 — 7 € §°.
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5. Distribution Theory

"We Magog know the Divine exists. We know it created the stars, and the plan-
ets, the soft winds, and the gentle rains. We also know He created nightmares,
because He created us.”

REvV BEM, 10087 CY

In the previous section we described spaces of functions, which are the heaven of analysis.
The dual of this is hell, which we describe in this chapter.

5.1. Basic Definitions

5.1.1 Remark (Reminder of convergence). For those of you who just tuned in here is an
overview of the most important function spaces in distribution theory (introduced in detail
in section 4): Let UCR™ and let

2(U) == €*(U,C)

endowed with the following notion of convergence: We say ¢; converges to ¢ in 2(U), if
there exists a compact K € U such that

Vj €N :suppg; C K

and for any k € N
¢jm¢-

We denote this by

¢j7>¢‘

Let

7= {8 € €X(U.C) |Va, B €N": pas(f) i= sup [a" D7 (f)(a)] < o0}

endowed with the following notion of convergence: We say ¢; converges to ¢, if
VOZ,BENTL: QZ)]WQS

We denote this by

(ﬁjT)(Z)

Let
EU) :=C>*(U,C)

endowed with the following notion of convergence: We say a sequence ¢; converges to ¢
in &U), if
KeU: oy .
VK eU:VkeN: ¢; W 0]
We denote this by
bj — ¢

In the last chapter, we constructed topologies on 2, ., & and showed in excruciating
detail that these topologies induce this notion of convergence. For many applications you
can just forget about topology and take this as a definition. Whenever the continuity
statements are involved, you can read them as sequential continuity and the convergence
of a sequence was just defined.
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5.1.2 Definition (Distribution). Let U C R™ be open. The topological dual space, i.e.
the space of continuous linear functionals,

(i) 2'(U) is the space of distributions.
(il) " is the space of tempered distributions.
(i) &'(U) is the space of distributions having compact support.
All these spaces are topologized by Theorem 3.1.27, i.e. they are endowed with the

weak-*-topology, i.e. the topology of pointwise convergence. More explicitely, if 7 €
[2(U),£(U), 7}, then

By the remark 5.1.1 above, a linear map 7' : 5 (U) — C is a distribution, if

V(¢j) € A ¢ —0 = T(¢) ——0.

On the other hand, if we use the topology on Z(U), we can give another characterization
of distributions.

5.1.3 Theorem and Definition (order). A linear form 7' : Z(U) — C is a distribution
(i.e. is continuous) if and only if for every K € U there exist constants C' > 0, k € N
such that

Vp € Z2(U) : [T(p)| < Cllullgrx)-

If the constant k£ may be chosen independently of K, we call the smallest such k& the order

of u.

Proof. The existence of k is a direct consequence of 4.2.7 and the definition of the topology
on @K. O
From 3.1.27 we also obtain:

5.1.4 Theorem. All the distribution spaces 2'(U), &' (U) and .’ are complete.

The following is completely trivial and therefore often a source of confusion.

5.1.5 Lemma (inclusions and restrictions).
(i) 2(U) c &£(U), the inclusion
L:9U) = &)

is continuous and hase dense image. The dual operator gives a continuous map

& U) - 2'(0)
T — L/(T)ZT‘@(U)

(ii) In case U =R"™, 7 := 9(R"™), & := &(R™), we have the relations

9CS CE
and the inclusions
119 =, jiS =&
are continuous. Their dual operators give continuous maps
i = 9 i & -
T = i'(T)=Tlyw T — §(T)=T|s.
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Proof. It suffices to check the statements for ¢, ¢, j, since refThm:DualOperator implies
the statements for the dual operatrs.

(i) Therelation Z(U) C &(U) follows from the definition. So it is clear that the inclusion
maps between the right spaces. To check continuity assume
% gy
By definition there exists K € U such that
Vj e f(:suppgzbj CK
and
VEeN: ¢ ——0
¢F(K)
Now clearly, for any other K € U
Vk e N : HQZ)J

o) = 195llgreniry < NDsllgr iy

thus

% ey ©

as well. By definition, this implies

() WO .

(ii) For i: 2 — . we argue as in the first part and check for any a, € N
Pas(05) = sup |2°DP(¢;)] < Cll¢jll a1y = 0.
zeK

For j we assume that

¢]7>0

For any K @ R" this implies in particular
V3 € N™: SU[I; |D6¢J($)| < pO,B(d)j) — 0.
TeE

Thus

O

5.1.6 Remark. We have not yet shown that the dual operators //,7',j' are injective as
well. Of course they are, but it will be much more convenient to derive this statement
later, c.f. 5.4.6.

How does a typical distribution look like?

5.1.7 Theorem and Definition (regular distributions). A distribution T € 2'(U) is
regular, if there exists f € LL (U, C) such that

Ve € 2(V): T(e) = (1)) = [ flapla)da.
This defines an injection (_) : L{. (U) < 2'(U). (This is why some people, in particular
physisics, do not distinguish between f and (f), but we will do so.) The inverse map on
the image will be denoted by ) _(: (Li .(U)) c 2'(U) — L (U).



Proof. By definition for any ¢ € Z(U) there exists a K € U such that supp ¢ C K. Since
f is integrable over any compact subset

() (@)l < /U [ (@)[|p(x)]dz < |¢

o) I fll L1 (-

Therefore (f) € 2'(U) is a distribution of order 0 by Lemma 5.1.3.
So the map ( ) : L (U) — 2'(U) is well-defined. Its injectivity is a direct consequence

loc

of the stronger statement 5.1.8 below. O

5.1.8 Theorem (Fundamental Lemma of the Calculus of Variations). Let U C R™ be
open and f € [f] € LY(U) be a representative of an L!-class. The following are equivalent:

(i) For any ¢ € 2(U): [, f(x)p(x)dz = 0.
(ii) For any measurable bounded subset M € U: [, f(z)dz = 0.
(iii) f=0 a.e.

Proof. O

5.2. Algebraic Properties
5.2.1. Module Structure
5.2.1 Definition (Multiplication by functions). Let T' € 2'(U) and f € &(U). Then

fT:2(U) - C
¢ = T(fp).

is the multiplication of f and T.

5.2.2 Lemma. For any f € &(U) the functional fT satisfies fT € 2'(U). Therefore
2'(U) is a module over &(U).

Proof. Follows from the Leibniz rule. O

5.2.2. Sheaf Structure

5.2.3 Definition (extensions and restrictions). Let V' C U C R™ be open. Any function
¢» € 2(V) can be extended by zero to a function ¢g € Z(U) (since supp ¢ € V, ¢g is still
smooth).
This defines a restriction u
pv:2'U) = 2'(V)
T — T|V,

where

Th/:@(V) — C
¢ = T(¢o).

5.2.4 Theorem (Sheaf Structure). 2’ is a sheaf of C-vector spaces on R™ (c.f. ??) (hence
on any U C). In particular it satisfies the sheaf axioms

(i) For any T € Z'(R™) and any open cover R™ = J,c; U;

Viel:T|y,=0=T=0.
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(ii) For any open cover R™ = | J;.; U; and any system T; € 2'(U;) such that
Vi,j € I:Ti|v,nu; = Tjluinu,
there exists T € 2'(R"™) such that
Viel:Tly =T
This T' is unique by (i).

Proof. Since R™ is paracompact, we may assume I to be countable.
STEP 1 (Presheaf Structure): Clearly if T € 2'(U) is of order k and K € U

Vo e I(V): [Tlv(9)] = [T(¢o)l < Cllgllen,

thus T'|y really is a distribution (of order < k). By construction 2 satisfies the presheaf
axioms.

STEP 2 (First Sheaf Axiom): Let U C R™ and assume U =
T € 9'(U) satisfies

;er Ui 1s an open cover and
Viel:T|y, =0. (5.1)

Let ¢ € 2(U) be arbitrary. Since supp¢ C K C U, where K is compact, there exists a
finite subset I C I, such that K C (J;c; U;. By Theorem 4.2.10 for any i € I', there exists
¢; € 2(U;), such that

6= ¢ (5.2)
iel’
By linearity this implies
(5.1)
T(¢) =) T(¢:) =D Tlu(s:) = 0.
el iel’
STEP 3 (Second Sheaf Axiom): Again let U = (J,c; U; be an open cover and assume for
any ¢ € I, there exists T; € 2'(U;) such that
vllvj el: CZ—HUJ’]UJ‘ = 1ﬂj|Uﬁ‘1Uj' (53)
Let ¢ € 2(U) be arbitrary again decompose it into ¢ =Y., ¢; as in (5.2). Define
T(¢) =Y Ti(¢y).
el’
We have to show that T" is well-defined, i.e. that it does not depend on the chosen decom-
position. It suffices to check

Y 9 =0e9(U)=> Tj(¢;) =0,
icJ jed
where J is any finite index set and ¢; € Z(U;). Define K := J;c;supp ¢; C U compact.

By Theorem ... (!ToDoRef) there exist functions ¢y € 2(Uy), k € J', J’' finite, such that
Y ke Yr = 1. Then ¥p¢; € 2(U; N Uy) Therefore

S T30 = (3 vkss) = 30 S Tiwns) 0N Ty

jeJ JjeJ keJ’ jeJ keJ’ jeJ keJ’
=3 N Trlnes) = D Te(wn Y ) =0
kelJ' jed keJ’ jeJ
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by hypothesis.

Consequently T is a well-defined map, which is obviously linear.

To see that it is continuous let ¢ € Z(U) again let supp ¢ C K as in Step 2 and ; 2(U;),
i € I', such that ), 9; = 1. This implies

()] = |T( X vis)| < X ITiwio) < 3 Cillvo
iel’ iel’ iel’

€Fi(K) <Cl¢

wh(K)

(!ToDo noch etwas unprézise).

5.3. Differentiation
Distributions are a perfect setting for differential operators.
5.3.1 Definition (Derivatives of Distributions). Let T'€ 2'(U) and « € N™. Then

T : 9(U) — C
¢ = (=DlIT(029)

is a derivative of T. Analogously we define DT := (—i)l*9°T".
A linear combination
P= > P.D"
lal<k

where P, € &(U) is a distributional differential operator.

5.3.2 Lemma (Properties of Differentiation).

(i) Let T € 2'(U). Then 0°T € 2'(U). If T is of order k and |o| < I. Then 0*T €
2'(U) is of order k + .

(ii) Any distributional differential operator P is a continuous operator
P:2'(U)— 2'(U).

(iii) For any k and |a| < k the following diagram commutes

ie. 9(f) = (8f).

Proof.
(i) Let K € U. By definition there exists C' > 0 and k € N, such that

Vo € 2(U) : |[T(p)| < Cllollgr
This implies
Vo € 2(U) : [0°T(¢)| = |T(0%)| < Cll0%0llgnxy < Cllellgrix)-

This shows 9% € 2’(U) and the statement about the orders.
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(ii) Follows from (i) and Lemma 5.2.2.

(iii) This is a direct application of partial integration: Let f € €*(U) and ¢ € 2(U) with
support supp p =: K € U. We extend ¢, f0;p,0;f¢ € €F1(R™) by zero, choose
R > 0 such that K € Bgr(0) and denote by v the outward pointing unit normal field
on Br(0). By Green’s formula this implies for any 1 < j <n

01) () = — (1) (D59) = — /U F(2)0;(¢) (@) dz = — /B o (@0 @

= —/ f(@)p (@) (z)da +/ 9;(f)(@)e(z)dz = (9;1)(¢),
dBRr(0) Br(0)

since supp ¢ € K. By induction we obtain the statement for arbitrary differentials
o0~.
O

This explains the mysterious sign convention: If we had not introduced the factor (—1)'0“,
the diagram were only commutative up to sign.
Also notice that there is no notion of "differentiability” for distributions: The are all dif-
ferentiable of arbitrary order. Nevertheless it would not make sense to call them smooth
since they are the most irregular objects in analysis. Differentiation of distributions works
so well, because a distributional derivative is one of the weakest possible forms of differen-
tiation.
Nevertheless there are several rules from classical calculus, which still hold.

5.3.3 Theorem (local constancy). Let U C R™ be connected and for any ¢ € C denote
by
fe:U — C
r = c

the constant function. Then for any T € 2'(U)
V1<i<n:90,T=0 <= 3ceC :T=(f).

Proof.
”=": In classical calculus this is proven by the mean value theorem, which we do not have
at our disposal. Therefore this is the hard direction.

STEP 1 (reduction to local problem): We will check that T'|y is generated by a constant
function, where V is of the form

D£V =V xICU, 0£VCR" !, 0+£ICR.

It is clear that if T'|y = (f.) and T|w = (fe), where V. N W #, this implies ¢ = ¢/,
since 2'(U) is a sheaf (c.f. Theorem 5.2.4). 5.2.4 also implies that it suffices to check the
statement for T := T'|y.

STEP 2 (vanishing criterion): We claim
vf € A1) : /f(t)dt — 0= T(f) = 0. (5.4)

I
The argument for this is the following: Extend f to a function f € Z(R) by zero. By

assumption the function

F:1 — C
x o~ [T f(t)dt
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satisfies
Fe (), F' =f.

Consequently, we obtain

T(f)=T(F")=-T'(F)=0.
STEP 3 (dimensional reduction): For any f € 2(V), define

f:v - C
T o~ [ f(@ zn)de,.

We will now prove that for any 7' € 2'(V)
T =0=3ITcP'(V):VfecaV):T(f)=T(f), (5.5)

Choose a function
v e ), / P(t)dt = 1 (5.6)
I

Let f € 2(V) be arbitrary (again extended by zero to a function f € 2(V xR) and define

g:V —» C
x=(&,xn) — [T f(&,s)— [} f(& t)dt Y(s)ds.

Since for any & € V

[ 9t ziz, = @) - F@) / b(s)ds =0,

1
this implies g € Z(V) and
Vo = (F,2,) €V : Ouglx) = f(z) = f(@)P(xn) = f(2) — (F @ ¢)(2) (5.7)
Consequently by defining the distribution T € 2'(V) by
T:92(V) — C

h — T(h®1),

we obtain
5.7 ~ ~ o~
0= —0,(T)(9) = T(0ug) "= T(f) ~ T(f @) = T(f) ~ T(}).
STEP 4: We will prove the statement by induction over n.

STEP 4.1 (n = 1): Define
c:=T(),
where 1 is from (5.6). Let ¢ € Z(I) be arbitrary. Define the function f € 2(I) by

f(z) = d(x) — b(x) /I o(t)dt.

/1 f(x)dx = /1 ¢(x)dx — /1 U(z)dx /1 o(t)dt = 0
(54)

01 =T (6= v [ 16()de) = T(6) = T(@) (1)) = T(6) = ).

We obtain

and therefore
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STEP 4.2 (n — 1 — n): By hypothesis there exists ¢ € R such that

5.5)

v € 2(V): 7(6) 2 T(d) = ()(3).
We define ¢ := ¢ and claim that T' = (f,;) € 2'(V): We calulate for any ¢ € 2(V)

7(6) = U2)0) = [ ei@ar = [ & [ ofa.a.)dods

7
— [ colmiln) = | cotwds = (7)(0)
VxI \%
”<". We simply calculate
T = 0i(fe) " (0:1.) = (0) = .

5.4. Supports

You might have been wondering why the space &’ is called the distributions with compact
support. This will be apparent in a moment.

5.4.1 Definition (support). Let T' € 2'(U) be a distribution. Then
suppT :=U\{z € U |3VCU : T|y = 0}
is the support of T. We say T is compactly supported, if suppT C U is compact.

5.4.2 Lemma (Properties of supports). Let T' € 2'(U).
(i) suppT C U is closed.
(11) T|U\suppT =0.
(iii) For any ¢ € 2(U) : suppp NsuppT =0 = T(p) = 0.

Proof.
(i) Follows from the definition.
(ii) Follows from 5.2.4,(ii).
(iii) Since V := U \ suppT is open, supp ¢ C V implies by definition
T(p) =Tlv(p) =0.
O

The following Lemma should convice you that the notion of a support of a distribution is
reasonable.

5.4.3 Lemma.
(i) If f € €°(U), then
supp(f) = supp f.

(ii) In case f € L{ (U) a point x € U is in supp(f) if and only if for all sufficiently small

loc
e>0
/ (@) > 0.
B (0)
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Proof.
(i) Let x € U. By definition

z ¢ supp(f) <= Jx e VCU : (f)ly =0
ST eVEU Ve V) 0= {(f)lv(d) = /V F(2)d()dz

L3, e VEU fly =0

<= 1z ¢ supp f.

(ii) Assume z ¢ supp(f). Then there exists § > 0 such that (f)|g;() = 0. By 5.1.8 this
implies f|p;(,) = 0 a.e. Consequently for any 0 <& <4

/ (@) =0,
B:(x)

Conversely assume

/ @) =0
B:(z)

for all sufficiently small € > 0. Take any such €. By 5.1.8 again, f|B€(x) =0 a.e. and
¥ € 2(B.):0= [ fla)o(w)ds = (1)(9),

B:(z)

thus = ¢ supp(f).
O

5.4.4 Theorem (Distributions with compact support). Let U C R™ be open. Denote by
t:P(U) = &(U) the canonical inclusion from 5.1.5.

(i) We claim
J(E(U)) = 2.(U)={T € 2'(U) | T has compact support} C 2'(U)
and ¢/ is a linear homeomorphism &”(U) — Z.(U). The inverse //~! : Z(U) — &'(U)
may be explicitely computed as follows: Let T € 2.(U) with compact support
suppT =: K, let K € VCU, ¥ € 2(U) such that |y = 1 and ¢ € &(U). Then
THT)(9) = T(v9).

(ii) Theset &' (U) = 2.(U) c 2'(U) is dense. For any T € 2'(U) there exists a sequence
T; € &'(U) such that
T, ——T
@/
and for any K € U there exists j(K) € N such that
Vi = j(K):Ve € Ix(U): Tj(p) = T(p)-

Proof.
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STEP 1 (/(&'(U)) C Z.(U)): Let T € &' (U) be arbitrary. Since T is continuous, Theorem
3.1.22 implies, there exist constants C' > 0, k € N, and a K &€ U, such that

Vo e EU) : T ()] < Cllollgnx)

We claim that supp/(T') = supp 7|y @) C K: Let x € U\ K. Since this is open, there
exists an open neighbourhood V-C U \ K of z. For any ¢ € Z(V'), we obtain

T () < Clle

(gk(K) - 0.

Thus Ty = 0. Therefore x ¢ suppT and consequently supp ¢/ (T) C K. At this point we
have established that
JE'U) — 200)

is a continuous linear map.
STEP 2 (/! is well-defined): Assume ¥y,99 € 2(U), K € ViCU, K € V,CU and
Yy, = ¥|y, = 1. This implies

Vo € &U) : supp((¢1 — 2)p) N K = 0.

Since (Y1 — 2)p € 2(U), we obtain

022 T((4h1 — o) @) = T(¥1¢) = T(¥29).

Thus /' : 2,(U) — &'(U) is a well-defined linear map.
To see that it is continuous, let T' € Z.(U), K := suppT, ¢ € 2(U) such that ¢|y = 1.
By 5.1.3 T has some order on K, i.e. there exist constants Cy > 0, k € N, such that

Vo € E(U) : [VTHT)N(9)] = [T (o) < Cilvsller ) < Calldllgr xo):

where the last inequality follows from the Leibniz rule. Therefore J/~}(T) € &'(U) by
Theorem 3.1.22.

STEP 3: Let T', K, ¢ be as above. For any ¢ € 2(U) the function ¢ — ¢ = (¢p — 1)¢
satisfies supp(y) — 1)¢ N K = ). Therefore

5.4.2

0" ="T(¥—1)¢) =T(v¢) —T(9).
We obtain
S(THT))(9) = HT)(U(9) = T(ve) = T().
On the other hand, for any T € &' (U), ¢ € &(U)

CTHAD) (@) = (D) (o) = T(ye) = T(¢)

by the same reasoning.

STEP 4 (dense image): Let T' € 2'(U). We have to show that there are T; € Z.(U) such
that
T, ———1T.
7'(U)

Define the compact exhaustion

Kj={zeU]||z|<jdz,R"\U)>

<.
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(In case U = R™, just drop the second condition and set K := B;(0).) Chose ¢; € 2(U)
such that

VYilk, =1, supp¥; C Kjt1.
Define Tj € 2'(U) by
Vo € 2(U) : T(¢;0).
Then suppT; C Kj11 and thus Tj € Z,(U). Let ¢ € 2(U) and supp ¢ =: K. This implies
Vj € N :suppvyjp C K.

For almost every j, we obtain 9|k = 1, thus

%‘PWSO-

Since T is continuous
Tj(p) =T () ——T(p) -
By definition, this implies

T ;
7'(U)

T.
O
5.4.5 Convention. From now on we will no longer distinguish between Z.(U) and &”(U).

5.4.6 Corollary. Lemma 5.1.5 may now be restated by saying that there are continuos
inclusions

9c Fc &,

e S P,

all of which have dense image. (We consider these spaces on U = R™. In case U # R"
one has to ignore . and .7".)

5.4.7 Theorem (point support). Let T € &'(U) be of order k and suppose there exists
a € U, such that suppT = {a}. Then there exists ¢, € C, such that

T = Z C00%5,.

la|<k
5.4.8 Lemma. The map ( ) : &(U) — 2'(U) is an embedding.

Proof. We already know that it is injective.
STEP 1: !ToDo

STEP 2: To see that the inverse is continuous, we have to show that for a sequence u; €
&(U), such that

this implies

93



Assume to the contrary there exists K € U and infinitely many j € N (for notational
convenience we will assume all j € N), an ¢ > 0 and an o € N, such that

VjeN Ve K :|07u;| >¢e > 0.

We may assume that K is connected, thus d%u; is either stricly positive or negative. We
assume the further and choose ¢ € Z(U), 0 < ¢ < 1, such that ¢|x = 1. This implies

0= | lim (u,)(@50)| = (-1)° Jim (@2u;)(0)] = | SRus()(o)dn > [ Sus(o)plords > (K,
J—0 U K

Jj—o0

which is a contradiction.

5.5. Convolutions

Remember the notation from 4.4.20.

5.5.1 Definition (Convolution). Let T € Z'(R™) and ¢ € Z(R™). For any € R"™ define
Tz : R" = R" by y— R(7—) =2 —y. Then Tx ¢ : R™ — C defined by

= T(poty) =T(y — ¢z —y))
is the convolution of T with .

5.5.2 Lemma (paramatrized Test functions). Let U C R™, V C R™ be open, ® €
E(U x V), K C U compact, such that supp® C K xV, T € 2'(U). Then Ty : V — C,
defined by

y = T(2(_,y))

is smooth and
Ty = T(D(_y)).

5.5.3 Theorem (Properties of convolutions).
(i) Convolution defines a bilinear map * : Z'(R™) x 2(R"™) — &(R"™) and * : &' (R™) x
ER™) — &R™).
(ii) In case T'= (f), f € L .(R™)

(fYxo=fx*p.

(iii) The supports satisfy
supp(T' * ¢) C supp T + supp .

(iv) The differentiation theorem holds analogously as
ONT xp) =0T x o =T x 0%.
(v) * is continuous in both factors.

Proof.

(i) Bilinearity follows from the definitions and the smoothness from Lemma 5.5.2.
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(ii) We calculate
Ve eR: () xp)@) = {filpete)) = | fly)ele —y)dy = (f*e)().

(iii) Let z € R™ such that
07 (Txp)(z) =T(poTz)).

This implies T' # 0 and there exists some y € supp T'Nsupp ¢ (by 5.4.2). By definition
there exist y; € {z € R™|(p o 7_;)(z) # 0} such that y; — y. This implies

VjeN :0# (por—)(yj) = ¢(z—y;) = Vj € N : z—y; € suppp = x—y € supp ¢.

Alltogether
x € supp 1’ + supp ¢.

By taking the closure of all such x this implies the statement (since + is continuous).
(iv) We calculate

1o} o . 5.5.2 a . o .
G (T xp)(x) = 0;(T(poTr))) =" T(0;(poT)) =T(0;po0T)),
which on the one hand equals (7" * 0%¢)(x) and on the other hand

T(07(p o)) =T (y = ¢z —y)) = (=T (y = p(z —y)))
=0T (poTy) = (0T % p)(z).
(v) Laut Hormi ist immerhin T* stetig. (p. 101) !ToDo Assume

This implies there exists a compact K C R", such that ¢; C K. By definition T" has
some order k on K. Thus

Vo € R™ [T x pj](z) = [T(pj 0 72)| < Cllgj o 7a)llgr iy = Cllwjllgr k) — 0.

Clearly this implies
Ve eR"™: @jofxTO

and therefore
Ve e R": (T *¢j)(x) =T(pjoTz) ——0
T, ——0
_0]/
and let o € Z(R™). Let K C R™ be any compact subset. We obtain

1T * pllgr ) = max max |0%(T} * ¢)|(x)

5.5.4 Lemma. Let p € (gg (R™), ¢ € €2(R™). Then the Riemann sum satisfies

> kezn P © Tenh"Y(kh) % p*P

0
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5.5.5 Theorem (Associativity). Let ' € 2'(R"™), ¢, € Z(R™). This implies
(Tx ) ) =T x (0 x).
Proof. !'ToDo O

5.5.6 Lemma. For any f € Z(R"™) we obtain
Vo € IR™) (T + [) () =T(f * ¢).

Proof. We just calculate

(y)dy

I
N
*
~
~
|
<
~—~
BS)
0
<
~
U
<
I
3
—~~
N
*
o
—~
)
|
<
~—
¢

T = [ @ Do)y
= (T* ) x¢)(0) 7

where in the last step we used that

((fx@)oto)(z) = (fxp)(—x) = [ f(—2—y)p(-y)dy = /n fx+y)p(—y)dy = (f*xp)(x).

5.5.1. Singular Support, Regularity, Regularization

Approximation is a standard application of the convolution in classical calculus. We are
now in a position to further develop this theory in the context of distributions. In 5.1.7 we
considered a distribution 7" to be regular if it may be identified with a function f € Llloc‘
The general idea behind this is, that a distribution is something of "worse” regularity than
a function. However this way of thinking has two serious disadvantages: First of all LllOC is
not a space of particularly "nice” functions. So even a "regular distribution” in the above
sense is still a rather "irregular” object. The second problem is, that this point of view
is rather rigid: Just as a function it may be very regular somewhere and very irregular

somewhere else. The following definition makes this idea precise.

5.5.7 Definition (Singular Support). Let 7' € 2'(U). Then
sing-supp T := U \{x € U |IVCU :3f € &V) : Ty = (f)}
is the singular support of T. We say T' is smooth if T' = (f) for some f € &(U).

Notice the similarity to the definition of the support of T in 5.4.1.

5.5.8 Lemma (Smooth Approximation). Let T € 2'(R™) and let 7. be the standard
mollifier from 4.4.5 (or any other Dirac sequence). This implies

Proof. We already showed in Lemma 5.5.6 that

Vo € 2(R™) : (T xn:) () = T(7e * ).
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Theorem 4.4.6 from classical calculus implies

. r™N\0
776*‘)07)907

and thus
. \0
T x ) —=—T(p) -
Therefore

(Txney——T .

_@/

O

5.5.9 Theorem (Smooth Approximation). The map ( ) : Z(U) — 2'(U) has dense
image. So for any distribution 7' € 2'(U) there exists ®; € 2(U), such that

Proof. Let T' € 2'(U). We already showed in Theorem 5.4.4, that &(U) C 2(U) is dense.
Therefore there exist T; € &(U), such that

T ——T.
9/

Let K C U be compact. We also showed in 5.4.4, that there exists j(K) € N, such that
Vi z j(K) : Vo € Ik (U) : Tj(p) = T(0). (5.8)
Let

| =

Kj={zeU]||z|<jand d(z,R"\U) > =},

where the second condition is dropped in case U = R™. Let 7. be the standard mollifier.
Define

<

®; = Tj(KQj) *Me(5)
where ¢(j) := % By Theorem 5.5.3 we obtain ®; € Z(U). We have to show, that

Vo € (U : (8))(0) 5 T(e).

Therefore let ¢ € Z(U). There exists | € N, such that supp ¢ C K;. This implies

5.5.6 (5.8)

Vi > 1@ () = (Tjtroy) * M) (@) = Ttk Uley ¥ 0) = Ty * ). (5.9)

Now
Vij > 12 supp(i(j)) * ¢) C suppije(;)) +supp e C Byy3;)(0) + K; C Ko,
which is compact. By classical calculus (!ToDo ref)

j—00

Vk €N 1 i %0 s
€ 778(]) * @ %k(U) 2
This implies
. j—00
Ne(j) * ¥ T(U) ®

and therefore

T () * ) = T(p) -

By (5.9) this implies the statement. O
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5.5.2. Distributional Convolution

We are in a rather assymetric situation so far since we only defined the convolution of a
distribution with a function. In this subsection we will go one step further and define the
convolution of two distributions. Unfortunately this is not always possible. Before we can
start, we require the following technical lemma.

5.5.10 Lemma (Translation invariance).
(i) The convolution * : Z/(R™) x Z(R™) — &(R™) commutes with all translations, i.e.

VheR": (Txgp)or,=Tx(porp).

(ii) Conversely, let F': Z(R™) — &(R™) is a continuous linear map, that commutes with
all translations, there exists a unique distribution 7' € 2'(R™), such that

Vo e Z2(R"): F(p) =T * .
(iii) In particular: Two distributions 77,75 € 2'(R™) are equal if and only if
Vo e 2(R™) : Ty xp =Ty * .

Proof.
(i) Let h,x € R™ be arbitrary. The simple calculation

VyeR" : (mpofp)(y) =m(z—y) =z —y+h=ax+h—y="pny)
directly implies
(Txp)om)(@) = (T'*)(x+h) =T(poTorn) =T(poThots) = (T (pom))(x)
(ii) The hypothesis can be expressed more precisely by
Vhe R" :Vp € Z(R"™) : F(p) o, = F(pop). (5.10)

STEP 1 (Uniqueness): Assume there exists a distribution 7' € 2'(R™), such that
F(p) =T % ¢. This implies

T(p) =T(poto) = (T *¢)(0) = F(p)(0).
STEP 2 (Existence): So we have no choice but to define T': Z(R™) — C by

@ = F()(0) = do(F(p)),

which is a distribution. By hypothesis it satisfies

F(o)(@) = (F(9) 0 7)(0) P27 F(p07,)(0) = T(p o) = (T + ) (x).

(iii) This follows by combining (i) with (ii).
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5.5.11 Theorem and Definition. Let 771,75 € 2'(R™) and let at least one of them be
compactly supported. The map F : Z2(R") — &(R"™), F(p) = T1 % (T2 * ) is linear,
translation invariant and continuous. The unique distribution 7', such that

Voe PR™) : Ty x (Tox ) =T x* ¢
is the convolution of T1 and To. We define
Ty Ty :=T.

By construction the convolution between distributions is associative with the convolution
of a distribution and a function, i.e.

Vo e QR™) : (Th xTo) x o =Ty * (Th x ). (5.11)

Proof. The map F is linear and continuous by Theorem 5.5.3 and translation invariant
by 5.5.10,(i). Hence by Lemma 5.5.10,(ii) there exists a unique distribution 7', such that

Vo€ P(u): Txp=F(p) =T (Taxp).
0l

Before we prove anything about this distributional convolution, we notice, that we obtain
another equality criterion for distributions.

5.5.12 Lemma. Two distributions 71, Ty € 2'(R"™) are equal if and only if

Vo, € IR™) : Ti+ (px 1)) = To* (9 *1).
Proof. By Theorem 5.5.5 the hypothesis implies

Vo, € ZR™) : (Ty x @) xp = (T * ) x .
By Theorem 5.5.3,(ii) this is equivalent to

Vo, € IR") : (Ty + @) xtp = (T x ) x .
By Lemma 5.5.10,(iii), this implies

Vo e 2(R™) : (Ty x ) = (T * ).
Since (_) is injective by 5.1.7, this implies
Voe 2R™) : Ty xp =Ty * .

Using 5.5.10,(iii) again, this implies the statement. O

5.5.13 Theorem (Properties of Convolutions). Let T, T1,T»,T5 € Z'(R™), f € Z(R™).

(i) If one of the three distributions has compact support
(Tl * TQ) * T3 = T1 * (T2 * Tg)
(ii) The convolution may be explicitely computed by

(Ty * To) (@) = Th (T2 * ).
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(iii) The convolution is commutative, i.e.
Tl *TQ :TQ*Tl.

(iv) The delta distribution is a neutral element, i.e.
Va e R" : 0% f=fand T x0, =T.
(v) The support containment remains valid, i.e.
supp(T * T) C supp 11 + supp T5.

Proof.
(i)
(i)
(iii) The idea is to use the equality criterion 5.5.12. For any ¢,9 € Z2(R") we calculate

(5 (iv)
)

(T« Ta) % (9 x ) "2 Ty x (Ta x (0% 9)) 2 Ty x (T v ) x 9) 2

(T x ) * (T % ) A2 (Tox @) x (Ty x ) = (T T1) x (9 * ¢),

Ty (Y * (T2 %))

where in the last step we applied all the others before in reversed order and with the
roles of T, T interchanged.

(iv)

(v) Let n. be the standard mollifier. We obtain

5.5.3, (i)
supp((T1¥1%)*n.) = supp(T1(To*n:)) C  supp Ti+supp(Ta*n.) C supp 11+supp To+B:(0).

This holds for any € > 0 and therefore the statement follows from 5.5.8.

5.5.14 Theorem (Singular Support). Let 71, T» € Z2'(R™). Then
sing-supp(71 * Ta) C sing-supp T} + sing-supp T5.

Proof. Hormi 4.2.5 O

5.6. Products

!ToDo Hier unbedingt nochmal in den Friedlander / Joshi schauen We already encountered
distributions over product spaces as some technical issues in proofs. In this chapter we
will systematically introduce this topic and prove Schwartz’ celebrated Kernel Theorem.
In this section let Uy CR™ and U, CR™,

5.6.1 Definition (Tensor product). For any two functions ¢ € 2(U), ¥ € 2(V), the
function ¢ @ ¢ : U x V — C defined by

(z,y) = (@)Y (y),

is the tensor product of ¢ and .

Tensor products behave fantastically with respect to integration.
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5.6.2 Lemma (Properties of tensor products).
(i) We obtain ¢ @ p € 2(U x V),
VK €U xV :Vk € N : [l ® ¥llgr iy < [l0llgh (my (50 19155 (e (1))

and
Supp 1 ® 2 = Supp @1 X supp 2.

(ii) For any ¢1 € 2(U1), ¢2 € 2(U2)

/leU2 (01 @ p2)(z,y)d(z,y) = /U1 o1 (2)dz /UQ (1) dy.

(iii) Furthermore the generated regular distributions satisfy

(1 ® p2) (Y1 ® P2) = (1) (Y1) - (p2)(¥2).

(iv) The tensor product defines a continuous bilinear map ® : Z(U)x 2(V) — 2(U x V).

Proof. (i)
(i)
(iii)
(iv) We show, that ® is continuous in both factors. Since the situation is symmetric it

suffices to check, that it is continuous in the first factor. Therefore assume there is a
sequence p; € Z(U), such that

‘i w "

and let ¢ € Z(V) be arbitrary. By definition there exists a compact K € U, such
that all j satisfy ¢; C K and

By definition there exists a compact L € V, such that supp ¢ C L. Therefore
VieN:suppp; @Y C K xLeUxV

and
VkeN : H(pj ®¢H<€k(K><L) < ”SOjH%k(K)ku%k(L) — 0.

O

The fact that regular distributions are dense gives rise to the hope, that the distribution
space over a product behaves equally nice.

5.6.3 Theorem and Definition. Let Ty € 2'(Uy), T € 2'(Us). There exists a distri-
bution T' € 9'(U; x Us), such that

VgOl € .@(Ul) ZVQOQ (S .@(Ug) : T(gOl X QOQ) = Tl(ng)Tg(ng) (512)

and any two distributions T, T" € 2'(U; x Us) which agree on all tensor products are equal.
This distribution satisfies

V¢ S .@(U X V) : T(w) = Tl(.l‘l —> TQ(xQ —> w(wl,l‘g))) = T2($2 — Tl(acl —> w(xl,xQ)))
(5.13)
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and is called the tensor product of T1 and Ts. We define
Th®Ty:=T.
Analogous statements hold if 2’ is replaced by &”.

Proof.
STEP 1 (Uniqueness): It suffices to check the following: Let T' € 2'(U;y x Us) be a distri-
bution satisfying

Vo1 € 2(Uy) : Yoo € 2(Us) : T(p1 @ ¢2) =0, (5.14)

then T' = 0. In 4.4.5 we constructed the function 7 for an arbitrary R™. Let n; € €>°(R"),
j = 1,2, be these functions and (71)e, (72)e be the associated dirac sequences as in 4.4.5.
Then 7. := (m1)e @ (n2)e is a dirac sequence in R 72, Therefore by 5.5.8

T %, T.
( *ﬁ)W

Now for any (x1,x2) € Uy x Us

(T 1e) (@1, w2) = T(ne 0 71361@2) =T(((m)e o Tay) @ ((M2)e © 7V—$2)) (5é4) 0.

I'ToDo: Hormander argumentiert hier irgendwie anders. Kann sein, dass das Problem darin
besteht, dass T eigentlich keine Distribution auf R" is.

STEP 2 (Existence): We wil define the distribution 7' : 2(U; x Us) — C as follows: Let
¢ € P(Uy x Uz) and first assume there are compact subsets K; C U, j = 1,2, such that

supp ¢ C K x Ko. (5.15)
Since Tj is a distribution

3C; > 0:Yp; € Zi;(Uj) + [ T(03)] < Cillojllgns (5.16)

)
Define I, : Uy — C by
T = Tg(ﬂ?g — (p(l’l, IL‘Q))

By Lemma 5.5.2 I, € Pk, (U) and
VYa € N™ : 03 I(x1) = Tao(z2 — 0F, @(x1, 22)).

Therefore
(5.16) (5.16)
T < Cilllalgngy < CiCallg

gmax(k1,k2) (K1 x Ky)*

So by defining T'(¢) := T1(I,), we obtain a continuous functional on the subspace of all
v € 2(U; x Uy) satisfying (5.15). Clearly all tensor products belong to this space and
satisfy

Vo € D(Uj) : T(p1 @ 92) = T1(Ipi0p,) = Ti (21— To(x2 = (01 @ 2)(21,72)))
= T1(z1 = Ta(x2 = p1(21)p2(22))) = Ti(z1 = 1(21) T (w2 = p2(22))) = T1(e1)Ta(p2),

thus (5.12) is satisfied on this subspace as well as the first part of (5.13) (by construction).
Now suppose ¢ € Z(U; x Us) and suppp € K C Uy x Uy is arbitrary. Then K admits
a finite cover {U;};=1,. n of product open sets. Take a partition of unity {¢;}i=1 . n
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subordinate to this cover. Then every ;@ has a support contained in a compact set that
is contained in the product of two compact set in Uy and Uy. Therefore

N
T(p) == Z Yip
i=1

is defined by what we have already constructed and satisfies (5.12) and the first part of
(5.13) by what we have already proven. By uniqueness this definition does not depend on
the chosen partitions of unity. If we interchange the roles of j = 1 and j = 2 in this proof,
we obtain an operator T satisfying the same properties, but the second part of (5.13)
instead of the first one. Again by uniqueness they have to agree.

O

The following is the most important and most famous theorem concerning distributions
over product spaces.

5.6.4 Theorem and Definition (Schwartz kernel theorem).
(i) Let K € 2'(Uy x Us). Then ¥ : 2(Us) — 2'(U;) defined by

Y= (o= K(p© ) (5.17)

is a continuous linear operator.

(ii) For any continuous linear operator ¢ : 2(Uz) — 2'(U;) there exists a unique
K € 2'(U; x Us), such that (5.17) holds. We call K the Schwartz kernel of A .

Proof.

(i) The linearity is obvious.
STEP 1 (£ (%) is continuous): We have to show, that for any ¢ € 2(Us), we obtain
H (Y) € 2'(Ur). To that end let ¢; € Z(Uy), such that

By 5.6.2 ® is continuous in both factors. Therefore, this implies

SO] ® dj.@(Ul XUQ?

and since K is continuous, this implies
H(V)(e5) = K(pj ® ) ——0.
STEP 2 (J# is continuous): Now assume that
i — 0.

77/).7 @l(UQ)
Now let ¢ € Z(Uy) be arbitrary. Again since ® is continuous by 5.6.2, we obtain
¢'7 ® SO@(leUQg)
and since K is continuous, we obtain

K(¢5)(¢) = K(¢; ® ¢) ——0.

Since ¢ was arbitrary,
K(j) —— - 0.
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(ii) We split the proof into two parts.

STEP 1 (Uniqueness): This is the easy part: Assume there are two distributions
Ky, Ky € 92'(Uy x Usy), such that

Vo € Z(Ur) : V2 € D(Us) : Ki(p X ¥) = H (V) (p) = Ka(p @ ).

Then the uniqueness part of 5.6.3 immediately implies K1 = K.
STEP 2 (Existence): This is the hard part. Let j = 1,2.
STEP 2.1: By definition there are constants C' > 0, k;, such that

Vi € D, (Uh) : Vi € D, (Ua) = | (9) ()] < Cll

Thus 5 : Pk, (U1) x Pk, (Uz) = C, (¢,v) — # (¢)(1), is continuous in both factors.
Since the domains are Frechét spaces, this implies that 3 is continuous (c.f. 3.2.2).
STEP 2.2 (Construction of K.): Choose functions ¢; € Z(R™), j = 1, 2, satisfying

v (k) 1Y

P >0, / Yj(x)de =1, supp¢; C B1(0) C R™,
R™
for example the function n from 4.4.5 (for n = ny, n2). Notice that

supp (yj — zp<@>> C B.(xj). (5.19)

Assume that K; C Uj is a compact neighbourhood of the open sets Y; C K; C Uj
and that 0 < e < d(Y},U] \Kj> Define K. : Y1 x Yy — C by

o e (22 1 (252)

This is well-defined by (5.19) and the choice of ¢.
STEP 2.3 (Wait!): Let’s make some explainatory (logically superflous) remarks here

to clarify, why we chose K. as we have done: Assume we had already found our
desired (such that (5.17) holds) K € 2'(Y; x Y3). Then by 5.5.8 this would imply

Now the definition of K. states precisely that

Ke(z1,22) = Ji/(yz = E*”Q%bz(m — y2>) (y1 = a’"ldil(xl — y1)>

c 3
D K ((1): 0 7y © (W2)e 0 T2y) = K((11): ® ($2)c 074y ) = (K % o) (a1, 22).
=0,

Thus K. = K % W.. Of course this is not a proof, since we have not yet constructed
K, but it outlines the way how to do it.

STEP 2.4 (K. has a limit): We would like to show, that (K.) has a limit K €
2'(Y1 x Ys) and that this is the K we are looking for. By (5.18) we obtain

V(xl,a}g) €Y xYy: |K5(1'1,$2)’ < CH’¢1 O Tay

. .
wh1 (1) 192 © Taallighs (1) < C'e™,
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where p :=ny + ns + k1 + ko.
Now let ¢ € &(R™) be arbitrary and define ¢;(z) := —x;j1(x). We calculate

O-(e""Y(x/e)) +Z:€] o5 (€7 (w/€))

= —ne"Y(x/e) — ”HZ@]@Z) x/e)e” +5_”_lzn:mj0mj¢(x/e)
j=1
= —ne"(/e)

n n

D Ou e Py(x/e)) = =Y Oy (wjib(a/e)) = —e Y w(x/e) + w;05(0) (w/e)e
j=1

j=1 j=1

— —ne(a)e) e lzx] o;0)(x/e)

= e0-(e ™Y(z/e)) —i—ZxJ e (€7 Y(x/e)) — e IZx] (059)(z/e)

n

:585(5 x/g -n= 1ij ac] :L'/E 8771712.%']'6%(1#)(%/6)

j=1
= e0:(e7"Y(x/e))

O-(e7™p(x/e)) = —ne " lap(x/e) — ™ QZajw x/e)

7j=1

'ToDo
O

5.6.5 Theorem (Smooth Kernels). Assume K € &(U; x Uz). Then % has a continuous
extension ¥ : &' (Uy) — &(Uy). In case # : &' (Us) — &(Uy) is linear and continuous its
Schwarz Kernel K satisfies K € & (U x Us)

Proof. ToDo O
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5.6.6 Theorem. Let U CR"™, Uy CR™2 and F : Uy — Uy be smooth. Then

F*Z.@(Ug) — .@/(Ul)
b= (F ()

is a continuous operator and its Schwarz Kernel is given by

K:@(U1XU2) — C
o = = [y Oz, F(x))dz.

Proof. The result will follow from the Schwarz Kernel Theorem 5.6.4 after we have proven
the following.

STEP 1: We calculate for any ¢ € 2(Uy), ¥ € 2(Us)

<F*(¢)>(¢)=/U F* () (2)p(z)dr = . (F(z))p(x)dx
! ! (5.20)

_ /U (¢ @ ) (x, F())de = K(p ® )

STEP 2 (F* is continuous): Clearly F* is linear. Assume
Yi 2w °
For any ¢ € 2(Uy)
Va € Ur: 9 (F(2))p(r) —— $(F(x))p(x)

and [¢;(F(z))¢(z)| < Cle(x)| € L1(Uy). Thus, by Lebesgue dominated convergence,
fU1 Vi (F(z))p(z)ds — fU1 »(F(x))e(x)dz .

By (5.20) this proves the claim.
STEP 3 (K € 2'(U; x Uz)): Assume

P —— 0
.@(UlXUQ)

and supp; C L € Uy x Us. Define L := m(L) € Uy and calculate

K (@) < g |©;(, F(x))|dz = : @ (z, F(x))|dz < | L[| ®jllg0 @, xvm) = 0
1 1
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5.7. Fourier Transform

Nach Hormi Definition 7.1.1 D is Dense in S 7.1.8 Fourier is Iso S’->S’ 7.1.10 Fourier is
smooth 7.1.14 Distribuational Convolution Theorem 7.1.15 Dualization of Diagonalization
Properties
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5.7.1 Theorem (positive Distributions). Let u € 2'(U) be positive , i.e.
VYoe 2(U):p>0= u(p) >0.

Then there exists a Borel-measure p, such that

u(p) = /U edy.
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6. Sobolev Spaces

"We are Grey. We stand between the darkness and the light.”
DELENN, 2259

We have gone to heaven, we have gone to hell. Now we are down to earth. Functions in
a Sobolev space are beeings in between. The first major problem one encounters when
starting Sobolev theory is the definition of the Sobolev spaces. In the literature you will
find dozens of definitions on different levels of abstraction suited for a large variety of
different purposes. Dealing with all these purposes and treating Sobolev spaces completely
is far beyond the scope of this book. In a first step we will however introduce some common
definitions and show that they agree whenever this is senseful. Then we will establish all
the theorems suited for our purpose, namely the study of pseudo-differential operators on
hermitian vector bundles.

6.1. Local Theory
6.1.1 Lemma. For any s € R there exist constants ¢y, cy > 0, such that
VEER™ (14 [E)* < (1+[¢P)° < ea(1 + [€])*

Proof. All expressions are positive, so taking the power to s is legitimate as well as taking
the power to 1/s. Therfore it suffices to check the statement for s =1.
By the binomic formulae

(1+ 16D =1+ [¢]* + 21¢].

Therefore
Qi 2 e,
1+ [¢[? 1+ ¢ ’
[ 4 S ot
L+ 1+ +20g —
Since convergent series are bounded, the result follows. O

6.1.2 Lemma. For any k£ € N there are constants ¢y, ca > 0, such that

al -+l < Y

la|<k

6.1.3 Definition (Sobolev Space). For any s € R define the s scalar product { , )s :
S xS = C by

(f:9)s = (A + [N F(f), A+ [E)°F(9) 2rm) = /Rn (L+ N> (F(f), Flg))crde

and denote by || _||s the induced norm. The completion of (., | ||s) with respect to this
norm is the Sobolev space of order s. We denote this space by

HS — 7l s
The following facts are immediate.
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6.1.4 Lemma. Let s € R.

(i) The norm || _||s is equivalent to
2= [ s lePrE o Pe
Rn

(ii) The space (.,(_, )s) is a pre-Hilbert space.

(iii) H* is a Hilbert space.

(iv) . C H® is dense.

(v) If &' > s, then H® C H® and the inclusion ¢ : H® < H® is continuous.
)

(vi) For any s > 0 there is an inclusion H® < L?.

Proof.
(i) This follows directly from 6.1.1.
(i) Since V€ € R™ : 1+ |£| # 0, this is clear.
(iii) By definition.
(iv) By definition.
) -
)

—~

v
(vi) This follows from the fact, that H° = L2.

6.1.5 Definition. Let U C R"™ be any open. For any s € R, we define
H (U) %M(U)” HS .' .
H*(U) is the closure of €2°(U) with respect to the || ||s-norm.

6.1.6 Lemma. H*(R") = H°.

Proof. It suffices to check that €°(R"™) C .# is dense with respect to the || _||s-norm.
Therefore let f € .77, let R™ = Ugen Bi(0) be an open cover, let {¢}ren be a partition
of unity subordinate to this cover and fi := ¥ f € €°(R"™). Clearly

fo 5w £ | ful < IS

Thus by Lebesgue dominated convergence, we obtain

fk I

L2(R™)

Since the Fourier transform is continuous in this topology by Plancharel’s Theorem (c.f.
?7), we obtain

(fk) Rn)f(f) ~
This implies

Tk I

—
_lls
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6.1.7 Theorem (positive integer case). Let k € N5g. The norms || || and

e = 3 | 107 )P

la|<k
are equivalent on .%.

Proof. By 6.1.4,(i) the norm || || is equivalent to | _|i. It therefore suffices to check that
| |k is equivalent to || ||y.2.
STEP 1: We claim that there are constants C7,Cs > 0, such that

VEER™:Cr(1+ )" < D 1€ < Co(1+ €. (6.1)

| <k

To see the left inequality let &’ be Holder conjugate to k. By the Holder inequality on
Rn—i—l

L€ = KA, (L& @ Drnn ] S N DI lIL & €D s

which implies

(L1 < L DI (14285 ) <ot Y Je,

=1 <k
:0;1 J o<

where the last inequality holds since on the right and side we are summing positive numbers
over a larger index set: In particular we sum over o = 0, which corresponds to the summand
€92 = 1 on the left and side. And among all the |a| = k there are in particular all the
ke;j, 1 < j < n, which corresponds to the summands |gkei |2 = §]2-k on the left hand side.

On the other hand since |£¥] < |€]l*l by A.2.1, we obtain

DTIEP <Y (EP< da+gP < Y a+ P < a+EPr >0 1.

lal<k lal<k lal <k lal<k jal<h
——
=:C4q

STEP 2: We calculate

If\iZ/Rn|(1+!§I2)k!9’(f)(§)|2d§(6§1)C Z/ T (©)2de M2 Z/

| |<k; | \<k
z ¥ / 0 (YO PdE = 1120

la|<k
and similar

e = 3 [ lor@Pas® Y [ 1R Pt S [ e rpn©Pas

la| <k la|<k la| <k
(6.1)

<0 [+ KPR = Calfi
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6.1.8 Lemma. For any o € C, the map A® : ¥ — ., f — A%(f), where A*(f)(§) :=
FHA+ED2(F(f)(€))), exstends to an isometry H® — H5"Re< whith inverse A~®. For
any B € C, A8 = A~ + AP,

Proof. We calculate

IA%(H)1Z-Rea Z/Rn(lﬂfl)zsQRG“(1+|€!)2“(F(f)(§))!
—/n(1+ N>R + g2 e (F (@) = Iz

For any 5 € C
ATP(f) = FHAHE P (F(£)(E) = FHAHEOF(F A+ (F()(©))) = (A%A7) ().
and clearly A°(f) = f. This implies the statement. O]

6.1.9 Theorem (Sobolev Interpolation). Let s,s' ¢, € R, such that s < t and s’ < ¢'.
Assume T € Z(H*, H*') and T(H') ¢ H". Then for any 6 € [0, 1]

T e g(HGtJr(lfG)s’ Hat’+(170)s’)'

Proof. The case § = 0 holds by hypothesis. We will prove the continuity by the closed
graph theorem.

STEP 1 (Case § = 1): We have to show that T € Z(H*, H"). To that end assume

By 6.1.4, the inclusions H' < H® and H' < H* are continuous. Thus

HS

By hypothesis T : H® — H?' is continuous. Therefore T(z) =y in H*" and thus in HY'.
STEP 2 (Case 0 < 6 < 1): Let f,g € . and define u : Q :— C, z — (f, (A1=2)s'+2t" o
T o A==Ds=2t)(g)). Here we use the notation of Lemma 6.1.8 above. The function u is
holomorphic on €. Let z € Q and calculate

[u(z)] = [(f; (ATT7FT A7) (g)))) 2] = (AT (f), A (T A (A7) (9)) 12|
< AT 2 AT (T AT A (@) 2 < AT (D2 T lls—50 A (9) | 2, (6.2)
6.2

where the last inequality can be seen as follows: Since z € €, we obtain Re z € [0, 1]. Since
t' — s’ > 0 by hypothesis, this implies

(141D =2 = [(1+ ¢ D Re 2| < [(1+1¢))>* ).
Thus Plancharel’s Theorem implies

IAZE=D ()12 = IF (L + DN F (N7
< [+ [EDRENF (DT = A" ()17
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Similar, since s —t < 0 by hypothesis
(14 €)27D7 = (1 + [>9I R < 1.

Again by Plancharel’s Theorem HA(S%)Z(Q)HH < AH(g) || e
Furthermore,
[A* o T o A 22, 22) = 1Tl prs sy = 1T Ml s—>s-

by 6.1.8. The outcome of this is, that u is bounded on € and holomorphic on  anyway.
Now we want to apply 3.3.1 and calculate for any y € R

. 62) —iy((t'—s")) 1y(s—t)
uiy)] < A (22T ls— A7 < [ fll 2 gl 2] [T lls—>s
——

=:Mp
u(1 + iy)| = [(f, AU IFRDHOE) (AU = () (g )|
= (£, (A" o T o A™Y(g))| < [Ifll22 | Tlli—> llg]
———
::Ml
Thus by 3.3.1
V0 € 10,1 : [u(f + iy)| < My~ M| f 2]l 2

In particular
|(f, AT AC D0 gy < MO MY £ 29l -
=Ty

In particular Ty € .Z(L?, L?), thus T € L(H+(1=0)s pot'+(1-0)s")

O
6.1.10 Corollary. If '€ Z(H*',H*®') and T : H*2 — H"?, then
Vs € [s1,82] : T € L(H®, H?).
6.1.11 Theorem (Sobolev Embedding Theorem). Let s € R, k € N, such that
5> g + k.
Then there exists a constant K, > 0, such that
Ve | fllor < Kl flls-

Thus there exists a constinuous embedding H® < €*. (Here €% = ¢*(R™)).
Proof.
STEP 1: The hypothesis implies that

s>g—|—k$s—kz>g:>—(k‘—s)>g.
Therefore Lemma A.2.4 implies

L+[EP)77 = A +1eP) 7 € PR™). (6.3)
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STEP 2: Let f € . and o € N", |a| < k. Using the Fourier Inversion Theorem 4.4.26
and the Cauchy/Schwarz inequality, we obtain for any =z € R™

Oy ei (z,8) 4. 4 22 a
s < [ OFer el [ e F©
</¥OH&) (1 +1eR)T

(NEIdE < A+ e, A+ EPEIFAED o]

<o+ ey~ MﬁU+MHLHﬁ@szC(Anﬂ+m%ﬂvwﬂm%Q2ZCMy

=:C

Using 6.1.4,(i) and summing over all such « yields the result.
U

6.1.12 Theorem (Rellich Lemma). Let ¢t < s, K € R™ and (f;) € H® be a bounded
sequence of functions such that supp f; C K. Then there exists a subsequence (f;,) which
converges in any H°.

Proof. Assume that
Vi eN:|fl < C.

STEP 1: In a first step, we will show, that the hypothesis implies, that ( f]) has a compactly
convergent subsequence (i.e. a subsequence that converges on any compact subset K’ € R™
with respect to || _|lco(xr).)

Let ¢ € €°(R"™,C), such that p|x = 1. For any j € N, we obtain f; = ¢f; and therefore
by Theorem 4.4.19

fi=oxfi
and by Theorem 4.4.3
0°(f;) = 0%(@) * fj.
By the Cauchy/Schwarz inequality, this implies for any £ € R™

n

= [(19g(@)(€ =m(@ + ") 3], (1 + Inlz)%\fj\( )|
< 02(@)(€ =m) (L + )2 g2 1L+ )2 f ()2 = Kol fills < Ka(€)C
::Ka(g)

0°(F)(©)] < /Rn 108 (@)(€ = ) f(n)ldn = / 02 (£)(€ =m @+ nI*) =2 (L + |nl*)2 f(n)ldn

I'ToDo Warum liegt die Funktion in K,(¢) iiberhaupt in L??

Since K, is continuous, this implies that the sequence (0%( fj)) is uniformly bounded on
any compact subset. By the mean value theorem, this implies that on any compact subset
K’ all the fj are Lipschitz continuous with the same Lipschitz constant. In particular
they are equicontinuous on K’. By the Arzela-Ascoli Theorem (!ToDoRef) there exists a
| _lleo(xry-convergent subsequence. By taking a compact exhaustion of R™ and a diagonal
sequence argument, we may inductively construct a sequence that is compactly convergent
on all of R™.

STEP 2: Now we prove the following claim: If (f;) € H® is bounded and fj is compactly
convergent, then for any ¢ < s, (f;) converges in H'.
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Since H' is complete, it satisfies to check, that (f;) is a H'-Cauchy-sequence. So assume
that € > 0, t < s, fix any r > 0 and calculate

1= 5l = [ (+IERIE© - o)l
= [ - Ao [ a1 - Ao
Br(0) B

R ™\ B, (0)

=:I1(r) =:I2(r)
STEP 2.1: Now if || > r, we may estimate
L+ IEP) = A +[EF) QA +[EP)° < X+ (L +[EP)°,
since t — s < 0. Therefore we may bound Iz(r) by

L(r) < (L4375 — ful%

Since (f;) is bounded in H*, there exists a constant, such that ||f; — fx||? < C. Therefore
we have archieved:
Ir>0:Vj,keN:Ir) <e/2.

(Notice, that this would not have been possible if ¢ = r.)
STEP 2.2: Take such an r. Regardless how large it might be, B,(0) € R™ is compact.
Define the constant

C' = (1 + |r]*)") vol(B,(0)).

By hypothesis ( f]) is compactly convergent and therefore in particular compactly Cauchy.

Consequently
€

AN €N :Vj,k > N : |Ifj = fulleos, (o) < 20

Therefore

. 2 ~ 9
Vi k> N Li(r) < (14 [r*)") vol(B(0))| f; = Jklleo(s, (o)) < 5

O

6.1.13 Theorem (Sobolev Representation Theorem). For any s € R the L? scalar product
S xS = C

(ra)= [ (o

has a continuous extension to H*® x H™* — C that is non-degenerate.
The map B : H* — (H®), f — (g9 — (g, f)r2) is an isometry (notice that (H®) is a
Hilbert space as well.)

Proof.
STEP 1 (Continuity & Extension): For any f,g € .7, we calculate

(F, 9022l Z [F() @) 2l = [((1+ ) F (), (1+ €D~ F(9)) 2]
< 1A+ 1D FOI 21T+ €N F (gl = [ Fllsllgll-s- (6.4)

Thus there exists a continuous extension ( , ): H* x H™* — C.
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STEP 2 (Isometry): We now show that B is isometric. Of course we endow (H®)" with the
operator norm. For any f € H?® we obtain

I
1By = suwp Ko, Al < 17l "= 1 f]--

llglls=1

To see that this is actually an equality, define go := F~1(F(f)(1 + |£])~2%). This implies

IB(f)(90)| = (g0, )2l = [(F(90)s F(F)) el = (F (DA +1E)72, F(N) el = I 112
On the other hand

ool = [ IDFIF@I@PdE = [+ IEDHIFENE0 + 16>
]Rn n
|- ) R ED P = 1P
]Rn

Combining this, we obtain

1B ey = |BON(

o) = 161+

This also proves, that (_, )72 is not degenerate on H*.

STEP 3 (Surjectivity): By 3.2.3, B has closed image. Denote by ® : H® — (H®)', f
(_, f), the linear isometry from the Frechét-Riesz Representation theorem. Since . C H*
is dense, ®(.7) C (H?®)' is dense as well by 3.2.4. Let [ = ®(f) € ®(). Define h :=
As(f) € .# € H*. We calculate for any g € H*:

B)(g) = (9.h) 12 = (g, A*(P) 12 = (F(g), F(A* ()12
/if &)1+ €N F(HO)dE = (9. e = B(f)(g) = U(g).

This implies ®(.#’) C im B and therefore

(H*Y *2* $(#) C im(B) = im B.

Thus im B = (H®)'.

O
6.1.14 Corollary. Let T, T* : ¥ — % be linear maps, such that
Vfge s (Tf.9)=(fTg)
Let s € R and assume there exists ¢ > 0, such that
Ve \Tflls <cllflls (6.5)

then T™ satisfies
Vge 1Tl < cllgls.

If (6.5) holds for any k& € N, then T extends to a bounded linear map 7 : H* — H* and
T* extends to a bounded linear map T* : H =% — H~F.
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Proof. Using 6.1.13, we calculate for any f,g € .7

(LT g 2| = KT f gzl < T sllgll-s < el fllsllgll-s-

Consequently using 6.1.13 again, we obtain

IT"gll—s = IT*gll—s = IB(T*g)llzz=y = sup [B(T*g)(f)l

lFlls=1
= sup [(B(T*g)(/)|= sup [(f,T"g,)| < cllgll-s.
IFlls=1 I £lls=1

O

Proof. Using 6.1.13, we calculate for any f,g € .

(T7g, /)l = g, THI < llgll=sITFlls < cll fllsllgll -
Consequently using 6.1.13 again, we obtain
1T gll-s = I1B(T"g)|ls = I1B(T*g)lls = | e (T"g, )| < cliglls

O

6.1.15 Theorem. Let A € €°°(R"™,R"™*™) be a smooth matrix-valued function, such that
for all & € N, [D*A| is bounded (here | | denotes the operator norm). Then for any
s€R,themap T:.¥ — ., f— Af, extends to a bounded linear map T : H®* — H*.

Proof. The calculation
(A9 = [ (£ Ag)er = [ (Afgler = (Thg)

proves that T*f = A'f. For any s € Ng

7= 3 [ pran ™ Y S () [ it < i,

la|<s |a|<s BLa

thus T is bounded with respect to the W#2-norm. This norm is equivalent to || _||s by 6.1.7.
Therefore T' is a bounded linear map H® — H?® for all positive integers s. By 6.1.14 T is
bounded for all negative integers as well. Consequently 6.1.10 implies the statement. [

6.1.16 Theorem (Diffeomorphism Invariance). Let U,V C R™ be open sets with smooth
boundary and let ® : U — V be a diffeomorphism. For any s € R, the map T': €>°(V) —
¢>(U), f+— fo®, extends to a bounded linear map T : H*(V) — H*(U).

Let & : . — . be a diffeomorphism which is linear outside a compact subset. For any
seR,themap T :.¥ — 7, f+— fo®, extends to a bounded linear map T : H®* — H?.

Proof.
STEP 1:
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STEP 2: Define T* : .¥ — .¥, g > det(V®)g o ®~! and verify for all f,g € .7

(TF,g) . :/ (T, ghd :/ (f o B, ghdar :/ (fod,god ' od)det(VD ) det(Vd)da
R™ Rn Rn

— [ g e ) den(Va )y = (£.17g)1

Now we check for any s € N

A.2.6
ITfe = S / D% (f 0 ®) P 2" Cf|e.

la|<s

By 6.1.14 T* is bounded as well, thus both maps extendto T : H® — H®, T*: H=° — H~*®
for any s € N. Consequently, the result follows from 6.1.10.

O

6.1.17 Theorem (PDOs on Sobolev spaces). For any s € R, D% : ¥ — . has a
continuous extension to D* : H® — H® ol For any s € N and any PDO P =
2 laj<k PaD* € Diff*(R™,C",C*), such that P, € %F(R™), there is a continuous ex-
tension P : H® — H*7F.

Proof.
STEP 1: Let f € .. We calculate

1D I3 = / (14 [¢)*=1PIF(D £)(6) Pdg = / (1+[€)> 2N F(r) () de
R™ Rn
< [ el A P = 112
RT’L
Therefore D : (7, || _[ls) = (|| _lls=|a|) is continuous and has a continuous extension
D*: H® — H*~lol,

STEP 2: Now consider P,D®. We calculate

IPaDf2 10 S CUPD I s =C S / 09 P, D° fde

18]<s—]al
A13 B— a—o—v 2
c ¥ S(0) [ wrwapipi
|B|<s—lal v<B

< ClPallgrgny D Z< >/ | DY (f) P dae
|B|<s—lal v<B

<c Z/ | DYV (f)2dx e
|0]<s

6.2. Globalization: Elementary approach

Let £ — M be a hermitian vector bundle of rank r over a compact manifold M.

6.2.1 Definition (Good presentation). A good presentation of E is given by the following
data
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(i) A finite system of maps {@; : Uj — Bm}jzl,wN, where Uj is open, such that ¢; is
a chart for M. We also require that the balls B; := {p € U; | |p;(p)|* < 1/2} still
cover M.

(ii) A finite system of maps
1

Pj = =9
V1=18?
(iii) A finite system of local trivializations ®; : Elg — UjxCr.
(iv) A partition of unity {¢;};=1.. ~ subordinate to the cover {B;};=1 .
6.2.2 Lemma (Properties of good presentations). Any such vector bundle E — M admits
a good presentation. Good presentations have the following additional properties:
(i) ¢j:Uj = R™ is a diffeomorphism, ¢;(B;) = B™.

(ii) For any u € I'(E), let 4; : R™ — C" be the push-forward associated to ¢; and ®;
(c.f. 2.2.9). Then u; is bounded, in fact 4; € .7.

(ili) Let uj := 1ju, the section v may be decomposed into

N
w=2 u;
j=1
where u; € I'c(Bj). The map (p;, o ®;,)(u;) has compact support in B"™.

Proof. Existence is clear.
(i) Follows from the definition.
(ii) By definition f :=u; = pryo®;ouo ‘P;l :R™—=C".
O

6.2.3 Definition. Let (¢;, ®;,%;)j=1,..~ be good presentation for £, let v € I'(F) and
s € R. Then

N
lulls = 11(@4, © 25wl s,
j=1

is the Sobolev s-norm. The completion of I'(E) with respect to this norm is the Sobolev
space of order s on E, which we denote by

HS(E> = m”,”s

6.2.4 Lemma. The space H*(E) is well-defined, i.e. the equivalence class of the Sobolev
s-norm is indepent of the good presentation of E that was used to define it.

Proof. Let (¢;, &)j, 1/;]) be another good presentation. We say two presentations are equiv-

alent if their induced Sobolev s-norms are equivalent. Since this is transitive, it is sufficient
to seperately check independence of the charts, the trivializations and the partition of unity.
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STEP 1 ((¢4,®j,v5) ~ (¢;,®;,1;)): By Theorem 6.1.16 the operator Tj := (4 o (,0]71)* :
H*B™,C") — H*(B™,C") is continous. Define C' := max;<;<n ||T}| and calculate:

N N
HUHS,(@J',CI)]‘ﬂL’] Z Soj*oq)J* UJ)HHS (B™,CT) _ZH SDJ*OQOJ* J*Oq)ﬂ*)(uj)
j=1 j=1
N
Z pjop; ) (@5, © (I)J*)(uj))HHg(BmC < Z Pjs © ))HHS(Bm,Cr)

J:
= lullse;.050,)-
STEP 2 ((¢5, ci’j,lbj) ~ (¢, ®j,1;)): Since j, <i>j are both trivializations of the bundle

E, there exists a function A; € € (U}, GI(r)), such that ®; o &' = id x A. Notice that
for any f € €°°(U,C")

(B, 0 @5, )(f) = D5, (®; oid x f) = pryoid xAjoid x f = A;f.

The operator T; : H*(B™,C") — H*(B™,C"), f — Ajp; (f) is continuous by Theorem
6.1.15. Define C' := maxi<j<n ||T}|| and calculate

N N

1ully o, 0, 0 = 2 @5, 0 D3 ) W) s cry = D (g, 0 D5.) 0 (@71)x 0 Dy, ()| o o)
j=1 j=1

I
WE

N
H(SD]*OA q)]*(uj ”HS(BmC Z 90]* SOJ* (I)j*)(uj)”Hs(Bm:(cr)
1 j=1

<.
Il

M-

IN

C D N(ej, 0@ )(ui)llasmmcry = Cllulls,p,,0,,,)-

1

J

STEP 3 ((¢j,®;,%;) ~ (p;,®;,%;)): (IToDo so noch nicht ganz Cauchy)
N ) N N
lally (p.0,5) = D 105, 0 1) (W5w)lls = D (04, 0 D3, ) (W5 Y wiw)lls
j=1 j=1 i=1

N N ~
> s 0 @5,)Wivsu)lls

<
j=1i=1
N N ~
= s (@5)(5, © B5,) (i)l
j=1i=1
< (05, 0 @5 )W) ls + Y (e, 0 ®5,) (Wh5u)]ls
1<i,j<N,i#j 1<j<N
<C Y e @) (@5, 0 5,)@a)lls + llulls o0
1<ij<N,itj
=C Y leni)(ps, 0®5,)(W5u)ls +|
1<i <N it
=C" Y ey, 0 ®5,) (W)l (@) < C'Nlulls (p0.4)
1<i,j<N,i#j
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6.3. Globalization: Geometric approach

Instead of defining the Sobolev spaces locally, one can use methods from differential ge-
ometry defining them globally. We assume the reader to be familiar with connections on
vector bundles.

6.3.1 Definition (Basic Sobolev norm). Let E — M be a hermitian vector bundle, M be
a compact manifold, and let V be a connection. For any section u € I'(E) let Vu be the
covariant derivative of u and ‘
Viu:=V...Vu

——

J times
be the j-fold covariant derivative of u. We assume that the connection is extended to all
the tensor bundles T*E. For any k € N define

k
Jul2 =3 / Va2,
j=0"M

where | | is the extension of the fibre metric in E. We say || _||x is the basic Sobolev
k-norm.

6.3.2 Lemma. The basic Sobolev k-norm is independent of the choice of metrics and
connection.

Proof. If V, V are two connections, their difference V — V =: A is a tensor field A €
NT*M ® E), i.e.

VX e T(M):Vue(E): Vxu— Vxu=A(X,u).
Now by definition Vu € T(T*M ® E), Vu(X) = Vxu. Therefore

Vul = Vs = A(_,u)| < [Vul| + A, w)] < [V + [ Al]ul.

6.4. Globalization of the results

Regardless how we define the Sobolev spaces on bundles, the key results from the local
theory globalize as well.

6.4.1 Theorem (Globalized Sobolev Spaces). Let E, F' — M be a hermitian bundles of
rank rg and rg over a compact m-manifold and s € R.

(i) Embedding: For any integer k € N and, such that s > m/2+k, there is a continuous

inclusion H*(E) — €*(E).

(ii) Rellich: Any sequence (u;), which is bounded in H*(E) has a subsequence, that
converges in €% (E).

(iii) For any Riemannian volume form dV on M, the bilinear pairing ( , ) : I'(E) —
INE*) —»C

(u,u') = / o' (u)dV
M

extends to a perfect pairing H*(FE) x H5(E).
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(iv) For any A € Hom(E, F; M), the map T4 : I'(E) — I'(F), u — Au, extends to a
bounded linear map T : H*(E) — H*(F).

(v) Any differential operator P : I'(E) — T'(F') of order k extends to a bounded linear
map P: H¥(E) — H*(F).

Proof.

(i) !ToDo
(ii) !ToDo
(iii) !ToDo
(iv) !

(v) Take a good presentation of E and F simultanously, i.e. assume that (¢;, ®;, ;) =1, .~
is a good presentation of E, such that (¢;, V;,1;)=1,. .~ is a good presentation of
F. Assume P; := (p;, 0¥ )oPo(p;j o®; ) ! :€¢>®[B" C"E) - ¢>B" C'F)is
a local representation of P. By Theorem 6.1.17, P; extends to a continuous operator
H*(B™,C"®) — H*"¥(B™,C"F). Define C' := maxi<j<n || P;|| and calculate for any
uel'(E)

N
HPUIIS—ZII (5, 0 W5 ) (W5 ()| s g c ey = Z (5, (V) (@5, © ¥3,) (P () s Bm ey

N
= e, () (05, 0 Tj, 0 (95, 0W;,) " 0 Pjog;, 0®;,)(u)|gsmm cre
1

<.
I

N
(05, (1) (P 0 05, © @5 )W)l rs(mm ey = D II(Py 095, © By, ) (thyu) || = (m o)
=1

I
NE

.
Il

S

IN

C ) _Ipj, o @5 )(Wju)l ps—s@merry = lulls—-

1

J
O
Dualitéitssatz, Lesch Ubungszettel 3, Afg 1 Methode der komplexen Interpolation, Taylor

PDE I S.275, Lesch Ubungszettel 2 Globalisieren Definition iiber schwache Ableitungen
und Aquivalenz zur gegebenen Definition
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7. FIO: Fourier Integral Operators

"Up and down, up and down, I will lead them up and down.
I am fear’d in field and town, Goblin, lead them up and down.

»”

Puck,
7.1. Motivation
Oscillatory integrals are motivated by the following observation.
7.1.1 Theorem. Let
P= )" P,D* € Diff"(R",C",C"), Vja| < k: Py € €°(R™,CT )

la|<k

be a differential operator with full symbol o. Then for any u € .#(C”")

Pu(a) = [ e=So(a, &) Flu)(€)de - /n/n”ﬁyf (&, uly)yd.

£

Proof. Let x € R"™ be arbitrary. By the Fourier Inversion formula (c.f. 4.4.26), we have

u(w) = [ O R

Since u € . , we may interchange differentiation and integration in order to obtain

P@) = [ 3 Pz (¢00) Fu©de = [ Y Palo)ete =9 R )€

" ek || <k
_ / ) B8 o (2, &) F (u)(£)dE.

Inserting the definition of the Fourier transform implies the statement. O

7.1.2 Remark. The integral on the right hand side will be of our interest. We would like
to write this integral as

[[ e 9a(@ uly)d(y, ), (7.1)

R"XR”

but we can’t! Why? Because if this integral existed over the product space, the iterated

integrals
/n/n”“ (z,&)u dﬁdy—/n/n”“’5 (2, €)duly)dy

existed as well by Tonellis theorem. Notice that in almost every senseful case, this makes
absolutely no sense: A function is Lebesgue integrable if and only if its absolute value is.
But look at the inner integral: If we try to integrate its absolute value, we obtain

i 0ot ) = /| (@O = ool
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But ¢ is a polynomial in &. In fR " fR n - - . the polynomial growth of o was compensated by
13 Yy

the decay of F(u), which is a Schwartz function. If we interchange the order of integration,
the inner integral does not have anything to do with w. Only the polynomial growth of
o remains, there is no decay to compensate, and the integral explodes. This also implies
that the Lebesgue integral (7.1) over the product space does not exist. There is no solu-
tion to this problem in general: There are iterated integrals, for which the corresponding
integral over the product space does not exist and which massively depend on the order
of integration. Nevertheless we may restrict our attention to a special class of functions
and we can modify the notion of an integral itself, such that (7.1) exists as a well-defined
oscillatory integral.

7.2. Phase functions

7.2.1 Definition (Phase function). Define R" := R™\ {0} and remember that U C R™
is open. A function ® : U x R™ — R is a phase function, if it satisfies the following
properties:

(i) e €U xR",R)

(ii) @ is positive homogenous of degree 1 on R" ie.
VeeU:Y0eR" :Vt>0: ®(x,t0) = tB(z, 6).
(iii) @ has no critical points, i.e.
Ve eU:V9 e R": V(, 0 ®(x,0) #0.

We explicitely allow the case m = 0, in which case the domain of definition becomes
{0} x R" = R"™

7.2.2 Definition (conical). A subset C C U x R" is concial, if
Vi >0:(z,0) e C= (z,t0) € C.

If C'is a conical set, a set D is a conical neighbourhood of C, if D is a conical set and
C C D° (where the closure C is taken in the subspace U x R").

7.2.3 Definition. Let ® be a phase function on U x R™. Define 7 : U x R™ — U and

Co:={(2,0) e U x R" : Vy(®)(z,0) = 0}
S :=m(Cs), Re:=U\Cs.

7.2.4 Lemma. Let ® be a phase function.
(i) Cp is conical and closed in U x R" |
(ii) Se is closed and Rg is open in U.
(iii) For any = € R, the function
¢,:R" — R
0 — P(x,0)

is a phase function on R".
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Proof.

(i) Since @ is positively homogenous of order 1, this follows from 4.5.4. By continuity
it is closed.

(ii) Therefore Sg is closed and Re is open in U.

(iii) It is clear that @, satisfies properties (i) and (ii) of the Definition 7.2.1 (even for any
x € U). Condition (iii) however is only satisfied if z € Rg.

O
7.3. Oscillatory Integrals
7.3.1 Theorem. Let ® be a phase function on U x R"™. There exists
L=Le(U xR™) € Diff (U x R",C)
such that
(i)
L= Z a,(x,&)0p, + Z bu(w,0)0z, + c(x,0), (7.2)
v=1 pn=1
(ii) whith coefficients
Vi<v<n:a, GSO(UXR”,(C),
Vi<pu<m:b, € SHUxR"C), (73
ce STHUxR™,C), ‘
VeeUNVE <1:VI<v<n:VI<pu<m:a,(z,0)=0b,(x,0)=0,
(iii) satisfying
L¥e'® = ¢?, (7.4)

(iv) In fact there are infinitely many such operators.

(v) We explicitely allow the case m = 0 here, i.e. U x R™ 2 R"™. In that case L does
not have any derivatives in any x,-direction.

vi) In case U = U, x U, C R™= x R™v is a subset of a product and if for any y € U,,
y y
V(2,0)® # 0, the operator L has an expression

n My my
L= a(z,y.£)%, + Y _bu(2,y,0)0z, + > _ bx(x,,0)0y, + c(z,0),
v=1 y,:l A=1

VI<A<my,:by=0.

(vii) The map
L:S*UxR",C)— S*L(UxR",C)

is continuous. The map

SFUxR™) x 2(U,C) — SFLYUxR"™C)
(a,u) — (z,0) — L'(a(z,)u(z))

is continuous as well.
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Proof.
STEP 1 (Construction of L*): Define

P = 289 )|6|%0,, +Za% )0y, € Diff (U x R",C)
pn=1
We calculate for any (z,0) € U x R"
Do, (') = i0y, (®)e™®, 0

gcuei<I> = i@x#(q))eiq),

which implies

_iPei® = ( i Emj 0p, (D)[0]%0y, — i f: 8%((1))8%)6@
v=1
(Z 10205, (©)2 + Za@ $2)er®

v=1

(7.5)

Define n
Yv:UxR  — C

-1
(2,0) = (011020, (9) + X5, 0,(2)?)

By the properties of a phase function, the term in brackets is never zero. Therefore this is
well-defined.
In case we are in situation (vi), the hypothesis ensures that if we leave out differentiation
with respect to the y, directions, this term still is nonzero.
We obtain ¢ € €°(U x Rn). By Lemma 4.5.4, we obtain that v is positively homogenous
of degree —2 in 6. By construction and (7.5)

—ithPe’® = '®. (7.6)

The problem is that 1) might blow up at § = 0 and thus does not admit a smooth extension
to U x R™. Therefore we must cut off this singularity: Let x € €°(R™,R) such that

Vg <1:x(0) =1, V|| > 2: x(0) =0. (7.7)
Define
M := —itp(1 — x)P + x € Diff (U x R",C).
Of course for § = 0, we interpret (1 — x(0))¢(z,0) = 0. Define L := M*. This is a
differential operator, which by construction satisfies
LFe® = Me'® = —ith(1 — x)Pe'® + xei® (7.6) (1 x)e® + ye® = ¢,

Since there are infinitely many such cut off functions y, there are infinitely many such
operators.

STEP 2 (symbols estimates): It remains to show (ii). By construction, the coefficients of
M are given by

V1< v <m:ay(z,0) = —il020(x, 0)(1 — x(0))3y, (®)(z, 0),
V1< p<nby(x,0) = —ih(x,0)(1 — X(6))0, (®)(x,0),
&z, 0) = x(0).

In the following, we will use 4.5.4 and 4.5.5 several times.
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STEP 2.1 (a,): By hypothesis ® is positively homogenous of order 1 in . Therefore 9y, (P)
is pos. hom. of order 0. The function ¢ is pos. hom. of order —2 and clearly 6 + |9|? is
pos. hom. of order 2. Therefore |0|210y, (®) is pos. hom. of order 0 and hence a symbol
of order 0. Since 1 — x = 1 outside By(0) this is unchanged, if we multiply with 1 — x
STEP 2.2 (I;M): By the same token, we observe that 10, (®) is pos. hom. of order —2+1 =
—1. Therefore the product is a symbol of order —1 + 0 = —1.

STEP 2.3 (¢): Since y has compact support, it is a symbol of any order. By 7.7, we obtain
V0] <1:ay(z,0)=0=b,(z,0).
STEP 2.4 (representation for L): We have shown that M has a representation (7.2) with

coefficients satisfying (7.3). By 2.3.16 L = M™* and therefore it suffices to show that the
coefficients of M* satisfy (7.3) as well. By (2.21), we obtain for any f € €°(U x R"™,C)

)= Z 0o, (a5 f) + > 0u, (W3 f) + ¢ f

pn=1
= Zaa ) f @y, (f) + > 0a, (05)f + 5300, () + ¢ f
pn=1
= ayde,(f) + Y b0 (Zagy +Zazy b)+c*) f.
v=1 u=1 pn=1
=:ceSY

Clearly a, :=a € 89, b* € S~ as claimed. We have proven (7.3). This also implies (vi).
STEP 3 (continuity): By 4.5.2(i) the symbols are a complex vector space, so it suffices to
check that the various summands have the desired mapping properties. By 4.5.2(iv) mul-
tiplication of symbols is continuous. By 4.5.2(v) differentiation of symbols is continuous.
Putting this together implies that L is continuous. Since 2(U) C S°(U x R",C), we
obtain the second statement by an analogous reasoning.

O

7.3.2 Corollary. Let a € S¥(U x R™,C), let ® be a phase function and let L be the
operator form Theroem 7.3.1 above. Then for any [ € N such that £k — [ < —n, and any
u € Z(U,C), the Lebesgue integral

(a,u,l) jf @@ ) (a(x, 0)u(x))d(z, )

UxR™

exists.

Proof. Since (a,u) € S¥ x 2, we obtain L'(au) € S¥~! by 7.3.1(vii). By definition this
implies

Vo e K Ve e R™ : | L au)(z, €)] < O(1 + €]+

where K := suppu. By hypothesis K — 1 < —n. Therefore Lemma A.2.4 implies that
Iy (a,u,l) exists. O
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7.3.3 Remark. Since e!® = (L*)e’® one might be tempted to employ this corollary to
define

J]ﬁ z¢(x9 x 9) ( J]‘ ‘L* z@ (z,0) ($ 0) ( )d(x,&)

UxR™ UxR”

H @0 1l (qu)(x, 0)d(z, §).

UxR™

In fact this is what we are going to do in 7.3.5. The only problem is that we do not yet
know, if the right hand side depends on [. This problem will be solved by considering an
alternative approach to this definition: The problem, we want to solve at the moment is
that the integral on the left hand side does not exist as a Lebesgue integral, because of the
growth of the integrand in 6. So let’s cut off the integrand in 6!

7.3.4 Lemma. Let a € S*(U x R"), ® be a phase function and u € 2(U,C). Let
X € Z2(R™ R) be any function, which equals 1 in a neighbourhood of 0. Define

Iy (a,u) = fj ®@0)\ (e0)a(z, O)u(z)d(z, ).

UxR™

Then for any [ such that £k — [ < —n
ii{(l[l) Iy (a,u) = Ip(a,u,l),
using the notation from 7.3.2. Consequently, the limit does not depend on the cut off

function x. In turn the expression Iy (a,u,l) does not depend on [ (as long as k — 1 < —n)
and L (as long as L is an operator satisfying the conditions from 7.3.1).

Proof. First of all notice that for any e, Ip-(a,u) exists, since the integrand now has
compact #-support. It even has compact support in U x R". Clearly, we obtain the
pointwise convergence

V(z,0) € U xR™: @y (ch)a(x,O)u(z) @0 a(x, 0)u(x) . (7.8)

AE>Q$
C
Since x has compact support, x € SY(U x R"™). Consequently
Vo, B € N :3C > 0: 0905 x(0)] < Ca(1 + |6]) VL.
Now for any 0 < e <1
15 (x(0))] < 185 ) (0)e”!] < Cslel Pl + 67T < Cr+ o) (7.9)
Thus for any [ € N, k — [ < —n, we obtain

lim T (0, u) = lim H @0 (0)a(z, O)u(z)d(z, 0)

8\‘0U><]R"
=lim [ (Z)(*@D)x(b)a(x, 0)u(z)d(z, 0)
e\
UxR™
2246 Jim f j @O Ly (c0)a(z, 0)u(z))d(z, 0)
e\0
UxR™
|| e a(z, 0)u())d(,0),
UxR™
by the Lebesgue dominated convergence theorem and (7.8), (7.9). O
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7.3.5 Definition (Oscillatory integral). For any a € S¥(U x R™,C), any phase function
® and any u € Z(U,C), the expression (using notation from 7.3.2 and 7.3.4)

Ig(a,u) = Ip(a,u,l) := il\(r% Iy (a,u),

where [ and x are chosen as in 7.3.4 above, is called an oscillatory integral. Somewhat
more explicitely

Is(a,u) == Osff @ a2, O)u(x)d(x, 0)

UxR™
= H i@ (3, 0)u(z)d(z, 0)
UxR™
= lim H *(©0)y (c0)a(z, 0)u(z)d(z, ).
UxR™

We just ensured in 7.3.4 that this is well-defined. For reasons of convenience, we will
introduce the following notations as well: In case m = 0, we will denote the oscillatory
integral by

Os )
/ e q(0)do.
Rn
IftU, c R™, U, C R™ are two open sets, we consider U, := U, x U, and for a €

S¥(U, xR™ C) and a phase function ® on U, x R™, we will denote the oscillatory integral
by

fﬂ P a(z,y, 0)u(w, y)d(w,y,0).

U, xR™

The following Lemmata will be needed to calculate certain oscillatory integrals.

7.3.6 Lemma. Let ® be a phase function on U x R™. For any a € 855((] x R®, Cr'>r
and any = € U, denote by a, : R™ — C"' %", 0 — a(z, 0).

Os
Y € Ry : / e'® g, (0)do = / @O (a,)(0)d,
R’n
I — kmin(p,1 —4) < —n.

Proof. First we verify that
Ve € Rp : V0 € R™ : Lo, (az)(0) = Lo(az)(0).

This follows from the simple fact that

n

0) = 2 vl 020, (a)(0) + 3 0ol 0) 22, 02) ) + €= D _av(,0)0, 02)(0) + ¢

p=1 -0 v=1

Lo, (az)(0).

Therefore we may calculate for any = € Rg

Os
/ﬂw@@w=/em@ﬂwmww=/emm%mmww

RTL
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7.3.7 Lemma. Let ® be a phase funcion, a € Sk sUXRY C™") w € €°(U). Let
L =L(U x R™) be a PDO satisfying (?7?). Addltlonally suppose that there exists [ € N,
[ — kmin(p,1 — §) < —n, such that for any (z,0) € U x R" at least one of the followmg
two conditions is satisfied:

() (L)' (,0) = ¥,
(i) a(x,@)u(x) = 0.
Proof. The hypothesis implies that for any (z,6) € U x R"
@z, O)u(x) = (L*) (@D a(x, 0)u(z), (7.10)

regardless which of the two conditions is satisfies for (z,0). Again choose x as defined in
(7.7). We calculate

Os .
j f @0 (. 0)u(z)d(z,0) "= lim ﬂ" @) g (2, 0)u(z)y(c0)d(z, 0)
e\0
UxR™ UxR™
729 45, [ @ @ @a(z, O)u(z)x(=0)d(x, 0)
N0 SRn
=lim [[ () (e, 0)u(x)x(0)d(, 0)
e\0
UxR™
[ (@@L a(e, O)u())d(, 0),
UxR™
where the last equation follows from DCT (!ToDo). O

7.4. Regularity of associated Distributions

We just defined an object Ip(a, ) that sends a function v € Z(U) to a complex number.
Sound familiar?

7.4.1 Definition. For any fixed phase function ® and any symbol a € Sg’é, the map
A:=Ap(a): 2(U) - C,
u— Ip(a,u)

is the distribution associated to a and ®.

7.4.2 Lemma. An associated distribution is in fact a distribution, i.e. A € 9'(U).

Proof. Linearity in u is obvious. To see continuity, assume K € U is compact and = € K.
By the Leibniz rule, the fact that a € Sff s and the choice of [

@ @)@ < [[ 1D L a(, 0)u(w))|d(, 0)

UxR™

< [ c+leh "l sl 0)

UxR™
< Cullgrroyl K| [{ (1 101)7do,
Rn
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7.4.3 Theorem (Singular Support of associated distributions). With the notation from
7.4.1 and 7.2.3:
sing-supp Ag C So.

If there exists a conical neighbourhood D D Cg, such that a|p = 0. Then sing-supp Ag = 0
Proof. Let u € Z(Rs).

STEP 1: It is sufficient to define a function A € ¥*°(Rg), such that A|r, = (A4). Define
A:Rg — C by

Os
A(x) = / e q,(0)do
Rn

(IToDo ist smooth wegen parameter dependence) Now let L = Le(U x R™),

L=> a)(2,000s, + > bu(x,0)ds, + c(0), L= a,(x,0), + c(0).
v=1 v=1

p=1

In case m = 0 the operator constructed in 7.3.1 does not have any z-derivatives. Therefore
for any = € Rg, we may chose Ly, = L and calculate

Os
Aw) = [ e Daoyip = [ *OL, (@) @)= [ 0L a)0)d (701
RYL n n
STEP 2: We claim that the operator L satisfies the hypothesis of Lemma 7.3.7: Let (z, ) €

U x R™. Then there are two possible cases: If z € Sg, then a(z,0)u(z) = 0, because
u € €°(Rg) by hypothesis. In case x € R, we obtain

L*(e"®)(x,0) = Lk, (e"7)() = e'®=(9) = ' @), (7.12)

STEP 3: Since L does not have any x,~derivarives, we may calculate

(A)(u) = / dx—/ /@ O g (z,0)d0 u(z)dz 2 // @0 [1(g,)(0)d u(x)da

= [ L a0 0) T[] N Na(o 0pula)d(e.6) = Alw).
UxR™ YR™
o (7.13)

STEP 4: The second statement is proven in exactly the same fashion: We define A : U — C
by the right hand side of (7.11). Now we take any u € €>°(U). For any x € U there are
only two possibilities: Either (z,6) € D, then a(z,0)u(z) = 0. Or x € U\ (D) C Ro,
then L = Lg, and we again obtain (7.12). Calculation (7.13) proves the statement.

O

7.5. Fourier Integral Operators "FIO”

7.5.1 Definition (Fourier Integral Operator). Assume U, C R™=, U, C R™v, my,,m, €
N, U, :=U; xUy. Let ®: U, x R™ — C be a phase function, a € 5575(UZ X R”,(CT/XT).
By 7.4.2, the map A: U, — C,

A(w) = Ip(a,w)
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defines a distribution A € 2'(U,). By (the easy part of) the Schwartz Kernel Theorem
5.6.4, the map &7 : 2(Uy) — 2'(U,), defined by

o (u)(v) == A(v @ u) = Hj @8, y, O)uly)o(z)d(e,y,0),  (7.14)

Uz xUyxR™

is linear and continuous. We call such a map a Fourier Integral Operator (or just a "FIO”)
with amplitude a.

7.5.2 Definition (Operator phase function). Let ® be a phase function on U, x U, x R™.
Then & is an operator phase function, if both of the following conditions are satisfied:

(i) Ve e Uy : Yy € Uy : VO # 0: V(y 9)®(,y,0) # 0,
(ii) Vz € Uy : Vy € Uy : VO # 0 : V(, 9)P(,y,0) # 0.

In that case, for any y € Uy, the function (z,6) — ®(x,y, §) is a phase function on U, x R™
and for any x € Uy, the function (y,0) — ®(z,y,0) is a phase function on Uy x R™.

7.5.3 Theorem (FIO Regularity and Extension). Let </ be a FIO as in 7.5.1 and let ®
be a phase function.

(i) If ® satisfies condition 7.5.2,(i), then .« is a map 2(Uy,) — (& (U,)). The composition
) (oo : 2(Uy) — &(Uy) is continuous and sometimes also just denoted as o7 :
2(Uy) = E(Uy).

(ii) If ® satisfies condition 7.5.2,(ii), then </ has a continuous extension & : &’ (U,) —

2'(Uy).
Proof.
(i) We have to show that for all u € 2(U,) there exists Au € &(Uy), such that &7 (u) =
(Au). Define
[ @ Da(a,y, 0)u(y)d(y, ). (7.15)
YxXR™

By hypothesis, this is an oscillatory integral. (!ToDo smooth parameter dependence).
The hypothesis ensures that the operator Lg for the oscillatory integral 7 (u)(v) does
not contain any derivatives in z-directions (c.f. 7.3.1). Therefore, we may calculate
for any v € 2(Uy)

d@) = “[[[ &P ate,y. 0)uly)o(@)d(.y.0)

Ug xUy xR ™
t{[[ z (z,y,0) [ﬁ (x,y,e)u(y)v($))d($7y’0)
Up xUyxR™
=[] O L ey, 0)u(v)o()d(, .0)
Up xUyxR™
/ PO L a(x,y, 0)u(y))d(y, O)v(z)dz
Uz y, xR
/ ﬂ =W a(w,y, 0)u(y)d(y, O)v(z)de = (Au)(v).
Uz UyxR™

By 5.4.8 the map & : 2(U,) — & (Uy) is a composition of continuous maps.
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(ii) Let w € 2(Uy), v € 2(U,). By hypothesis, for any y € Uy, ®, is a Phase function
on U, x Rn. Define

Yy e U, : Al (0)(y) = I, (ay,v ﬂ e @0q (z,0)v(z)d(z,0).
Uz xR™

Notice that this is exactly (7.15) with the roles of x and y interchanged. Consequently
At(v) is a smooth function as well.
Now define the extension & : &' (Uy) — 2'(Uy) by

Vu € &'(Uy) : Yo € 2(Uy) : o (u)(v) := u(AM).
In terms of pairings this reads as
(A, 0) g1y x o(Us) = (U A0) o1 (U, x (U,

which explains why we think of A’ as a transpose.
This is an extension, because for any u € Z(U)

d@w) = Cff[ e Date.y 0pulye()d.y.0)

Uz xUy xRy
=tim [{[ @y (eh)a(,y,0)uly)o()d(z,y,0)
6\‘OUT><Uy><IR
~ 1t [ 90 (0)alz, y, B)o(x)d(x, B)u(y)dy
N0 nyszij"

/Ull{% szxfw ¥ (e0)a(z, y, O)v(@)d(x, O)u(y)dy = (u) (Av).

(IToDo Vertauschung von Limesbildung und Integration) To see that 27 is continuous
assume
uj ———0.
&' (Uy)
This implies for any v € 2(U,)

lim o/ (u;) = lim uj(A') =0,

]A)OO ]*)OO

by definition of convergence in &”(Uy). This implies

O
7.5.4 Definition (composition of sets). Let X, Y be sets, S C X xY and K C Y. Define

SoK:={reX|3dyeK:(x,y) €S}

7.5.5 Theorem. Let ® be an operator phase function. For any u € &’(Uy)

sing-supp(/u) C Sg o sing-supp u.
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Proof.
STEP 1: In a first step we prove that for any K € Uy:

Vu € &' (Uy) : suppu € K = sing-supp(«/u) C S o K.

To that end it suffices to check that for any U,CX \ S o K, &/u is smooth. Choose
uj € Px(Uy), such that

(uﬂmw

Now we calculate for any v € 2(U,)
JZ%(U)(’U) = ]liglo <‘Q{u]7 v>@’(Uz)><_@(Uz) = ]li{go <‘Q{u]7 U>@’(UZ)X@(UZ)
= jlggo (Ave “J')@/(wamt K)x2(Uy xint K)
By Theorem 7.4.3, sing-supp. A C S¢. We will now show that the distribution .A| T xint K

is regular by showing that .
Se N (Uy x int K) = ().

This we do by contradiction: Assume there exists (z,y) € Sp N (U, x int K). By definition
z € U,, y € int K. Since (x,y) € S, this implies x € Sg o K by definition of o. Therefore
T € ﬁx N Se o K. This contradicts the choice of Ux
Consequently, there exists A € & (Uw x int K), such that A|xxint x = (A). This in turn
defines a continuous operator A : & (int K) — &(U,) by 5.6.5, which is just the restriction
of o/. Thus
JZfNUj —_— JZ{NU s
&(U,)
thus ou = o € &(U,).
STEP 2: Since sing-supp &/u C U, is closed, there are e-neighbourhoods K., such that
sing-supp #/u C K. C K. C U,. Choose x. € 2(U,), such that xlg. = 1. We may
decompose
u= xeu+(1—xe)u.

N —

=1l =u2
Now by construction wug is regular. By choosing e small enogh, we see that suppu; \
sing-supp u; is arbitrarily small (!ToDo naja, n bisschen handwaving..)

O
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8. YDO: Pseudodifferential Operators

"The corps is mother, the corps is father.”
BESTER, W-CoP, 2259

8.0.6 Definition (Pseudodifferential Operator). Let k € R, o € S¥(R" xR"™;C"'*"). An
operator T, : S (C") = .#(C""), defined by

(Tra) = (2% [ e o(a, ) Fu()de (81)
—en [ [ ot ul)dyds (82)

is a pseudodifferential operator of order k (or just "is a WDO”. We denote by ¥* :=
TFR™; (CT/X’”) the space of all these operators. Analogously denote

\IJ(Rn,Cr’Xr) — U \I/k(Rn;(CTIXT), \I/_OO(RR,(CTJXT) — ﬂ \I/k(Rn;(CT’XT'),
keR keR

If o € S7%, k > 0, then T, is smoothing of order k. A linear map 7 : .¥ — ., which
extends to a bounded linear operator 7 : H® — Ht* for all s,k € R is an infinitely
smoothing operator. (!ToDo YDOs mit symbolen in -infty sind also infinitely smoothing)
Two pseudodifferential operators P and P’ are equivalent, if P— P’ is an infinitely smoothing
operator. We denote the equivalence class of P by [P].

8.0.7 Theorem. Let k € R, p € S¥(R",C""*") and u € .#(C"). Then the function Pu
defined by (8.1) automatically satisfies Pu € .(C""). If p has compact z-support, for any
s € R, this operator has a continuous extension P : H® — H*k,

Proof.
STEP 1 (Pu € .¥):
STEP 2 (Extension):

8.0.8 Theorem. Any bounded PDO is a YDO. More precisely: Let

P=>Y" P,D* € Diff"(R",C",C"), Via| < k: P, e €P°R",C"*")
ol <k

be a differential operator with full symbol p. Then p € S¥(C™"*") and for any u € .#(C")

Pu(z) = (2n) "% / ¢/ p(, €) F (u) (€ de.

n

Proof.
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STEP 1 (p € 8%): Since p is a polynomial of degree k, 6 p =0, if |f| > k (see Lemma
A.1.6). For any || < k and any oo € N™ we calculate

DeD2p(z,6) < 3 102(P)@)I00e7] <" S 102 (P) (@ HB'( )@ g

[vI<k ly|<k
Z 5|< )HP gl [€]11A
Iv|<k
< max [Py s Y B‘( ) (L4 D17 < Cap(1 + Je)* 18
= lvI<k g

STEP 2 (integral representation): By the Fourier Inversion formula (c.f. 4.4.26), we have

u(w) = (2)°% [ O F )t

Since u is compactly supported, we may interchange differentiation and integration in order
to obtain

Pu(z) = (277)_75/]R Y Pa(2)Dge’ ™0 F(u)(€)dé = (27T)_T2L/]R Y Pala)€e’ ™8 Fu)(€)de

n n
|| <k lo|<k

8.1. The Symbol Calculus

8.1.1 Definition. For any symbol o € S¥(U x R™, C"'*"), 0, € Sl®l(U x R™,C™*7),
a € N we say

N ST PN o S

aENn §=0 |a|=j
8.1.2 Theorem (Workhorse Theorem). Let k € R
a=a(z,y,&) e SH((R" xR™) x R",C"*")
be a symbol with compact support in z and y. By definition
Va7 € N": 3Cy > 0 [DEDEDY(a)(w,y, )| < Coory (1 + €)1

Then the operator K : .#(C") — .(C""), defined by
K(u)(a) = @0 [ [ e r9ate,y. uly)dyds

isa ¥DO, ie. K € \I/k(R”,(C’"/X’") and its symbol o has an asymptotic expansion

jled
ox(@.6) ~ Y o (DEDja)(w,2,)

QGN n
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8.1.3 Remark. In case a does not depend on y, the operator K is just given as
Ku(x) = (2%)"/
=20t [ a7 () (€)de

¢ afa,) [ ey dyds
Rn

8.1.4 Corollary. In the situation of 8.1.2 assume in addition that there exists an open
neighbourhood Ua CR™ x R™ of the diagonal A := {(z,z) € R™ x R"}, then K € U™,

Proof. By 8.1.2, 0x ~ 0. And L/M 3.4 and Def of equivalence O]

8.1.5 Definition (formally adjoint). Let P € WF(R™ x R",C""*"). An operator P* :
S (C™) = L (C") is formally adjoint to P, if

/

Vs € €.°(R™,C"):Vt € €F°(R™,C" ) : (P(s),t)r2 = (s, P*(t)) 12
8.1.6 Theorem (adjoints). For any P € ¥k — (R™ x R™ C"*") there exists a unique

formal adjoint
P*c \I/k(Rn % Rn’(crxr )

and its symbol has a asymptotic expansion

Proof. Let s € Zx(R",C"), t € D (R™,C"), let ¢p € €°(R", R) such that

We calculate

/R/Rei<x,£><ap(x,§)f(s)(g)7t(x»cwdgdx
/]R /]R /]R €i<$—y75><0'p(337£)5(y)’t(x)>(crldyd€d$
= (27T)”/Rn/Rn/Rnei(xy,£><3(y),Up(x7§)*t(x>>crldyd§dx
/R /R /R UL ((y)s(y), op(, ) H(@)) e v dudidy
L),

(s(y), e "V (y)op(, ) U)o v dudédy

where

PO =0 [ (e ) dsds (53)
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Now the symbol ¥ (y)op(z,&)* satisfies the hypothesis of 8.1.2. This implies that P* is a
W DO and that its symbol has an asymptotic expansion

o2

op(2,6) ~ Y DD ((@)op(y:) ey
acNn

,L'a

= 3 D) DD op (0 ey

aeN™

Z‘CY

=Y (@) Dg D (op(x,)")

aeN™
o

=Y %D‘g *(Y(x)op(x, €)*)
acNn

= Y SDEDI (o7 ().

aeN™

8.1.7 Remark. Since adjoints are unique, P** = P.

8.1.8 Theorem (composition). Let P € ¥ (R"xR",C"*"), Q € UF(R"xR",C""*""),
Then Q o P € WFtk2(R™ x R™ C™*") and the symbol has a formal development

jlel
oQop () ~ Y o1 (Deoq)(Dzop)(z,£).

aeN™

Proof. By definition for any s € €°(R",C"), z € K
(Qo P)(s)(z) = (2m) "2 / e aq(x, ) F(Ps)()ds, (8.4)
so we need a reasonable expression for F(Ps). Since P** = P, we obtain
(Po)@) = P ()w) E m [ o ey sdude. (85)
Define 7(y, £) := op(y, £)*. We claim that
FPs)(©) =2 E [ e 0Or(y s(0)dy (5.6)

To that end, we calculate F~! of the right hand side:

P (w/ i) (y, )3(y)d )(az)
- / ) / ey, €)s(y)dyde

: f’(
Therefore, we calculate

(84)

@ P)s)@) ) 2m)F [ e ) F(Ps)(E)ds

(8.6) —-n (rx— *
9 (o) / / ) 6 (a2, )b (4,€) s(y)dydt
=:a(z,y,)
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By 4.5.2(iv)
a(@,y,§) = oq(z,§)op-(y,§) € Shitkz(R™ x R™ x Rn,(cr”xr)a
thus by Theorem 8.1.2
Q oP € \I;kﬁ-kz(Rn % Rny(cr ><r)

and its symbol has an asymptotic expansion

o0op(5,6) ~ 3 = DEDG (05, (€ oy

aeN™
e

> ;Dg(O'Q(CU §) Dy (1(y,€)))e=y

aeN™

- ¥ 5 Y (5) phean opg D e

aeN™ BLla

j18—al+16] !
= 2 Y i e DD g
aeN™ «
mmm s
=2 X G )@ DDIDI() (@)
a€eN g—;’é[\ﬁz
Iy I+8I
- Z Z;|| )(w’f)DngDf(T)(%f)
BryeN™
18] 1
= Zﬂ, D{(0q)(,€) D} (Z l—'DgD;(T)(:B,f))
BeN™ yEN™ v
1
Y Gy Doq)w D (or) (w,0).
BEN™

O

8.1.9 Theorem (diffeomorphism invariance). Let U,V CR", F : U — V be a diffeomor-
phism. Then for any K € U the map

Fy: Whe(U x R, C™7) = Wh 1 (V x R™,C77),
defined by
Vs € 2 (U,C") : Fy(P)(s) := P(so F)o F1.
is well-defined.

Proof. The crucial and only part is to show that F,(P) is again a WDO. Let G := F~! and
for any x € V, write Z := G(x) € U. Before we start, we make the auxilliary calculation

Ve,yeU:2—-9=G /8t (tz + (1 —t)y)dt
_ /0 VG(tr + (1 - )iz —y) = Hizp)e —y) O

J/

= H(x,y)
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Notice that
H(z,z) = VG(x),

thus there exists an open neighourhood O of the diagonal in V' x V such that
H:0O — GLR").
Choose x € Z(0) such that y = 1 in a (smaller) neighbourhood of the diagonal. Let

J:V =+ R
x — det(H(z,z)) #0

be the Jacobian determinant of G. We calculate for any s € €>(V,C")
EAP)s)(a) = P(so F)@) = (20) " [ [ @590,z 0)s(F(5) didg
(2m)" / ) / D@D 6 (7, )5(F(7)) (F ()T (F())did
ry [ [ D006 a), €)s(0) T )y
e [ e e o (Ga), €)s(0) )y

Now we multiply the integrand with x + (1 — x) = 1. We obtain two integrals, which we
analyze seperately: For the integral with (1 — x) we obtain (up to (27)™")

— /n/neuz—y,H(z,y)t@(l — x(x,9))op(G(x),&)s(y)J (y)dydE
=[] @ e p)on(Gla), (e, 5)") 1) det(EH (. 9) ) slo)dydé

=/ (z,y,£)

Now a” is a symbol, which satisfies the Workhorse Theorem 8.1.2 and vanishes in a neigh-
bourhood of the diagonal. Hence by 8.1.4 this defines an infinitely smoothing operator.
For the integral with xy we obtain analogously

= / ) / ) (@, y)op(Gle), (Hz,y)") ') det(H () "I (y) s(y)dydS

~~

::a/ (aj7y7§~)

Again a’ satisfies the hypothesis of the workhorse Theorem 8.1.2, hence F,(P) = P'+ P”,
where P” is infinitely smoothing and P’ is a DO as claimed. O
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A. Appendix

A.1. Leibniz Formulae

Before we can start with the analysis of the PDO Algebra itself, we first have to investigate
the application of a PDO to a function especially to the product of two functions. We
assume the reader to be very familiar with the product rule from basic calulus, i.e. if
fyg € CHU), then

Ve e U:0i(fg)(x) = (0if)(x)g(x) + f(x)(0ig(x))

This can be generalized considerably and will be done in this section. The following
notation conventions will be useful.

A.1.1 Definition. For any n,k € N we define

(”) :: o k<,
k 0, otherwise.

In addition, if o, 5 € N™, we define

<a> = WLB)“ « S ﬁ’
B 0, otherwise.

A.1.2 Lemma. The binomials satisfy the following law of addition

Va<B:V1<i<n: <5f‘ez>+<g> _ <a—|5—€i)

A.1.3 Theorem (Leibniz Rule). Let U C R™ be open, f,g € C¥(U), a € N, |a| = k.
Then

3“(fg)—2(g> @NHE P =3 208

1~
BLa B+y=a Chel

As a didactial motivation we will prove the very important special case n = 1 seperately.
Logically it is not needed in the proof of the general case and thus may be skipped.

Proof. [for n = 1] In that case, the statement is

k
(g =3 <k> £ gk)

v=0

We will prove this via induction over k. For k = 1 this is the ordinary product rule:

(f-9)(x) = f'(2)g(x) + f(2)g'(x)
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For the induction step kK — k + 1 consider

) = (Z: (i) 7 .guc—u)),

) JOHD ) | ) | 1)

(f - g) "D = ((

s

)

N~—
=

k

1%

k g
W) . (k—(v—1)) W) . (kt+1-0)
L 1> ¥ g + ;) <V> ¥ g
k R\ (o). —vt1) o plhs1) (k+1)
+1, g + f g+fg

>f(1/) kD) 4 (’f + 1> FlD g <k‘ + 1) Fgk+D

N

I
Wt
i)~
Fl

—
—_
~

N
I
-

A
IS
(]~

N
Il
—_

>
S
|
—_

<+
=

7~/ N 7 N 7 N

kE+1 0

e
<
MR

k+ 1) F0) . gl41—)

14

Il
E
Il +
() —
7N

<

(1): Here we splitted up the sum and shifted the index of the first one up by one.

(2): Here we separated the summands v = k + 1 in the first sum and v = 0 in the second
sum from the rest and combined the two remaining sums. (3): This uses the addition
theorem for binomials, c.f. LemBinomAdd, and the fact that

() == (3)

Proof. [General Case] We will prove this statment as well by induction over k = |a|.
If £ = 1, the statement is just the ordinary product rule. So by induction assume the
statement is valid for k. Any multi-index & with |&] = k + 1 can be written in the form

O
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& = a+ ej, where |a| = k and 1 < j < n. Using induction hypothesis we calculate:

a&(fg) :86]'304(1"9) = Z <g>3j <aﬁf aa_ﬂg>

0<B<a
_ o B+e; a—L o ¥6] a+te;—f3
=y <>a ifo* g+ Y <>8f8 i—Pg
0<B<a B 0<p<a B
@) o —(B—e; e _
= 98 f 9o (B—ei) g 4 ( >3B ootei—B
€‘<Bz<;x+e' <B_€j> g ! 0<zﬁ;a B d !
jSBate; <p=
(:)<Oé>aa+ejfg+ Z <g>aﬂf aa-&—ej—ﬁg
@ 0<B<a
B;=0
+ > ( “ )aﬂf ot g+ Y- <a>8ﬁf gty
e;<B<a 6_6] e;j<p<a p
@<a+€j>aa+ejfg+ Z <a+ej>8ﬁf 8a+6j—ﬁg
a+€j 0<p<ax B
)
+ Z <O‘_;€]'>aﬁf anrej*ﬁ)g
e;<B<La
o+ e e —
T e
0<B<a+te;
-y <O‘>aﬁ fo° Py,
0<B<a h

(1): Here we "shifted” the first sum by e;.
(2): Here we separated the summand 8 = o+ e; from the first sum and all the summands

with 8; = 0 from the second sum.
(3): Here we used the addition law LemBinomAdd on the last two sums and the fact that

j ] ’

thus
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begin crap

o (f0) = 0,7 (f0) =0 X () @ (0" g

B<la
<< <

)@
vy (D) () eenera s ¥ (5) @ne

i#5:0<8;<;,0<B8;<ay i=1,i#j 0<B<a

2y I (g (;;_1) @nero+ ¥ (5)@ney

i#5:0< B <ai, 1 <Bj<ayj i=1,i#] 0<pB<a

2y G G)emeae 3 ( ) (7)o

0<B<ai=1,i#j 0<B<ai=1,i#j

TN

(0;0° £)(0° P g) + (9° £)(9;0* P g)

—

—~
~

i=1,i#j
g b (%) izﬁ[ﬁ (5) @n@a)
-3 (5) @ ney

Where we have used the following facts:

(1) In the first sum, we just wrote down the index set and the expression more com-
plicated. In the second sum we only added summands with multi-indices 3, such

that y
a\ _ i) aj
(3) = I (3)-(a2)

(2) In the first sum this is an index shift
(0<pj<dj=a;-1)=(1<f<a)

and the plugging in of the definition of &.

(3) In the first sum, we just added summands where 3; = 0 and thus

aj —1Y)
<5j—1>_0

In the second sum we plugged in the definitions.

(4) This is the addition law for binomial coefficients.

end crap

A.1.4 Remark. This statement is also valid for D% instead of 9% (by just multiplying
the equation with (—i)%).

144



A.1.5 Corollary (Matrix valued Leibniz Formula). Let U C R™ be open and F €
CF(U,C**), G € CH(U,C™*) and a € N™ such that |a| < k. Then

o (F6)w) = 3 () @ P 76) (o)
BLla B
Proof. Notice that F'G & %k(U, (C’”Xt). Thus we calculate forany 1 <i<r, 1 <j<t

Zaa (FiGY) A13zz< )aﬂ (Fiyor=(cY)

v=1 g<a

=2 < >23’3 (Fo* (G =>_ (g) (0°(F)0*~P(G))5.

BLa B<a

One specific product is of particular importance.
A.1.6 Lemma. Let o, € N™ be any two multi-indices. Then for all £ € R"

N(§5)E*°, §<a,
82{04 _ {0 (5)¢ «

otherwise.

Proof.
STEP In=1: Let k € N and f; : R — R, t — t*. Then for any | < k

f,gl)(t) =kk—=1)...(k—1+ 1)t = (k:]i!l)ltkl _ (ll{;)l!tkl'

On the other hand, if I > k, we obtain f,gl) (t) = 0. Consequently

(M=t 1<k,

VkleN:vteR : f) = ("0 = |
0, otherwise

STEP 2general case: We calculate
Pey = op(er - =T

Now in case § < « it follows from (A.1) that

e =T (5 e = (5 )oee

i=1

If § < a does not hold, it follows also from (A.1) that 9°(£%) = 0 in this case.

Proof. [old] By induction over n. We always write 0 := Og.
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STEP 1 (induction start n = 1): In this case ,0 € Ng. In case § < «

o pare? a—4d T . a—9 al | QN ca—5
Qe =¢ ga—z:f (a—a)!:5'<5>5 .

This identity implies that in case § > a.
0°(€7) =" ~*(0(6%) =0

STEP 2 (induction step n — n + 1): Suppose the formula is valid for multi-indices of length
n and let a, 6 € N™t1. Define

a:= (ag,...,ap) € N™, 5::(51,...,5n)€N”.
We calculate
06 = P (DG = I (EGT 00 (€N) = T D€ (A2)

Now if § < « does not hold, one of these factors equals zero by induction hypothesis. In
case 0 < « does hold, we may continue this equation using the induction hypothesis by

1 Q41 \ capi1—6 6 l [« -6
A2 — n+1—"0n+1 a— - 6 .
2= (a5 (5)e = 5 (5)e

This allows us to generalize Leibniz formula for PDOs.

A.1.7 Theorem (Leibniz Formula for PDO). Let U C R™ be open F € CF(U,C"™*),
g € C*(U,C") open and

Z pa(z)D® € Diffk (U, s,t)
|| <k

be a PDO with symbol p(z,&). Then

P(D)(Fg) = 3 L PU)(D)(F)Drg
lul<k ©

where PU)(D) e Difft ™ (U, s, 1) is the PDO with symbol

¥ (x,¢) = Of'p(x,€)
Proof. By the Leibniz formula ?? above
a\ oo
P(z,D)(Fg) = > pa(z)D*(Fg) = > palz) < >D “(F)D*(g)
jal<k ik pga

Furthermore

P (2,6 = 3 pal@)dte® 203 pala) ()5”

la|<k la|<k
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Consequently

A.1.6

(6
P(z, D)(Fg) . DOH(F)DF o DeH(F)D*
(@, D)(Fg)= > > palx (u) g ZWM " > pal <u> (F)D"g
jal<k <o o<k
= 3 Lpp)(F)Drg
i<k H

We would like to generalize generalize these results to products with finitely many factors.

A.1.8 Theorem (Binomial Theorem). For any z,y € C, n € N

In this context 0° := 1.
A.1.9 Theorem (Multinomial Theorem). Let z1,...,2; € C", o € N™. Then
k (0%
_ @\ B
() - > (5)
i=1 Be(N™)k,|Bl=c

where B = (By,..., By,) is a tuple of multi-indices, Z? := zfl : f’“ and

k
a al
B =3B, (5) = 5rsm
=1

Proof. We use induction over k. For k = 1, the statement is clear since both side equal
(0% j—
2. For k=2

vi=1
(<%} an N o al « B
Yi ozZ Yi __ : V=Y
- ZH() zﬁ - r (3
=1 gp=1i=1 y<a Be(N™)%|Bl=a

For the induction step assume k > 3 and that the statement holds for k. Define y :=
Zle 26, Y = (21,...,2;) € (C™)* Using the induction start for k¥ = 1,2 and the induction
hypothesis, we obtain:

k+1 « k « N
(; Zi) = (; zi + Zk+1> =(y+zp11)" = Z ((%5)

Y=o

! Y !
¥ e (Te) - a2 ()

Y+é=a i=1 Y+é=a Ce(N)k |C|=v
| !
. v Cl Ci 6§ (6 B
— = = A4 A4
Z Z ANSLCy! .. O ko “k+1 = B
yHo=a Ce(N ™)K, [Cl=y Be(N™)F1,|Bl=a
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A.1.10 Theorem (Leibniz rule for multiple factors). Let f1,..., fr € C*°(U,C), U C R™

,a € N™ Then
k
@
(i), %, G
i=1 Be( =

N™)¥ |B|=a

where F = (f1,...,fx) : U = C¥, B = (By,...,By) is a tuple of multi-indices, 9P F :=
(0B 1) ... (0P fi) and

k
a al
Bl =3B, (5) = 35
=1

Proof. We use induction over k. For k = 1, the statement is clear since both side equal
0° f1. For k = 2 this has already been proven as A.1.3. For the induction step k — (k+ 1)
consider:

(ﬁ fz> =0 (H fsz+1> - X () (f[l fl-ka) fi

Y+o=a
a! Y
= Z Wzg+1 Z <C)ac(fl7afk)
y+d=a T Ce(Nn)k |Cl=y
ol ! «
= > Y meraa@ 0 @an= 3 (B>8BF
y+o=a Ce(Nm)F|Cl=y | 1 k Be(N™)k+1,|B|=a

O

A.2. Auxilliary Lemmata
A.2.1 Lemma. The Euclidean norm | | = || |2 on R™ satisfies
Vo e N":Vz e R" : |z°] < |z]® = |z|lo].

Proof. The last equality holds by definition. The first inequality is proven by stupid
induction over |a| = k. If kK =1 there exists 1 < j < n such that a = e;. Therefore

ot =

For the induction step k¥ — k + 1 notice decompose an « satisfying || = k + 1 into 5+ ¢;
where |3| = 1 and calculate

2% = [2” || <l || < Ja]®.

A.2.2 Lemma. For any k € N there exist constants {c, > 0| |&| < 2k} such that

Ve e R™: |z|f < Z Calx®|.
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Proof. We use induction over k.

STEP 1 (k =0): Clearly

1z]° =1 =: ¢g|aY
does the job.
STEP 2 (k — k+1): Let

pr(z) = Z cat®

| <2k

Using the induction hypothesis, we calculate for any |z| > 1

n n
2l D cale®l <o D cala® =D af 3 cale®l =3 D cala®

la <2k || <2k =1 <2k J=1|al<2k

0

Since for any |z| < 1, |z[F1 <1 = 29 as well, the estimate

n
n k+1 k a+2e;
. - = « ’
Ve e R": |zt = |z|z] <E g Calz®T4| + 1
j=1 |a|<2k

does the job.

O
A.2.3 Lemma.
Ve, y € Ry :Vk €N : (x4 y)* <28 + %)
Proof. By common sense
(z +9)" < (2max(z,y))" = 2 max(z, y)" < 282" +y").
O
A.2.4 Lemma. Let s € R and define f : R™ — R, z — |z|® (remember, that |z| := ||z||2)

and let 1 < p < oco. Then
feLP(Bi(0) & —s < %, FeP(R™\ Bi(0) & —s > %.

1
A.2.5 Lemma (Peetre Inequality). For any &€ € R™ let (£) := (1 +1£]?)2 and let | | be
the Euclidean norm.

VEmER™: Vs € R 1 (6)° < 2B(g — sl (m)®
Proof. [see Abels| In a first step, we calculate
€2 =+ [P <A+ 1ED? < T+ 1)+ (1= [€)* =201+ [¢]),
thus we obtain
(©) < (1+ 1) < V2(¢) <2(¢) (A.3)

Let’s assume s > 0. By the triangle inequality

(T+1e) < A+ 1€ =nl+nl) < T+ 1€ =0T+ [n) (A.4)
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thus

(A.3) (A.4) (A.3)
©° < A+[) < A+lE=n)*A+M)* < 2°(€—m*m)°

This implies the claim for s > 0. In case s < 0, interchange the roles of £ and 7 in the
previous inequality and apply this to —s. We obtain

()™ <27 —=&)7(&)"
= (&) <27 (=) (m)* = 2Py — )l ()”.

A.2.6 Lemma. For any k-times differentiable function h: U C R™ — R™ define

h = O%h}
IPllgri=sup _meax = max |9%](x).

Now let F € CF(U C R™,V C R™), k > 1, and g € CF(V,R). There exists C > 0, such
that

g 0 Fller@wy < CrllFller @ llgllervy- (A.5)

Proof. This can be proven by induction over k using the chain rule and the Leibniz rule:
For k£ = 1, this follows from

10i(g 0 F)| <> |0:F7 digl < nl|Fller @ lgller vy
=1

For the induction step, we just notice that for any @ € N, such that || = k + 1 there
exist € N™ and 1 <i < j, such that |5| = k and a = § + ej. Therefore

0%(g 0 F)| = 10°0;(g 0 F)| <> [0°(0:F70ig) <> ( 070, F7 9°~10,9)| < C||Fll e llgllers vy
i—1 i—1 ~<8
O

A.2.7 Lemma. The map a : R" — B" = —
LB 5 R™

is a diffeomorphism with inverse

X

A.3. Linear Algebra

A.3.1 Theorem (Adjoints). Assume that
(i
(11

) (V,g), (W, h) are finite-dimensional hermitian vector spaces over C,
) B=(b1,...,b,) isabasisof V, C = (ci,...,¢n) is a basis of W,
iii) G = (¢i5) € GL(n,C) is the coordinate matrix of G with respect to B,
(iv) H = (hij) € GL(m,C) is the coordinate matrix of H with respect to C,
) f:V — W is a C-linear map,

vi) M = cB(f) is the coordinate matrix of f with respect to B and C,

i) N = c{/(f*) is the coordinate matrix of f* with respect to C and B.
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Then
N=G 'M*H
where M* := M?.

Proof. By definition, for any 1 <7 <n, 1 < j < m, we claculate on the one hand

h(f(b), c;) = h(zm:Mkick) - éMM Ch ;) Z My, Hy;
= iM‘tkaj = (M'H);;
and on the other hand
9(bi, [*(¢j)) = 9(51'7[27_1;]\711@) = lﬁ;Nljg(bm by) = lﬁ;Nleu
= ZZH;G,-INU = (GN);;.

By definition h(f(b;),c;j) = g(bi, f*(cj)) and therefore, we obtain

M'H=GN —= G 'M'H=N—=— N=G 'M*H.

A.4. Connections and Vector bundles

Let E — M be a smooth vector bundle over K. In this section we discuss the concecpt of
a connection on a vector bundle. There are slightly different definitions of a connection,
which are all very common in the literature and are all equivalent. In order to see this and
to give some better intuition and understanding, we remind some easy facts from linear
algebra.

A.4.1 Definition. Let V, W be K vector spaces. For any v € V the map B, : V/ x W —
W, (v, w) — v'(v)w, is bilinear. By the universal property of the tensor product, there
exists a unique linear map 3, : V' ® W — W, such that 8, o ® = B,. The bilinear map
(, Ww:Vx(V'eW) — W, defined by (v, x) — B,(x), is the W-pairing of V. It satisfies

Yo eV W e VVwe W : (v,v @ w)w = (v)w.

A.4.2 Definition (connection). An K-linear map I'(E) — I'(T*M ® E), which satisfies
Vfe € (M):Vo e (E): D(fo)=df ® o+ fDo

is a connection on E.

A.4.3 Definition (covariant derivative). A K-bilinear map V : I'(E) x I'(M) — I'(E),

(X,0) — Vxo satisfying
(i) Vfe®>*M):Yo e I'(E): Vixo = fVxo
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(il) Vf € €°(M) :Vo € T'(E) : Vx(fo) = X(f)o + fVxo
is a covariant derivative on M.

There is an intimate relation between connections and covariant derivatives. The words
are almost used as synonoms in the literature.

A.4.4 Lemma. There is a bijection ¢ : {connections on E} — {covariant derivatives on E'}.
For any connection D, define the covariant derivative VP := ¢(D) to be the following: For
any X € I'(M) define

VX(0) := (X, Do),

where (X, Do) is the (pointwise defined) E-pairing between T'M and T*M.
Proof.

STEP 1 (V¥ is a covariant derivative): By construction V¥ it is K -binlinear and €>°(M)-
linear in X. By the connection property, we obtain

VR(fo) = (X,D(fo))p = (X.df @0+ fDo)p = df (X)o+(X, fDo)p = X (f)o+ fVE(0)
O

A.4.5 Lemma (Affine structure). Let V° and V! be two linear connections on E — M,
where E is vector bundle over K. The difference

VX e T(M):Vse—(E): A(X,s) := Vs — Vs

is a tensor field A € I'(T"M ® E), i.e. amap T(M) x I'(E) — I'(E), that is multilinear
over €°°(M). It is called the difference tensor. The set V(E) of all connections on E is
given by

V(E)={V'+A|Ac(IT"M ® E)}

and is therefore an affine space.

Proof. The linearity over K in X and s is clear. For any f € C>°(M), we calculate
A(fX,s) = V}Xs - V(}Xs = fVks — fV%s = fA(X,s)
A(X, fs5) = Vx(fs) = Vx(fs) = X(f)s + [Vxs = X(f)s — [Viks = [A(X,5),

thus A € TZ(FE) is a tensor field. Conversely if A € T?(E) is an arbitrary tensor field, the
map

vi=v0+4a

is a connection: Clearly it is linear over R in both arguments, linear over C*°(M) in X by
definition and the Leibniz rule follows immediately from

VHX, fs) = V& (fs) + A(X, fs) = X(f)s + Vs + fA(X,s) = X(f)s + Vis.
O

A.4.6 Lemma. Let V be a linear connection on M and let {E;} be a local frame on some
open neighbourhood U C M, and let {E*} be its dual coframe.

(i) There is a uniquely determined matrix of 1-forms wg € T*(U), called connection
1-forms for this frame such that

VX € T(U): VxE; = w/(X)E;
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(ii) Let 7 be the torsion tensor from Problem 4-2 and {7} be the torsion 2-forms defined
by
VX, Y € T(U): 7(X,Y) =7(X,Y)E;

Then Cartan’s first structure euqation
dE = E' A w! + 77
holds.

Proof.

(i) Uniqueness follows easiliy from
VxE; =Vxip Ei = X"V, E; = X' E;
Since F; is a local frame, we have no choice but to define
o
wf = Ffm.E
Clearly wg € T*(U), which shows existence.

(ii) Let’s expand the various terms. For the differential, we obtain

7, 12.17]

dE (X,Y) (Y7) =Y (X7) = E/([X,Y])

For the torsion, we obtain

(X,Y) = F(1(X,Y)) = B/ (VxY) - B/ (VyX) — E/([X,Y])

= B/ (X(Y") + XY'TH)Ey) — B (Y(X") + Y'X'TH)Ey) — B ([X,Y])
= X(Y9) + XYY, - v(X7) - Y'X'T), — BI([X,Y])

= X(Y9) - Y/(X7) - B/ ([X,Y]) - XY ), + vViXFT),

The wedge can be written as

(F'ow! —w! @ E)X,Y) = X'Ww/(Y) —w! (X)Y?

)

, ; 1+ 1)!
[ J _ (

= X'Y'T, — X"Y'T), = X"Y'TJ, — X'Y"T),
These three equations together imply

(dE — E* Aw! —79)(X,Y) =0
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List of Symbols

* convolution, page 57

f the fourier transform of f, page 67
F fourier transform operator, page 67
S compactly contained, page 50

B(p,n) a ball with respect to the seminorm p of radius 1/n, page 38
C>®(U) smooth functions, page 50

C(U) the space of compatly supported smooth functions, page 51
2(U) the space of compatly supported smooth functions, page 51
Cs , page 124

D  partial differentiation, page 4

o partial differentiation, page 4

Diﬂ"k(M ; £, F) differential operators between sections, page 9
Diff*(U,C",C*) differential operators of order k, page 4

Diﬂ?’g(U ,C",C*) compactly supported differential operators of order k, page 4

0; partial differentiation in the j-th coordinate direction e;
D; D; := —i0;, where i is the imaginary unit

E smooth functions, page 50

f inverse Fourier transform, page 71

F~1  inverse Fourier transform, page 71

H? Sobolev space of order s, page 109

K oS composition of sets, page 133

M a smooth manifold

m m = dim M

My rotation, page 68

N the natural numbers starting with 0,1,2, ...
n dimension of R™

Nrm Category of normed spaces, page 37
Os
ff oscillatory integral, page 129

f reflection operator, page 68
R reflection operator, page 68
Ro , page 124
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S the Schwartz space, page 61
Sy scaling, page 68

sing-supp singular support, page 96
So , page 124

supp f support of f, page 51

Ty translation, page 68

U U C R™ usually is an open set

9 power of the pullback of a cotangent vector, page 19
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Index

absorbing, 37
amplitude, 132
asyptotic expantion, 79

balanced, 35
bounded, 36

Cauchy sequence, 36
conical, 124
convex, 39
convolution, 57

of distributions, 99
convolution theorem, 67

diffeomorphism invariance, 7
differential operator, 4

between bundles, 9
differentiation

of a distribution, 87
differentiation theorem, 69
Dirac sequence, 58
distribution, 83

positive, 108

tempered, 83

with compact support, 83

elliptic

PDO, 28
elliptic complex, 34
equivalence

of seminorms, 44
exhaustion function, 78

F-space, 37

FIO, 131

formal development, 79
Fourier Integral Operator, 131
Fourier transform, 67

Fréchet space, 37

functional, 36

Heine-Borel property, 37

invariant metric, 37
inverse Fourier transform, 71

Ly-space, 57
local frame, 8
locally convex, 37
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metrizable, 37
Minkowski functional, 37
multiplication

of a distribution, 85

norm, 37
normable, 37

Operator, 36
operator phase function, 132
order

of a distribution, 83
oscillatory integral, 129

PDO, 4

distributional, 87

on manifolds, 9
phase function, 124
positively homogenous, 76

rapidly decreasing, 60
Rellich Lemma, 114
restriction, 20

Schwartz kernel, 103
Schwartz kernel theorem, 103
Schwartz space, 61

section, 8

seminorm, 37

singular support, 96

Sobolev Embedding Theorem, 113

Sobolev space, 109
standard mollifier, 59
support

of a distribution, 90
symbol, 5, 74

full, 5

on manifolds, 14

principal, 5

tensor product

of distributions, 101
tensor product

of functions, 100
topological vector space, 35

vector bundle, 8

weak-*-topology, 44



Workhorse Theorem, 136

Young’s inequality, 57
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