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2. PDO: Partial Differential Operators

”Lucky for you I’m a freaking genius.”
Seamus Zelazny Harper, 10087 CY

This chapter is designed to give an introduction to the theory of partial differential opera-
tors (”PDO”). The treatment of Pseudo-Differential Operators (”ΨDO”) later is even more
technical than the one of partial differential operators. So in order to understand the ideas
behind the ΨDO theory, the PDOs are helpful. Of course they are also useful and nice in
their own right.

2.1. Local PDOs and their Symbols

First we have to establish the local theory on an open subset U ⊂ R n, which is then
generalized to operators on manifolds.

2.1.1 Convention. We denote the partial derivative on R n in direction 1 ≤ j ≤ n by ∂j .
For any multi-index α, we define

∂α := ∂α1
1 ◦ . . . ◦ ∂

αn
n .

For reasons that will become apparent later, we define Dj := 1
i ∂j (here i ∈ C is the

imaginary unit and not an index) and consequently

Dα := i−|α|∂α.

For any vector x = (x1, . . . , xn) ∈ R n

xα :=

n∏
i=1

xαii .

2.1.2 Definition (Differential Operator). Let U ⊂ R n be open. A complex (partial) dif-
ferential operator on U of order k, k ∈ N , (a ”PDO”) is a C -linear map P : C∞(U,C r)→
C∞(U,C s) such that for every α ∈ N n, 0 ≤ |α| ≤ k, there exist Pα ∈ C∞(U,HomC (C r,C s))
such that

P =
∑
|α|≤k

PαD
α.

A real differential operator is defined analogously. The set of all such operators is denoted
by

Diffk(U,C r,C s)

and we set
Diff(U,C r,C s) :=

⋃
k∈N

Diffk(U,C r,C s).

If all the Pα are compactly supported, we write P ∈ Diffkc (U,C r,C s). The quantity

min(k ∈ N | P ∈ Diffk(U,C r,C s))

is the minimal order of P .

2.1.3 Remark.

4



(i) Of course we assume that HomC (C r,C s) is given the smooth structure obtained by
identifying it with C s×r.

(ii) The set DiffkC (U,C r,C s) itself is canonically a module over C∞(U) and a C -vector
space.

(iii) Chosing a bases {Eµ} of C r and {Fν} of C s, we can fully expand P in coordinates
as

Ps =
∑
|α|≤k

s∑
ν=1

r∑
µ=1

(Pα)νµD
α(sµ)eν . (2.1)

(iv) It is clear that any P ∈ Diffk(U,C r,C s) may be applied to a function f ∈ Ck(U).
But since we want to work on smooth manifolds, things will as usual get easier, if we
simply work in the smooth world.

(v) We will occasionally drop the C in notation, since we always work with complex
numbers. Of course one could also use real PDOs.

(vi) We explicitely allow the case k = 0. An operator P ∈ Diff0(U,C r,C s) is still called
a ”differential operator” although it does not differentiate anything.

2.1.4 Definition (symbol). Let P ∈ DiffkC (U,C r,C s) be an operator

P =
∑
|α|≤k

PαD
α.

Define ΣP , σP : U × R n → HomC (C r,C s) by

ΣP (x, ξ) :=
∑
|α|≤k

Pα(x)ξα, σP (x, ξ) :=
∑
|α|=k

Pα(x)ξα.

We say Σ is the full symbol of P and σ is the principal symbol of P .

2.1.5 Remark.
(i) Since we are working on an open subset of R n at the moment, it is clear that we

may identify differential operators with their full symbols (ξj ↔ Dj).
(ii) The principal symbol will have a coordinate invariant meaning on manifolds. There-

fore the term ”symbol” is often used in the literature to refer to the pricipal symbol.
The term ”full symbol” is sometimes used for ΣP . We will establish all the local
theory for the full symbol as well.

2.2. Diffeomorphism Invariance

If there is any chance of defining a PDO calculus on manifolds, the property of being a
PDO has to be invariant under diffeomorphisms.

2.2.1 Definition (Push-forward of operators). Let V, Ṽ ⊂ R n be open, P ∈ Diffk(V,C r,C s)
be a PDO and F : V → Ṽ be a smooth diffeomorphism. Then the map P̃ := F∗P :
C∞(Ṽ ,C r)→ C∞(Ṽ ,C s) defined by

s̃ 7→ P (s̃ ◦ F ) ◦ F−1

is the push-forward of P along F .
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2.2.2 Lemma (Diffeomorphism invariance). With the notation of Definition 2.2.1 above:
Let α ∈ N n, |α| = k ≥ 1, be a multi-index and P := Dα ∈ Diffk(V,C r,C r). Then
P̃ := F∗(D

α) ∈ Diffk(Ṽ ,C r,C r), thus there exist P̃α ∈ C∞(Ṽ ,Hom(C r,C r)) such that

∀s̃ ∈ C∞(Ṽ ,C r,C r) : P̃ (s̃) = F∗(D
α)(s̃) = Dα(s̃ ◦ F ) ◦ F−1 =

∑
|β|≤k

P̃βD
β(s̃).

Denote by Ir ∈ Hom(C r,C r) the identity and let A := ∇F ◦ F−1 ∈ C∞(Ṽ ,R n×n). Then
the symbols can be expressed by

σDα(x, ξ) = Irξ
α, σF∗(Dα)(x̃, ξ) =

∑
|β|=k

P̃β(x̃)ξβ = Ir(A
t(x̃)ξ)α,

Proof. We will show the statement by induction over k.
Step 1 (k = 1): This implies that α = ej for some 1 ≤ j ≤ n. The chain rule for total
derivatives states

∇(s̃ ◦ F ) = ∇s̃ ◦ F · ∇F,
which implies

∂j(s̃ ◦ F ) = ∇s̃ ◦ F · ∂jF.
Consequently by definition

F∗(∂
α)(s̃) = F∗(∂j)(s̃) = ∂j(s̃ ◦ F ) ◦ F−1 = ∇s̃ · (∂jF ◦ F−1)

=

n∑
i=1

(∂jF
i ◦ F−1)∂is̃ = Ir

n∑
i=1

Aij∂is̃.

By multiplying with −i, this shows F∗(Dα) ∈ Diff1(Ṽ ,C r,C r). The symbols are given by

σ∂j (x, ξ) = Irξj , σF∗(∂j)(x, ξ) = Ir

n∑
i=1

Aij(x)ξi = Ir(A
t(x)ξ)j = Ir(A

t(x)ξ)α.

Step 2 (k → k + 1): If |α| = k + 1, there exists α̂ ∈ N n, |α̂| = k, and 1 ≤ j ≤ n such
that α = α̂ + ej . By induction hypothesis, for any β ≤ α the operator F∗(Dβ) is a PDO.
Consequently

∀β ≤ α : ∃pβγ ∈ C∞(U,C r×r) : F∗(D
β) =

∑
|γ|≤|β|

P βγ D
γ (2.2)

and

∀β ≤ α : σF∗(Dβ) =
∑
|γ|=|β|

pβγξ
γ = Ir(A

tξ)β. (2.3)

We calculate

F∗(∂
α)(s̃) = ∂α(s̃ ◦ F ) ◦ F−1 = ∂α̂∂j(s̃ ◦ F ) ◦ F−1 = ∂α̂

( n∑
i=1

∂jF
i · ∂is̃ ◦ F

)
◦ F−1

=
(∑
β≤α̂

n∑
i=1

(
α̂

β

)
∂α̂−β∂jF

i · ∂β(∂is̃ ◦ F )
)
◦ F−1

=
∑
β≤α̂

n∑
i=1

(
α̂

β

)
∂α̂−β∂jF

i ◦ F−1 · F∗(∂β)(∂is̃)

(2.2)
=
∑
β≤α̂

n∑
i=1

∑
|γ|≤|β|

P βγ

(
α̂

β

)
∂α̂−βAij∂

γ∂i(s̃).
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By multiplying with (−i)k+1, this shows F∗(Dα) ∈ Diffk+1(Ṽ ,C r,C r). We analyse the
highest order terms. These occure precisely, if |γ + ei| = k + 1⇔ |γ| = k. Since |γ| ≤ |β|
and β ≤ α̂, this can only happen, if β = α̂ and |γ| = k.

σF∗(Dα)(x, ξ) =
∑
|γ|=k

P α̂γ (x)
( n∑
i=1

Aij(x)ξi

)
ξγ =

∑
|γ|=k

P α̂γ (x)(At(x)ξ)jξ
γ

= (At(x)ξ)j
∑
|γ|=k

P α̂γ (x)ξγ
(2.3)
= Ir(A

t(x)ξ)j(A
t(x)ξ)α̂ = Ir(A

t(x)ξ)α.

2.2.3 Theorem (Diffeomorphism Invariance). With the notation of Definition 2.2.1 we
claim: P̃ = F∗(P ) ∈ Diffk(Ṽ ,C r,C s), i.e. there exist P̃α such that

∀s̃ ∈ C∞(Ṽ ,C r,C s) : P̃ (s̃) = F∗(P )(s̃) =
∑
|α|≤k

P̃αD
α.

Moreover the symbol has a representation

σP̃ (x̃, ξ) =
∑
|α|=k

P̃α(x̃)ξα =
∑
|α|=k

(Pα ◦ F−1)(x̃)(At(x̃)ξ)α = σP (F−1(x̃), At(x̃)ξ),

where A := ∇F ◦ F−1.

Proof. By definition we obtain

P̃ (s̃) = F∗(P )(s̃) =
( ∑
|α|≤k

PαD
α(s ◦ F )

)
◦ F−1 =

∑
|α|≤k

Pα ◦ F−1F∗(D
α)(s̃).

By applying the first part of Lemma 2.2.2, we conclude P̃ ∈ Diffk(Ṽ ,C r,C s). By applying
the second part and analyzing the highest order terms, we conclude that the symbol satisfies

σP̃ (x̃, ξ) =
∑
|α|=k

(Pα ◦ F−1)(x̃)σF∗(Dα)(x̃, ξ) =
∑
|α|=k

(Pα ◦ F−1)(x̃)(At(x̃)ξ)α.

2.2.4 Remark. One might be tempted to look for a transformation formula for the lower
order terms as well. This is extremely difficult and unneccessary for our purposes. The
problem is that there is no really good chain rule for arbitrary partial differential operatos,
i.e. expressing ∂α(s̃ ◦ F ) in terms of ∂β s̃ and ∂γF is not so easy. This problem is known
as Faá di Bruno’s formula, but has been stated initially by Arbogast in 1800. For some
special cases there exists a formula that is sometimes useful. For our purposes here it is
not.

2.2.1. Global PDOs and their Symbols

LetM be a smooth manifold of dimension m. The suitable setting for PDOs is to let them
operate between the sections of two smooth complex vector bundles over the same manifold
(notice already that this means we will be able to speak about the exterior differential as
a PDO).
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2.2.5 Definition (complex vector bundle). A map π : E →M is a smooth complex vector
bundle of rank r if the following conditions are satisfied:
(i) E is a smooth manifold.
(ii) The map π is smooth and surjective.
(iii) For all p ∈ M fibre over p, Ep := π−1(p), is endowed with a complex vector space

structure of complex dimension k.
(iv) For every p ∈ M there exists an open neighbourhood U ⊂ M of p and a local

trivialization, i.e. a diffeomorphism Φ : EU := π−1(U)→ U × C r such that pr ◦Φ =
idU , where pr : U × C r → U is the canonical projection, and for every q ∈ U the
restriction Φ : Eq → {q} × C r ∼= C r is a complex vector space isomorphism.

2.2.6 Definition (section). If π : E → M is a complex vector bundle, a smooth map
s : M → E such that π ◦ s = idM is a section in E over M . The space of all such sections
is denoted by Γ(M,E).

2.2.7 Definition (frame). Let π : E →M be a smooth complex vector bundle of rank r.
Let U ⊆̊M , E1, . . . , Er ∈ Γ(U,E) such that for any p ∈ U , (E1|p, . . . , Er|p) is a basis for
Ep. Then (E1, . . . , Er) is a local frame for E.

2.2.8 Lemma. Let π : E → M be a vector bundle of rank r. For any local frame
E1, . . . , Er on U of E the map

Φ : π−1(U) → U × C r

v =
∑r

j=1 v
iEi 7→

(
π(v),

∑r
j=1 v

iei

)
provides a local trivialization on U for E. Conversely, for any local trivialization Ψ, the
maps

Ei|p := Ψ−1(p, ei)

provide a local frame E1, . . . , Er on U for E. Thus local frames and local trivializations
are in a one-to-one correspondence.

2.2.9 Definition (associated pushforwards). Let π : E →M be a complex vector bundle
of rank r and Φ : EU → U × C r be a local trivialization. Denote by pr2 : U × C r → C r

the canonical projection. We obtain the pushforward Φ∗ : Γ(U,E) → C∞(U,C r) defined
by

s 7→ pr2 ◦Φ ◦ s = Φ2 ◦ s
and for any chart ϕ : U → V of M the pushforward ϕ∗ : C∞(U,C r)→ C∞(V,C r)

f 7→ f ◦ ϕ−1.

By composing we obtain a map ϕ∗Φ∗ := ϕ∗ ◦ Φ∗ : Γ(U,E)→ C∞(V,C r).

2.2.10 Lemma.
(i) By construction the following diagram commutes:

EU

π
��

Φ // U × C r

pr2

��

U

s

OO

Φ∗s // C r

V

ϕ−1

OO

ϕ∗Φ∗s

::

Notice that ϕ∗Φ∗ transports a local section s : U → EU to a function V → C r.
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(ii) The map ϕ∗ is bijective with inverse (ϕ∗)
−1 = (ϕ−1)∗ : C∞(V,C r)→ C∞(U,C r).

(iii) The map Φ∗ is bijective with inverse Φ−1
∗ : C∞(U,C r)→ Γ(U,E), f 7→ Φ−1 ◦ idU ×f .

(iv) The map ϕ∗Φ∗ : Γ(U,E) → C∞(V,C r), s 7→ Φ2 ◦ s ◦ ϕ−1, is bijective with inverse
Φ−1
∗ ◦ ϕ−1

∗ : C∞(V,C r)→ Γ(U,E), f 7→ Ψ−1 ◦ id×f ◦ ϕ.

Proof. The first two statements are clear. To see the third one, remember that any local
trivialization can be written as

Φ = (Φ1,Φ2) = (idU ,Φ2) = idU ×Φ2.

Therefore we obtain

∀s ∈ Γ(U,E) : (Φ−1
∗ ◦ Φ∗)(s) = Φ−1

∗ (Φ2 ◦ s) = Φ−1 ◦ idU ×Φ2 ◦ s
= Φ−1 ◦ Φ ◦ s = s

and

∀f ∈ C∞(U,C r) : (Φ∗ ◦ Φ−1
∗ )(f) = Φ∗(Φ

−1 ◦ idU ×f) = pr2 ◦Φ ◦ Φ−1 ◦ idU ×f = f.

2.2.11 Definition (Differential operators between vector bundles). Let E,F be smooth
complex vector bundles over M of rank r and s. A C -linear map P : Γ(M,E)→ Γ(M,F )
is a differential operator of rank k, if for any p ∈ M there exists a chart ϕ : U → V ,
p ∈ U , and local trivializations Φ : EU → U × C r and Ψ : FU → U × C s, there exists
D ∈ Diffk(V ;C r,C s), called a local representation of P , such that

Γc(U,E)

ϕ∗Φ∗
��

P // Γc(U,F )

ϕ∗Ψ∗
��

C∞c (V,C r)
D // C∞c (V,C s)

commutes, i.e.
ϕ∗Ψ∗ ◦ P ◦ (ϕ∗Φ∗)

−1 = D.

We say P satisfies the PDO property on U with respect to ϕ, Φ, Ψ. The set of all differential
operators of order k between E and F is denoted by

Diffk(M ;E,F ).

Analogously we set
Diff(M ;E,F ) =

⋃
k∈N

Diffk(M ;E,F ).
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2.2.12 Lemma (local PDOs). Let E,F be trivial vectors bundles over U ⊂ M with
trivializations Φ, Ψ. Let E1, . . . Er, F1, . . . , Fs be the associated local trivializations (c.f.
2.2.8).
(i) Assume there exists a chart ϕ : U → V . For any multi-index α, |α| = k,

Dα := Dα
ϕ,Φ := (ϕ∗Φ∗)

−1 ◦Dα ◦ ϕ∗Φ∗ ∈ Diffk(U ;E,E) (2.4)

and we may calculate

∀s ∈ Γ(U,E) : Dα
ϕ,Φ(s) =

r∑
µ=1

Dα
ϕ(sµ)Eµ, (2.5)

where Dα
ϕ ∈ Diffk(U ;C ,C ) is given by:

∀f ∈ Γ(U ;C ,C ) = C∞(U,C ) : Dα
ϕ(f) := Dα(f ◦ ϕ−1) ◦ ϕ.

(ii) A linear map P : Γ(U,E)→ Γ(U,F ) satisfies P ∈ Diffk(U ;E,F ) if and only if there
are Pα ∈ Γ(U,Hom(E,F )) such that

P =
∑
|α|≤k

PαD
α
ϕ,Φ. (2.6)

This operator acts on local sections by

∀s ∈ Γ(U,E) : P (s) =
∑
|α|≤k

s∑
ν=1

r∑
µ=1

(Pα)νµD
α(sµ)Fν , (2.7)

where the ((Pα)νµ) ∈ C∞(U,C s×r) are the coordinate matrices of Pα with respect to
the local frames (notice the resemblence to 2.1.) Therefore P is a PDO if and only
if there exist local frames and ((Pα)νµ) ∈ C∞(U,C s×r) such that (2.7) holds.

(iii) The operators Dα satisfy the Leibniz rule:

∀f ∈ C∞(U,C ) : ∀s ∈ Γ(U,E) : Dα
ϕ,Φ(fs) =

∑
β≤α

(
α

β

)
Dβ
ϕ(f)Dα−β

ϕ,Φ (s). (2.8)

Even more general: For any vector bundle homomorphism θ ∈ Γ(U,Hom(E,F ))

∀s ∈ Γ(U ;E) : Dα
ϕ,Ψ(θs) =

∑
β≤α

(
α

β

)
Dβ
ϕ,Φ,Ψ(θ)Dα−β

ϕ,Φ (s). (2.9)

Proof.
(i) The facts thatDα

ϕ,Φ ∈ Diffk(U ;E,E), Dα
ϕ(U ;C ,C ) follow directly from the definition

2.2.11. By construction

Dα
ϕ,Φ(s) =

r∑
µ=1

Dα
ϕ,Φ(sµEµ) =

r∑
µ=1

(ϕ∗Φ∗)
−1(Dα(ϕ∗Φ∗(s

µEµ)))

=

r∑
µ=1

(ϕ∗Φ∗)
−1(Dα(sµ ◦ ϕ−1)) =

r∑
µ=1

Φ−1
∗ ((Dα(sµ ◦ ϕ−1)) ◦ ϕ)

=
r∑

µ=1

Dα
ϕ(sµ)Eµ.
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(ii) By definition 2.2.11 P is a PDO if and only if there exists a P̃ ∈ Diffk(V ;C r,C s)
such that ϕ∗Ψ∗ ◦ P ◦ (ϕ∗Φ∗)

−1 = P̃ . Let

P̃ =
∑
|α|≤k

P̃αD
α

and calculate

P = (ϕ∗Ψ∗)
−1
∑
|α|≤k

P̃αD
α ◦ (ϕ∗Φ∗)

=
∑
|α|≤k

(ϕ∗Ψ∗)
−1P̃αϕ∗Φ∗︸ ︷︷ ︸
=:Pα

Dα
ϕ,Φ.

We calculate

P (s)
(2.6)
=

∑
|α|≤k

PαD
α
ϕ,Φ(s) =

∑
|α|≤k

r∑
µ=1

PαD
α
ϕ,Φ(sµEµ)

(2.4)
=

∑
|α|≤k

r∑
µ=1

PαEµD
α
ϕ(sµ)

=
∑
|α|≤k

s∑
ν=1

r∑
µ=1

(Pα)νµFνD
α
ϕ(sµ).

(iii) To see the first equation, we just calculate

Dα
ϕ,Φ(fs)

(2.5)
=

r∑
µ=1

Dα
ϕ(fs)Eµ =

r∑
µ=1

Dα(f ◦ ϕ−1sµ ◦ ϕ−1)) ◦ ϕEµ

A.1.3
=

r∑
µ=1

∑
β≤α

(Dβ(f ◦ ϕ−1)Dα−β(sµ ◦ ϕ−1)) ◦ ϕEµ

=
∑
β≤α

Dβ
ϕ(f)

r∑
µ=1

Dα−β
ϕ (sµ)Eµ

(2.5)
=
∑
β≤α

Dβ
ϕ(f)Dα−β

ϕ,Φ (s).

To see the second equation, first notice that Hom(E,F ) is a bundle of rank rs. Using
the local frames E1, . . . , Er and F1, . . . , Fs, we obtain a local trivialization (Φ,Ψ) of
Hom(E,F ) by mapping any element θ(p) ∈ Homp(E,F ) to its coordinate matrix
θ(p)νµ with respect to these frames. Therefore, we may calculate analogously

Dα
ϕ,Ψ(θs)

(2.5)
=

s∑
ν=1

Dα
ϕ((θs)ν)Fν =

s∑
ν=1

r∑
µ=1

Dα
ϕ(θνµs

µ)Fν
(2.8)
=

=

s∑
ν=1

r∑
µ=1

∑
β≤α

(
α

β

)
Dβ
ϕ(θνµ)Dα−β

ϕ (sµ)Fν

=
∑
β≤α

(
α

β

) s∑
ν=1

r∑
µ=1

Dβ
ϕ,Φ,Ψ(θ)νµD

α−β
ϕ (sµ)Fν

=
∑
β≤α

(
α

β

) s∑
ν=1

(Dβ
ϕ,Φ,Ψ(θ)Dα−β

ϕ,Φ (s))νFν

=
∑
β≤α

(
α

β

)
Dβ
ϕ,Φ,Ψ(θ)Dα−β

ϕ,Φ (s).
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2.2.13 Convention. It is very common to use the notation Dα for Dα
ϕ,Φ etc. as well. This

notation convention is very convenient, but you have to keep in mind that this operator
depends on the chosen chart and trivialization.

2.2.14 Theorem (local independence). Let P : Γ(M,E)→ Γ(M,F ) be a linear map, let
ϕ : U → V , ψ : U → Ṽ be any charts and Φ, Φ̃ : EU → U × C r, Ψ, Ψ̃ : FU → U × C s be
local trivializations.
(i) Then

D := ϕ∗Ψ∗ ◦ P ◦ (ϕ∗Φ∗)
−1 ∈ Diffk(V,C r,C s)

=⇒ D̃ := ψ∗Ψ̃∗ ◦ P ◦ (ψ∗Φ̃∗)
−1 ∈ Diffk(Ṽ ,C r,C s).

So the local property of beeing a differential operator does not depend on the choice
of charts or trivializations, but only on the smooth structures of M , E and F .

(ii) Denote by F := ψ ◦ ϕ−1 : V → Ṽ the transition map between the charts, A :=
∇F ◦F−1, and by gE and gF the transition functions between the local trivializations
(see equation (2.10)) and let

D =
∑
|α|≤k

PαD
α ∈ Diffk(Ṽ ,C r,C s).

Then the symbol satisfies

∀x̃ ∈ Ṽ : ∀ξ ∈ R n : σD̃(x̃, ξ) =
∑
|α|=k

(gFPαg
−1
E )(F−1(x̃))(At(x̃)ξ)α.

Proof.
Step 1 (Independence of trivializations): First we fix the chart ϕ and consider differ-
ent trivializations. There exist functions (c.f. [4, 5.4])) gE ∈ C∞(V,GL(r,C )), gF ∈
C∞(V,GL(s,C )) such that

∀x ∈ V : ∀v ∈ C r : (Φ̃ ◦ Φ−1)(ϕ−1(x), v) = (ϕ−1(x), gE(x)v)

∀x ∈ V : ∀w ∈ C s : (Ψ̃ ◦Ψ−1)(ϕ−1(x), w) = (ϕ−1(x), gF (x)w).
(2.10)

We redefine D̃ := ϕ∗Ψ̃∗ ◦ P ◦ (ϕ∗Φ̃∗)
−1 (valid for this step of the proof) and remark that

the following diagram commutes:

C∞(V,C r)

ϕ∗Φ̃∗◦(ϕ∗Φ∗)−1

��

D // C∞(V,C s)

ϕ∗Ψ̃∗◦(ϕ∗Ψ∗)−1

��

Γ(U,E)

ϕ∗Φ∗

ff

ϕ∗Φ̃∗xx

P // Γ(U,F )

ϕ∗Ψ∗
88

ϕ∗Ψ̃∗

&&

C∞(V,C r)
D̃ // C∞(V,C s)

We calculate

D̃ = ϕ∗Ψ̃∗ ◦ P ◦ (ϕ∗Φ̃∗)
−1 = ϕ∗Ψ̃∗ ◦ (ϕ∗Ψ∗)

−1 ◦D ◦ ϕ∗Φ∗ ◦ (ϕ∗Φ̃∗)
−1

= ϕ∗ ◦ Ψ̃∗ ◦Ψ−1
∗ ◦ ϕ−1

∗ ◦D ◦ ϕ∗ ◦ Φ∗ ◦ Φ̃−1
∗ ◦ ϕ−1

∗ .
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The map ϕ∗ ◦ Ψ̃∗ ◦Ψ−1
∗ ◦ ϕ−1

∗ : C∞(V,C r)→ C∞(V,C r) can be simplified drastically: For
any f ∈ C∞(V,C r), we conclude from 2.2.10

ϕ∗(Ψ̃∗(Ψ
−1
∗ (ϕ−1

∗ (f)))) = ϕ∗(Ψ̃∗(Ψ
−1
∗ (f ◦ ϕ))) = ϕ∗(Ψ̃∗(Ψ

−1 ◦ idU ×(f ◦ ϕ)))

= ϕ∗(pr2 ◦Ψ̃ ◦Ψ−1 ◦ idU ×(f ◦ ϕ)) = gF f ◦ ϕ ◦ ϕ−1 = gF f

and analogously
(ϕ∗ ◦ Φ∗ ◦ Φ̃−1

∗ ◦ ϕ−1
∗ )(f) = g−1

E f.

Since D ∈ Diffk(M ;E,F ) by hypothesis, there exist Pα ∈ C∞(V,Hom(C r,C s)) such that

D =
∑
|α|≤k

PαD
α ∈ DiffkC (V, r, s).

Alltogether, we obtain

D̃f = gF

( ∑
|α|≤k

PαD
α
)

(g−1
E f) =

∑
|α|≤k

gFPαD
α(g−1

E f)

A.1.5
=

∑
|α|≤k

gFPα

(∑
β≤α

(
α

β

)
(Dα−βg−1

E )Dβf
)

=
∑
|α|≤k

∑
β≤α

(
α

β

)
gFPα(Dα−βg−1

E )Dβf,

which shows D̃ ∈ Diffk(V,C r,C s).
We analyze the highest order terms: These occur precisely, if |β| = k. But since β ≤ α
this happens if and only if β = α. So the symbol is given by

σD̃(x, ξ) =
∑
|α|=k

gF (x)Pα(x)g−1
E (x)ξα.

Step 2 (Independence of the chart): Now fix the trivializations Φ, Ψ and consider the two
different charts ϕ,ψ. Analogously we redefine D̃ := ψ∗Ψ∗ ◦ P ◦ (ψ∗Φ∗)

−1 (valid for this
step of the proof) and calculate

D̃ = ψ∗Ψ∗ ◦ P ◦ (ψ∗Φ∗)
−1 = ψ∗Ψ∗ ◦ (ϕ∗Ψ∗)

−1 ◦D ◦ ϕ∗Φ∗ ◦ (ψ∗Φ∗)
−1

= ψ∗ ◦Ψ∗ ◦Ψ−1
∗ ◦ ϕ−1

∗ ◦D ◦ ϕ∗ ◦ Φ∗ ◦ Φ−1
∗ ◦ ψ−1

∗ = ψ∗ ◦ ϕ−1
∗ ◦D ◦ ϕ∗ ◦ ψ−1

∗ .

Thus for any f̃ ∈ C∞(Ṽ ,C r,C s), we obtain

D̃(f̃) = D(f̃ ◦ F ) ◦ F−1 = F∗(D)(f),

which implies D̃ ∈ Diffk(Ṽ ,C r,C s) by Theorem 2.2.3. It was already shown there that
the symbol is given by

σD̃(x̃, ξ) =
∑
|α|=k

Pα(F−1(x̃))(At(x̃)ξ)α.

Redefining D̃ := ψ̃∗Ψ̃∗ ◦ P ◦ (ψ∗Φ̃∗)
−1 as in the statement of the theorem and combining

both steps, we obtain both claims.
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2.2.15 Definition (symbol). Let P ∈ Diffk(M ;E,F ) be a PDO. For any p ∈M and any
ξ ∈ T ∗pM , define σP (p, ξ) ∈ Hom(Ep, Fp) to be the homomorphism given as follows: Choose
a chart ϕ : U → V near p and local trivializations Φ : EU → U × C r, Ψ : FU → U × C s.
Let D be the local coordinate representation of P with respect to this chart and these
trivializations and define

∀e ∈ Ep : σP (p, ξ)(e) := σP (ξ)e := Ψ−1(p, σD(ϕ(p), ϕ∗ξ)(Φ2(e))),

We call σP the symbol of P . (For an alternative approach see Theorem 2.2.19.)

2.2.16 Remark. This definition produces two problems: First of all, the homomorphism
σP (p, ξ) is defined in terms of various non canonical choices, so we have to show that it is
well-defined, c.f. Lemma 2.2.17 (assume for the moment this has been done). Secondly, we
would like to state more precisely, what kind of σP is. Recall that the symbol of the local
representation D as defined in 2.1.4 is a smooth map σP : V ×R n → Hom(C r,C s). This
is no longer possible. On a manifold σP is not a map on M ×T ∗M , since it is only defined
for those (p, ξ) ∈M × T ∗M such that π(ξ) = p. This problem can be easily circumvented
by thinking of σ as a map on T ∗M , since we can recover the base point of any ξ ∈ T ∗M by
p := π(ξ). We can also no longer think of σP as a map with range Hom(C r,C s). For any
ξ ∈ T ∗M the map σP (ξ) is an element of Hom(Eπ(ξ), Fπ(ξ)). To define a suitable image
space, let

Hom(E,F ) :=
⋃
p∈M

Hom(Ep, Fp) = E∗ ⊗ F

and endow this set with the canonical topology and smooth structure from the tensor
product bundle, which turns it into a smooth vector bundle over M . Then

σ : T ∗M → Hom(E,F ).

Now we have a suitable domain and range for σP , but this map satisfies a bit more. We have
not yet encoded the condition σ(ξ) ∈ Hom(Ep, Fp), p = π(ξ). This condition almost looks
like the condition for a section. In fact σ is a section, but not of the bundle Hom(E,F )
(since this is a bundle over M). Therefore, we just have to think of E and F as bundles
over T ∗M which are ”constant” on any T ∗pM . This enables us to think of Hom(E,F ) as a
bundle over T ∗M .
One can make this rigorous: Denote by π : T ∗M → M the cotangent bundle and let
πE : E →M , πF : F →M be the vector bundles and consider the pull-back bundles π∗E
and π∗F . By construction, we obtain a commutative diagram

Ref Morh-
pisms VB

π∗(E)

π∗E
��

// E

πE

��

T ∗M
π //M,

where π∗E is the projection of the pull-back bundle π∗(E) and the fibres satisfy

∀ξ ∈ T ∗M : (π∗E)ξ = {e ∈ E | πE(e) = π(ξ)} = Eπ(ξ)

by definition. Consequently σP is a section of the bundle Hom(π∗(E), π∗(F )) over T ∗M .
We will use the notation σP (ξ) and σP (p, ξ) interchangably.

2.2.17 Lemma. The symbol is a well-defined section

σP ∈ Γ(T ∗M,Hom(π∗E, π∗F )),
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i.e.: Let ϕ̃ : Ũ → Ṽ be another chart, Φ̃, Ψ̃ be other local trivializations for E and F and
let σ̃P be the symbol defined in terms of this chart and these local trivializations. Then
using notation from Definition 2.2.15

∀p ∈ U ∩ Ũ : ∀ξ ∈ T ∗pM : ∀e ∈ Ep : σP (p, ξ)(e) = σ̃P (p, ξ)(e).

Proof. By shrinking the coordinate neighbourhoods if necessary, we may assume that
U = Ũ , and calculate there. As usual, we define F := ϕ̃ ◦ ϕ−1 ∈ C∞(V, Ṽ ), A :=
∇F ◦F−1 ∈ C∞(Ṽ , GL(n)). Denote by Ξ := (ξ1, . . . , ξn) ∈ C∞(T ∗U → R n) the coordinate
vector function of ξ with respect to ϕ seen as a column vector in R n (define Ξ̃ analogously).
The transformation law for the cotangent bundle states that

ξ = ξidϕ
i = ξ̃idϕ̃

i,

where Ξ = ∇F t ◦ ϕ · Ξ̃. This implies Ξ = At ◦ ϕ̃ · Ξ̃, which is equivalent to

Ξ̃ = (At)−1 ◦ ϕ̃ · Ξ (2.11)

Remember the defining equations (2.10) for the transition functions. Define τ : U ×C r →
U × C r, (p, v) 7→ (p, gE(ϕ(p))v). We can reformulate

Φ̃ ◦ Φ−1 = τ ⇐⇒ Φ̃ = τ ◦ Φ,

which implies in particular

∀p ∈ U : ∀e ∈ Ep : Φ̃(e) = (τ(Φ(e))) = τ(Φ1(e),Φ2(e)) = (p, gE(ϕ(p))Φ2(e)) (2.12)

and analogously for Ψ̃. Now let D̃ be a coordinate representation of P with respect to ϕ̃,
Φ̃, Ψ̃. We calculate for any p ∈ U , ξ ∈ T ∗U , e ∈ EU ,

σ̃P (ξ)(e) = Ψ̃−1(p, σD̃(ϕ̃(p), Ξ̃(p))(Φ̃2(e)))

2.2.14(ii)
= Ψ̃−1

(
p,
∑
|α|=k

(gFPαg
−1
E )(F−1(ϕ̃(p)))(Φ̃2(e)))(At(ϕ̃(p))Ξ̃(p))α

)
(2.11)

= Ψ̃−1
(
p,
∑
|α|=k

(gFPαg
−1
E )(ϕ(p))(Φ̃2(e))(At(ϕ̃(p))(At)−1(ϕ̃(p))Ξ(p)α

)
(2.12)

= Ψ−1
(
p, g−1

F (ϕ(p))
∑
|α|=k

(gFPαg
−1
E )(ϕ(p))gE(ϕ(p))(Φ2(e))Ξ(p)α

)
= Ψ−1(p, σD(ϕ(p),Ξ(p))(Φ2(e))) = σP (p, ξ)(v).

2.2.18 Remark. This theorem is precisely the reason why the symbol is defined on the
contangent bundle rather than on the tangent bundle.

There is an alternative approach to the symbol, which is more coordinate invariant and
therefore sometimes useful. For reasons of completeness, we establish this symbol from
scratch.

2.2.19 Theorem (Alternative approach to the symbol).
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(i) Let U ⊂ R n be open, p ∈ U , f ∈ C∞(U,R ), such that f(p) = 0, df |p = ξ. Let
k ∈ N , k ≥ 1. Then for any multi-index α ∈ N n, 1 ≤ |α| ≤ k,

∂α(fk)(p) =

{
k!ξα, |α| = k,

0, |α| < k.

(ii) Let f̃ ∈ C∞(U,R ) satisfy f(p) = 0 and df |p = ξ as well. In addition let e ∈ C r,
s, s̃ ∈ C∞(U,C r) such that s(p) = s̃(p) = e. Then for any P ∈ Diffk(V,C r,C s)

P (fks)(p) = P (f̃ks̃)(p).

(iii) Let P ∈ Diffk(U,C r,C s), e ∈ C r and s ∈ C∞(U,C r) such that s(p) = e. Then

σP (p, ξ)(e) =
ik

k!
P (fks)(p).

(iv) Let E → M , F → M be smooth complex vector bundles and P ∈ Diffk(M ;E,F ).
Let p ∈ M , ξ ∈ TpM , e ∈ Ep and let f ∈ C∞(M,R ) such that df |p = ξ and
s ∈ Γ(M,E) such that s(p) = e. Then

σP (p, ξ)(e) =
ik

k!
P (fks)(p). (2.13)

We could have used this as a definition for σP as well.

Proof.
(i) We prove the statement by induction over k. In case k = 1 the only multi-index α

satisfying |α| = 0 < 1 is α = 0. Consequently

∂α(fk)(p) = ∂0(f)(p) = f(p) = 0.

In case |α| = 1, there exists 1 ≤ j ≤ n such that α = ej . Consequently

∂α(fk)(p) = ∂j(f)(p) = ξj .

For the induction step k → k + 1 consider a multi-index α with |α| ≤ k + 1. Then
we may split α = β + ej , where |β| ≤ k and 1 ≤ j ≤ n. We calculate

∂α(fk+1)(p) = ∂β(∂j(f
k+1))(p) = (k + 1)∂β((fk∂jf))(p)

A.1.3
= (k + 1)

∑
γ≤β

(
β

γ

)
∂γ(fk)(p)(∂β−γ∂jf)(p)

(2.14)

and first analyse this term for |α| < k + 1. In that case |β| < k and since all γ ≤ β,
this implies |γ| < k as well. Therefore (2.14) reveals ∂α(fk+1)(p) = 0 by induction
hypothesis. In case |α| = k+ 1, the only relevant multi-index γ ≤ β in the remaining
sum is is β = γ. Thus we may continue (2.14) by

= (k + 1)

(
β

β

)
∂β(fk)(p)(∂jf)(p) = (k + 1)k!ξβξj = (k + 1)!ξα,

where we used the induction hypothesis.
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(ii) Obviously
f̃ks̃− fks = (f̃k − fk)s+ f̃k(s̃− s)

and therefore we may calculate

P ((f̃k − fk)s)(p) =
∑
|α|≤k

Pα(p)Dα((f̃k − fk)s)(p)

=
∑
|α|≤k

Pα(p)
∑
β≤α

(Dβ(f̃k)(p)−Dβ(fk)(p))Dα−β(s)(p)
(i)
= 0

and

D(f̃k(s̃− s))(p) =
∑
|α|≤k

Pα(p)Dα(f̃k(s̃− s))(p)

=
∑
|α|≤k

Pα(p)
∑
β≤α

Dβ(f̃k)(p)Dα−β(s̃− s))(p) (i)
= 0.

(iii) We calculate

ik

k!
P (fks)(p) =

ik

k!

∑
|α|≤k

Pα(p)Dα(fks)(p)

=
ik

k!

∑
|α|≤k

Pα(p)
∑
β≤α

(
α

β

)
Dβ(fk)(p)Dα−βs(p)

(i)
=
ik

k!

∑
|α|=k

Pα(p)(−i)kk!ξαe = σP (p, ξ)(e).

(iv) Choose a chart ϕ : U → V near p and local trivializations Φ : EU → U × C r,
Ψ : FU → U × C s. Let D be the local coordinate representation of P with respect
to this chart and these trivializations. We calculate for any p ∈ U , ξ ∈ T ∗U , v ∈ EU

k!

ik
σP (p, ξ)(v) =

k!

ik
Ψ−1(p, σD(ϕ(p), ξie

i)(Φ2(v)))

(iii)
= Ψ−1

(
p,D((f ◦ ϕ−1)k(Φ2(s) ◦ ϕ−1))(ϕ(p))

)
= Ψ−1

(
p, (D ◦ fkΦ2(s))(p)

)
= (Ψ−1 ◦ id×D ◦ Φ2 ◦ fks)(p)
2.2.10

= ((ϕ∗Ψ∗)
−1 ◦D ◦ ϕ∗Φ∗)(fks)(p) = P (fks)(p).

2.2.20 Theorem (Symbol via exponential function). Let P ∈ Diffk(M ;E,F ), p ∈ M ,
ξ ∈ T ∗pM , e ∈ Ep, g ∈ C∞(M,R ) such that dg|p = ξ and s ∈ Γ(M,E) such that s(p) = e.
Then

σP (p, ξ)e = lim
t→∞

t−k
(
e−itgP (eitgs)

)
(p).

Proof.
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Step 1 (Preparation): We prove the following claim by induction over k: In case M =
U ⊂ R n,

∀|α| ≤ k : lim
t→∞

t−k
(
e−itgDα(eitg)

)
(p) =

{
ξα, |α| = k,

0, |α| < k.
(2.15)

Step 1.1 (Induction start k = 0): No multi-index α satisfies |α| < 0 and the only multi-
index α such that |α| = 0 is α = 0. Therefore

lim
t→∞

t−k
(
eitgDα(eitg)

)
(p) = lim

t→∞
e−itg(p)eitg(p) = 1 = ξ0 = ξα.

Step 1.2 (Induction step k → k + 1): Assume |α| ≤ k + 1. Then we may decompose α
into α = β + ej , where |β| ≤ k and 1 ≤ j ≤ n. We calculate

lim
t→∞

t−(k+1)
(
e−itgDα(eitg)

)
(p) = lim

t→∞
t−(k+1)e−itg(p)

(
DβDj(e

itg)
)

(p)

= lim
t→∞

t−k−1e−itg(p)Dβ
(
eitgtiDj(g)

)
(p) = lim

t→∞
t−ke−itg(p)Dβ

(
eitgiDj(g)

)
(p)

= lim
t→∞

t−ke−itg(p)
∑
γ≤β

(
β

γ

)
Dγ(eitg)(p)iDβ−γ+ej (g)(p)

=
∑
γ≤β

(
β

γ

)
lim
t→∞

t−ke−itg(p)Dγ(eitg)(p)︸ ︷︷ ︸
=:(∗)

iDβ−γ+ej (g)(p)

(2.16)

By construction |β| ≤ k. Consequently, the expression (∗) certainly equals zero for all
γ < β by induction hypothesis. In case |β| < k, the entire equation (2.16) equals zero,
which we wanted to show. In case |β| = k (⇔ |α| = k + 1), we may continue (2.16) by

= ξβiDej (g)(p) = ξβ∂j(g)(p) = ξβξj = ξα.

Step 2 (in case M = U ⊂ R n): We calculate

lim
t→∞

t−k
(
e−itgP (eitgs)

)
(p) = lim

t→∞
t−ke−itg(p)

( ∑
|α|≤k

PαD
α(eitgs)

)
(p)

= lim
t→∞

t−ke−itg(p)
( ∑
|α|≤k

Pα(p)
∑
β≤α

(
α

β

)
Dβ(eitg)(p)Dα−β(s)(p)

)
=
∑
|α|≤k

Pα(p)
∑
β≤α

(
α

β

)(
lim
t→∞

t−ke−itgDβ(eitg)
)

(p)Dα−β(s)(p)
)

(2.15)
=

∑
|α|=k

Pα(p)(e)ξα = σP (p, ξ)e.

Step 3 (general case): Let D be a local coordinate representation of P with respect to
a chart ϕU → V and local trivializations Φ, Ψ. The function g̃ := g ◦ ϕ−1 ∈ C∞(V,R )
satisfies

dg̃|ϕ(p)d(g ◦ ϕ−1)(ϕ(p)) = ϕ∗dg|p = ϕ∗ξ

and the section s̃ := ϕ∗Φ∗(s) ∈ C∞(V,C r) satisfies s̃(ϕ(p)) = Φ2(e). Therefore by what
we have proven so far:

σD(ϕ(p), ϕ∗ξ)(Φ2(e)) = lim
t→∞

t−k
(
e−itg̃D(eitg̃s̃)

)
(ϕ(p)) (2.17)
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By definition of the symbol

σP (p, ξ)v = Ψ−1(p, σD(ϕ(p), ϕ∗ξ)(Φ2(v)))
(2.17)

= Ψ−1
(
p, lim
t→∞

t−k(e−itg̃D(eitg̃ s̃))(ϕ(p))
)

= lim
t→∞

Ψ−1
(
p, t−k(e−itg̃D(eitg̃ s̃))(ϕ(p))

)
= lim

t→∞
t−ke−itg(p)((ϕ∗Ψ∗)

−1 ◦D ◦ ϕ∗Φ∗)(eitgs))(p)

= lim
t→∞

t−k
(
e−itgP (eitgs)

)
(p).

2.2.21 Lemma (calculating symbols). Let P ∈ Diffk(M ;E,F ) be a PDO and let

P =
∑
|α|≤k

PαD
α ∈ Diffk(U ;E,F )

be a local representation of P as in (2.6). Then the symbol of P has a local representation

σP (ξ) =
∑
|α|=k

Pαξ
α
ϕ , (2.18)

where
ξαϕ := ((ϕ∗(ξ))

α.

Proof. Let ϕ : U → V be a chart and Φ, Ψ be local trivializations of E and F . It follows
directly from the definitions that for any p ∈ U , e ∈ Ep, ξ ∈ T ∗pU

σDαϕ,Φ(ξ)(e)
2.2.15

= Ψ−1(p, σDα(ϕ(p), ϕ∗ξ)(Φ2(e)))
2.1.4
= Ψ−1(p, (ϕ∗ξ)

α(Φ2(e))) = ξαϕe (2.19)

Now let f ∈ C∞(U) such that df |p = ξ and s ∈ Γc(U,E) such that s(p) = e. By 2.2.19,
we obtain

σP (ξ)(e)
(2.13)

=
ik

k!
P (fks)(p) =

ik

k!

∑
|α|≤k

PαD
α
ϕ,Φ(fks)(p)

2.2.19(i)
=

∑
|α|=k

Pα
ik

k!
Dα
ϕ,Φ(fks)(p)

(2.13)
=

∑
|α|=k

PασDαϕ,Φ(ξ)(e)
(2.19)

=
∑
|α|=k

Pαξ
α
ϕe.

2.3. Properties of the PDO-Algebra

The set Diff(M ;E,F ) has much more hidden structure than just beeing a set. One of
them is rather obvious.

2.3.1. Vector Space Structure

2.3.1 Definition (Linear combinations of PDOs). Let P,Q ∈ Diff(M ;E,F ), λ ∈ C ,
f ∈ C∞(M,C ). We define P +Q : Γ(M,E)→ Γ(M,F ) by

(P +Q)(s) := P (s) +Q(s),
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λP : Γ(M,E)→ Γ(M,E) by
(λP )(s) := λP (s),

and fP : Γ(M,E)→ Γ(M,E) by

(fP )(s) := fP (s).

2.3.2 Theorem (Vector space structure). Let P ∈ Diffk(M ;E,F ), Q ∈ Diff l(M ;E,F ),
f ∈ C∞(M,C ). Then

P + fQ ∈ Diffmax(k,l)(M ;E,F )

and
σP+fQ = σP + fσQ.

Thus Diff(M ;E,F ) is a complex vector space and a module over C∞(M,C ).

Proof. By setting Pα := 0, if |α| > k, and Qα := 0, if |α| > l, the local representations of
P , Q satisfy ∑

|α|≤k

PαD
α + f

∑
|α|≤k

QαD
α =

∑
|α|≤max(k,l)

(Pα + fQα)Dα.

Now the statement follows from the local definition of the symbol.

2.3.2. Sheaf Axioms

2.3.3 Definition (restriction). Let P ∈ Diffk(M ;E,F ) considered as a linear map

P : Γc(M,E)→ Γc(M,F ).

Let U ⊆̊M . Define
P |U : Γc(U,E) → Γc(U,F )

s 7→ P (s),

where s ∈ Γc(U,E) is extended by zero to an element of Γc(M,E). We say

P |U ∈ Diffk(U ;E,F )

is the restriction of P to U .

2.3.4 Theorem. Diffk(_;E,F ) is a sheaf of C -vector spaces on M , i.e. for any open
cover {Uj}j∈J of M that is countable and locally finite, we obtain
(i) first sheaf axiom: Any P ∈ Diff(M ;E,F ) satisfies

∀j ∈ J : P |Uj = 0 =⇒ P = 0.

(ii) second sheaf axiom: For any system Pj ∈ Diff(Uj ;E,F )

∀j, k ∈ J : Pj |Uj∩Uk = Pk|Uj∩Uk =⇒ ∃P ∈ Diff(M ;E,F ) : ∀j ∈ J : P |Uj = Pj .

Proof. Let {ψj}j∈J be a partition of unity subordinate to the cover {Uj}j∈J , p ∈M .
(i) Since the cover is locally finite there exists a finite subset J̃ ⊂ J such that s ∈

Γc(M ;E)

P (s)|p = P
(∑
j∈J

ψjs
)
|p =

∑
j∈J̃

P |Uj (ψjs)|p = 0
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(ii) Define

P (s) :=
∑
j∈J

Pj(ψjs),

which is well-defined since the sum is locally finite. Let t ∈ Γc(Uj) and K := supp t.
Since K is compact, there exists a finite subset J̃ ⊂ J such that

K ⊂
⋃
k∈J̃

Uk.

We calculate

P |Uj (t) =
∑
k∈J̃

Pk(ψkt) =
∑
k∈J̃

Pk|Uj∩Uk(ψkt) =
∑
k∈J̃

Pj |Uj∩Uk(ψkt)

= Pj

(∑
k∈J̃

ψks
)

= Pj(t).

2.3.3. Compositions

It is very natural to ask, if the composition of two PDOs is again a PDO. The answer is
always ”yes” and locally, we even have explicit formulae for the symbol of the composition.

2.3.5 Theorem (Local compositions). Let U ⊂ R n be open and

P =
∑
|α|≤k

PαD
α ∈ Diffk(U,C r,C s) and Q =

∑
|β|≤l

QβD
β ∈ Diff l(U,C s,C t)

be two PDO with symbols

ΣP (x, ξ) = p(x, ξ) =
∑
|α|≤k

Pα(x)ξα and ΣQ(x, ξ) = q(x, ξ) =
∑
|β|≤l

Qβ(x)ξβ

Then the composition Q ◦ P ∈ Diffk+l(U,C r,C t) is a PDO with symbol

ΣQ◦P (x, ξ) =
∑
|γ|≤l

(−i)γ

γ!
(∂γξ ΣQ)(x, ξ)(∂γxΣP )(x, ξ) =

∑
|γ|≤l

iγ

γ!
(Dγ

ξΣQ)(x, ξ)(Dγ
xΣP )(x, ξ)

and principal symbol

σQ◦P (x, ξ) =
∑
|β|=l

∑
|α|=k

Qβ(x)Pα(x)ξα+β = σQ(x, σP (x, ξ)).

Proof. For any f ∈ C∞(U,C r)

(Q ◦ P )(f)(x) =
∑
|β|≤l

Qβ(x)Dβ
x

∑
|α|≤k

Pα(x)Dα
xf

 (x)

=
∑
|β|≤l

∑
|α|≤k

Qβ(x)Dβ
x(PαD

α
xf)(x)

A.1.5
=

∑
|β|≤l

∑
|α|≤k

Qβ(x)
∑
γ≤β

(
β

γ

)
(Dγ

xPα)(x)(Dα+β−γ
x f)(x)

=
∑
|β|≤l

∑
|α|≤k

∑
γ≤β

(
β

γ

)
Qβ(x)(Dγ

xPα)(x)(Dα+β−γ
x f)(x).

(2.20)
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This implies Q ◦P ∈ Diffk+l(U,C r,C t). Furthermoore (2.20) implies that the full symbol
is given by

ΣQ◦P (x, ξ) =
∑
|β|≤l

∑
|α|≤k

∑
γ≤β

(
β

γ

)
Qβ(x)(Dγ

xPα)(x)ξα+β−γ

=
∑
|β|≤l

∑
|γ|≤β

(
β

γ

)
Qβ(x)ξβ−γDγ

x

( ∑
|α|≤k

Pα(x)ξα
)

=
∑
|β|≤l

∑
γ≤β

(
β

γ

)
ξβ−γQβ(x)Dγ

xp(x, ξ)
(1)
=
∑
|β|≤l

∑
γ≤β

1

γ!
(∂γξ ξ

β)Qβ(x)Dγ
xp(x, ξ)

(2)
=
∑
|β|≤l

∑
|γ|≤l

1

γ!
(∂γξ ξ

β)Qβ(x)Dγ
xp(x, ξ) =

∑
|γ|≤l

( 1

γ!
∂γξ
( ∑
|β|≤l

Qβ(x)ξβ
)
Dγ
xp(x, ξ)

)
=
∑
|γ|≤k

1

γ!
(∂γξ q)(x, ξ)D

γ
xp(x, ξ) =

∑
|γ|≤k

(−i)γ

γ!
(∂γξ q)(x, ξ)∂

γ
xp(x, ξ).

Remember from Lemma A.1.6, that for any two multi-indices β, γ, we have

∂γξ ξ
β =

{
γ!
(
β
γ

)
ξβ−γ , γ ≤ β,

0, otherwise.

This is the justification for (1) and also for (2) since we only added zero summands!
Analysing the highest order terms in (2.20), we see that

σQ◦P (x, ξ) =
∑
|β|=l

∑
|α|=k

Qβ(x)Pα(x)ξα+β

=
∑
|β|=l

Qβ(x)ξβ
∑
|α|=k

Pα(x)ξα = σQ(x, σP (x, ξ)).

2.3.6 Theorem (Global composition). Let P ∈ Diffk(M ;E,F ) and Q ∈ Diff l(M ;F,G).
Then Q ◦ P ∈ Diffk+l(M ;E,G) and

∀ξ ∈ T ∗M : σQ◦P (ξ) = σQ(ξ) ◦ σP (ξ).

Proof. Clearly Q ◦ P : Γ(M,E)→ Γ(M,G) is a linear map. To check the PDO property
choose an open set U ⊂M such that there exists a chart ϕ : U → V and local trivializations
Φ,Ψ,Θ for E, F , G over U . Let P̃ , Q̃ be local representations of P , Q. Then the equation

Q ◦ P = (ϕ∗Θ∗)
−1 ◦ Q̃ ◦ ϕ∗Ψ∗ ◦ (ϕ∗Ψ∗)

−1 ◦ P̃ ◦ ϕ∗Ψ∗ = (ϕ∗Θ∗)
−1 ◦ Q̃ ◦ P̃ ◦ ϕ∗Ψ∗

holds on U . This proves that Q◦P is a PDO with local representation Q̃◦ P̃ . By definition
the symbol satisfies for any p ∈M , ξ ∈ T ∗pM , e ∈ Ep:

σQ◦P (ξ)(e) = Θ−1
2

(
p, σQ̃◦P̃ (ϕ(p), ϕ∗ξ)(Φ2(e))

)
2.3.5
= Θ−1

2

(
p, σQ̃(ϕ(p), σP̃ (ϕ(p), ϕ∗ξ)(Φ2(e)))

)
= Θ−1

2

(
p, σQ̃(ϕ(p), ϕ∗ξ)(Ψ2(Ψ−1(p, σP̃ (p, ϕ∗ξ)(Φ2(e))))

)
= Θ−1

2

(
p, σQ̃(ϕ(p), ϕ∗ξ)(Ψ2(σP (ξ)(e))))

)
= σQ(ξ) ◦ σP (ξ)(e).
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2.3.4. Adjoints

In this subsection let (M, g) be a smooth oriented Riemannian m-manifold and let (E, hE),
(F, hF ) be hermitian vector bundles over M .

2.3.7 Convention. A PDO P ∈ Diffk(M ;E,F ) can be thought of as a linear map

P : Γ(M,E)→ Γ(M,F ), P : Γc(M,E)→ Γc(M,F ).

In this section, we will always choose the later one. Nevertheless one may apply such an
operator P to a section s that is not compactly supported.

2.3.8 Definition (induced L2-space). For any two sections s, t ∈ Γc(M,E), define

〈s, t〉L2(hE) :=

∫
M
hE(s, t)dgV ∈ C ,

the L2-scalar product on Γc(M,E) induced by hE . This induces a norm via

‖s‖2L2(hE) := 〈s, s〉L2(hE).

We will sometimes drop the index and just write 〈_,_〉, ‖_‖.

2.3.9 Lemma. The L2-scalar product is bilinear even over C∞(M,R ) respectively sesquilin-
ear over C∞(M,C ).

2.3.10 Definition (formally adjoint). Let P ∈ Diffk(M ;E,F ) be a PDO. A linear map
Q : Γc(M,F )→ Γc(M,E) is formally adjoint to P , if

∀s ∈ Γc(M ;E) : ∀t ∈ Γc(M ;F ) : 〈P (s), t〉L2(hF ) = 〈s,Q(t)〉L2(hE).

2.3.11 Remark. We will later define the hilbert space L2(E) to be the completion of
all sections s ∈ Γc(M,E) such that ‖s‖L2 < ∞. The problem is that this space contains
sections that are not differentiable and therefore P does not (yet) operate on this space.
This is the reason why we speak of formally adjoint and why we can’t just take the Hilbert
space adjoint of P . Our ultimate goal is to show that there exists a unique formal adoint
Q = P ∗ ∈ Diffk(M ;F,E).

The uniqueness is the much easier part.

2.3.12 Lemma (Uniqueness of formal adjoints). Any formal adjoint to P ∈ Diffk(M ;E,F )
is unique.

Proof. Assume Q, Q̃ are adjoint to P . Then for any s ∈ Γc(M ;E,F ), t ∈ Γc(M ;F )

〈P (s), t〉 = 〈s,Q(t)〉 = 〈s, Q̃(t)〉

This implies
〈s, (Q− Q̃)(t)〉 = 0,

thus Q = Q̃.
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2.3.13 Example (standard L2 scalar product). In case M = U ⊂ R n is endowed with
the Euclidean metric, C r is given the the canonical hermitian form

〈v, w〉 :=
r∑
i=1

viw̄i.

The induced L2-scalar product on the trivial bundle M × C r is given by

∀f, g ∈ Γc(M,M × C r) = C∞c (U,C r) : 〈f, g〉L2 := 〈f, g〉L2(U) :=

∫
U
〈f(x), g(x)〉dx.

2.3.14 Lemma (Euclidean adjoint operator). In the situation of 2.3.13 above, let P ∈
Diffk(U,C r′×r) be a PDO with full symbol

ΣP (x, ξ) =
∑
|α|≤k

Pα(x)ξα.

Then there exists a unique PDO P ∗ ∈ Diffk(U,C r×r′), which is formally adjoint to P and
which satisfies

∀g ∈ C∞(U,C r′) : P ∗(g) =
∑
|α|≤k

Dα(P ∗αg) (2.21)

In particular, Dα is formally self-adjoint. The symbol is given by

ΣP ∗(x, ξ) =
∑
|β|≤k

iβ

β!
Dβ
xD

β
ξ Σ∗P (x, ξ).

In particular
σP ∗(x, ξ) = σ∗P (x, ξ).

Proof. Uniqueness follows from Lemma 2.3.12.
Step 1 (Existence):
Step 1.1 (P = Dj): Let 1 ≤ j ≤ n and P = Dj ∈ Diff1(U,C r,C r). We claim

∀f ∈ C∞c (U,C r) : ∀g ∈ C∞c (U,C r) : 〈Dj(f), g〉L2 = 〈f,Dj(g)〉L2 , (2.22)

hence the analogous statement is true for the operator Dα ∈ Diffk(U,C r,C r). To prove
this consider any f ∈ C∞c (U,C r), g ∈ C∞c (U,C r) and consider

〈Dj(f), g〉L2 =

∫
U
〈Dj(f), g〉dx =

n∑
ν=1

1

i

∫
U
∂j(fν)ḡνdx =

n∑
ν=1

−1

i

∫
U
fν∂j(ḡν)dx

=
n∑
ν=1

∫
U
fνDjgνdx = 〈f,Dj(g)〉L2

Step 1.2 (general case): Now let P ∈ Diffk(U,C r,C r′) be arbitrary. For any f ∈ C∞c (U,C r)
and any g ∈ C∞c (U,C r′) we calculate

〈P (f), g〉L2 =

∫
R n

∑
|α|≤k

〈PαDα(f), g〉dx =
∑
|α|≤k

∫
R n

〈Dα(f), P ∗αg〉dx

(2.22)
=

∑
|α|≤k

∫
R n

〈f,Dα(P ∗αg)〉dx =

∫
R n

〈f,
∑
|α|≤k

Dα(P ∗αg)

︸ ︷︷ ︸
=:P ∗(g)

〉dx = 〈f, P ∗(g)〉L2
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Now, the Leibniz rule implies

P ∗(g) =
∑
|α|≤k

∑
β≤α

(
α

β

)
Dβ(P ∗α)Dα−β(g), (2.23)

thus P ∗ ∈ Diffk(U,C r×r′).
Step 2 (full symbol): This allows us to calculate the full symbol by Consequently

ΣP ∗(x, ξ)
(2.23)

=
∑
|α|≤k

∑
β≤a

Dβ
x(P ∗α)(x)

(
α

β

)
ξα−β

(1)
=
∑
|α|≤k

∑
β≤α

Dβ
x(P ∗α)(x)

1

β!
∂βξ ξ

α

(2)
=
∑
|α|≤k

∑
|β|≤k

1

β!
Dβ
x(P ∗α)(x)∂βξ ξ

α =
∑
|β|≤k

1

β!
Dβ
x∂

β
ξ

( ∑
|α|≤k

P ∗αξ
α
)

=
∑
|β|≤k

iβ

β!
Dβ
xD

β
ξ Σ∗P (x, ξ).

(1),(2): Remember from Lemma A.1.6 that

∂βξ ξ
α =

β!

(
α

β

)
ξα−β, β ≤ α,

0, otherwise.

This justifies (1) and it also justifies (2), since we only added zero summands.
Step 3 (principal symbol): From (2.23) we conclude directly

σP ∗(x, ξ) =
∑
|α|≤k

P ∗αξ
α = σ∗P (x, ξ).

2.3.15 Theorem (global adjoints). For any PDO P ∈ Diffk(M ;E,F ) there exists a unique
P ∗ ∈ Diffk(M ;F,E), which is formally adjoint to P . If P has a local representation

P =
∑
|α|≤k

PαD
α

as in 2.2.12(ii), then

∀t ∈ Γc(M,F ) : P ∗ =
1
√
g

∑
|α|≤k

Dα(
√
gP ∗αt), (2.24)

where √g :=
√

det(gij) 6= 0 is the Riemannian volume function. The principal symbols
satisfy

∀ξ ∈ T ∗pM : σP ∗(ξ) = σP (ξ)∗.

Proof. Uniqueness is clear. We will establish a local version of this result first. So assume
U ⊆̊M such that ϕ : U → V is a chart and E1, . . . , Er, F1, . . . , Fs are local orthonormal
frames of E and F . Let Φ,Ψ be the associated local trivializations as in 2.2.8.
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Step 1 (Dα
ϕ,Φ): The local trivializations map the ONB Ei ∈ Ep to the ONB ei ∈ C r,

therefore for any s, t ∈ Γc(U,E)

hE(Dα
ϕ,Φ(s), t) =

r∑
µ,ν=1

Dα
ϕ(sµ)tνhE(Eµ, Eν) =

r∑
µ,ν=1

Dα
ϕ(sµ)tνhE(eµ, eν)

=
r∑

µ,ν=1

〈Dα
ϕ(sµ)eµ, t

νeν〉C r =

〈
r∑

µ=1

Dα
ϕ(sµ)eµ,

r∑
ν=1

tνeν

〉
C r

(2.25)

Define and calculate

〈Dα
ϕ,Φ(s), t〉L2(hE) =

∫
U
hE(Dα

ϕ,Φ(s), t)dgV =

∫
V
hE(Dα

ϕ,Φ(s), t) ◦ ϕ−1√g ◦ ϕ−1dx

(2.25)
=

r∑
µ,ν=1

∫
V
〈Dα

ϕ(sµ), tνeν〉C r ◦ ϕ−1√g ◦ ϕ−1dx

=
r∑

µ,ν=1

∫
V
〈Dα(sµ ◦ ϕ−1eµ), (tν

√
geν) ◦ ϕ−1〉C rdx

2.3.14
=

r∑
µ,ν=1

∫
V
〈sµ ◦ ϕ−1eµ, D

α((tν
√
geν) ◦ ϕ−1)〉C rdx

=

r∑
µ,ν=1

∫
U
〈sµeµ,

1
√
g
Dα
ϕ((tν

√
geν))〉C rdgV

(2.25)
=

∫
U
he(s,

1
√
g
Dα
ϕ,Φ((t

√
g)))dgV

= 〈s, 1
√
g
Dα
ϕ,Φ((t

√
g))〉L2(hE)

(2.26)

Step 2 (local adjoint):

〈P (s), t〉L2(hF )
(2.7)
=

∑
|α|≤k

∫
U
hF (PαD

α
ϕ,Φ(s), t)dgV =

∑
|α|≤k

∫
U
hE(Dα

ϕ,Φ(s), P ∗α(t))dgV

(2.26)
=

∑
|α|≤k

∫
U
hE(s,Dα

ϕ,Φ(P ∗α(t)))dgV =
∑
|α|≤k

〈s, 1
√
g
Dα
ϕ,Φ(P ∗αt

√
g)〉L2(hE),

wich proves (2.24). Since for any t ∈ Γc(U,F )

P ∗(t) =
1
√
g

∑
|α|≤k

Dα
ϕ,Φ(
√
gP ∗αt)

(2.9)
=

∑
|α|≤k

∑
β≤α

(
β

α

)
1
√
g
Dβ
ϕ,Φ,Ψ(

√
gP ∗α)Dα−β

ϕ,Ψ (t),

we obtain on the one hand that P ∗ ∈ Diffk(U ;F,E) is the adjoint of P ∈ Diffk(U ;E,F ).
By analyzing the highest order terms, we conclude on the other hand that for any ξ ∈ T ∗U

σP ∗(ξ)
2.2.21

=
∑
|α|=k

(
0

α

)
1
√
g

√
gP ∗αξ

α
ϕ =

∑
|α|=k

P ∗αξ
α
ϕ

2.2.21
= σP (ξ)∗.

Step 3 (global result): Now take any open cover {Uj}j∈J of M that is countable, locally
finite and such that any Uj satisfies the hypothesis of the previous step. By what we have
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proven so far, for any j ∈ J there exists an operator P ∗j ∈ Diffk(Uj ;F,E) that is formally
adjoint to P |Uj . Since formal adjoints are unique by 2.3.12, we obtain for any k ∈ J

P ∗j |Uj∩Uk = (P |Uj∩Uk)∗ = P ∗k |Uj∩Uk . (2.27)

Consequently, by 2.3.4, there exists a unique P ∗ ∈ Diffk(M ;E,F ) such that P ∗|Uj =
P ∗j . Let {ψj}j∈J be a partition of unity subordinate to the cover {Uj}j∈J and let χj ∈
C∞c (Uj ,R ) be a smooth bump function that equals 1 in a neighbourhood of suppψj . We
claim that

P ∗(s) =
∑
j∈J

P ∗j (ψjs)

is indeed the global adjoint of P . To see this let s ∈ Γc(M,E), t ∈ Γc(M,F ), notice that

ψjP (s) =

{
0, on suppψj ,

ψjP (1 · s), oustide suppψj
= ψjP (χjs), (2.28)

χjP
∗
j (ψjt) = P ∗j (ψjt) (2.29)

and calculate

〈P (s), t〉L2 =
〈∑
j∈J

ψjP (s), t
〉
L2

(2.28)
=

∑
j∈J
〈ψjP (χjs), t〉L2 =

∑
j∈J
〈P |Ui(χjs), ψjt〉L2

=
∑
j∈J
〈χjs, P ∗j (ψjt)〉L2 =

∑
j∈J
〈s, χjP ∗j (ψjt)〉L2

(2.29)
=

∑
j∈J
〈s, P ∗j (ψjt)〉L2

(2.27)
= 〈s, P ∗(t)〉L2 .

2.3.16 Corollary. Let P ∈ Diffk(M ;E,F ) and P ∗ ∈ Diffk(M ;F,E) be formally adjoint
to P .
(i) P ∗∗ = P .
(ii) If either s ∈ Γc(M ;E,F ) and t ∈ Γ(M ;F,E) or s ∈ Γ(M ;E,F ) and t ∈ Γc(M ;F,E)

〈P (s), t〉L2(hF ) = 〈s, P ∗(t)〉L2(hE). (2.30)

Proof.
(i) By 2.3.12 formal adjoints are unique. Consequently, it suffices to check that for any

s ∈ Γc(M,E), t ∈ Γc(M,F )

〈P ∗(t), s〉L2 = 〈s, P ∗(t)〉L2 = 〈P (s), t〉L2 = 〈t, P (s)〉L2 .

(ii) By definition (2.30) holds, if both sections are compactly supported. In the first case
let K := supp s bM and let χ ∈ C∞c (M,R ) be a smooth cutoff function, i.e. χ ≡ 1
in an open neighbourhood U c K. Clearly tχ ∈ Γc(M,F ). Using the facts that

suppP (s) ⊂ K, suppP ∗(χt) ⊂ U,
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we obtain:

〈P (s), t〉L2 =

∫
M
hF (P (s), t)dgV =

∫
K
χhF (P (s), t)dgV =

∫
M
hF (P (s), χt)dgV

= 〈s, P ∗(χt)〉L2 =

∫
M
hE(s, P ∗(χt))dgV =

∫
U
hE(s, P ∗(t))dgV

=

∫
M
hE(s, P ∗(t))dgV = 〈s, P ∗(t)〉L2 .

The other claim follows from (i).

2.4. Ellipticity

2.4.1 Definition (elliptic PDO). An operator P ∈ Diffk(M ;E,F ) is called elliptic, if its
symbol is invertible outside the zero section, i.e.

∀p ∈M : ∀0 6= ξ ∈ T ∗pM : σP (ξ) ∈ Iso(Ep, Fp).

2.4.2 Lemma. If there exists an elliptic operator P ∈ Diffk(M ;E,F ), then

rgE = rgF.

Proof. This follows directly from the definitions.

2.4.1. The Hodge Laplacian

We would like to discuss a famous example of an elliptic operator, namely the Hodge
Laplacian. We assume some basic familiarity with the de Rham complex and the Hodge
operator in this section. From now on M is a smooth oriented Riemannian manifold
without boundary.

2.4.3 Definition (complexified de Rham complex). For any 0 ≤ k ≤ m the bundle

ΛkC T
∗M := ΛkT ∗M ⊗R C

is the complexified exterior algebra of order k. Its sections are denoted by

Ωk
C (M) := Γc(Λ

k
C T
∗M).

Notice that any complex valued differential form ω ∈ Ωk
C (M) can be decomposed into

∀p ∈M : ω(p) = ω1(p)⊗ 1 + ω2(p)⊗ i =: ω1(p) + iω2(p).

In particular, we have a complex exterior differential d : ΩC
k(M)→ ΩC

k+1(M) by defining

d(ω) := d(ω1) + id(ω2).

2.4.4 Definition (hermitian metric). We assume that the Riemannian metric g on M is
canonically extended to a fibre metric on ΛkT ∗M . Now we extend it further by complexi-
fication to a metric g = gC , defined by

gC (ω1 + iω2, η1 + iη2) := g(ω1, η1) + g(ω2, η2) + i(g(η2, ω1)− g(η1, ω2))

We assume that ΛkC T
∗M is endowed with this metric.
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2.4.5 Definition (hermitian form on de Rham complex). For any two differential forms
ω, η ∈ Ωk

C (M) define

〈ω, η〉L2 :=

∫
M
ω ∧ ∗η,

where ∗ is the Hodge operator. This defines a hermitian scalar product on Ωk
C (M).

2.4.6 Theorem (duality of int and ext). For any ξ ∈ Ω∗(M) define the exterior multipli-
cation

extξ : Ωk(M) → Ωk+1(M)
ω 7→ ξ ∧ ω

and for any X ∈ T (M) define the interior multiplication

intX : Ωk+1(M) → Ωk(M)
ω 7→ ω(X,_)

(i) For any X ∈ T (M), ξ ∈ T ∗(M)

int2
X = 0, ext2

ξ = 0.

(ii) On any Riemannian manifold (M, g)

ext∗ξ = intξ[ , (2.31)

where the adjoint is taken with respect to the canonical fibre metric in ΛkT ∗M .
(iii) Furthermoore

extξ ◦ intξ[ + intξ[ ◦ extξ = ‖ξ‖2 id .

Proof.
(i) This is clear.
(ii) We prove this locally and choose a local ONF E1, . . . , Em of TU . Hence E1, . . . , Em

is a local ONF of T ∗U and

{Ei1 ∧ . . . ∧ Eik | 1 ≤ i1 < . . . < ik ≤ m}

is a local ONF for ΛkT ∗M . Now choose any 1 ≤ µ ≤ m, i1 < . . . < ik, j1 < . . . <
jk+1. We calculate on the one hand

〈extEµ(Ei1 ∧ . . . ∧ Eik),Ej1 ∧ . . . ∧ Ejk+1〉
= 〈Eµ ∧ Ei1 ∧ . . . ∧ Eik , Ej1 ∧ . . . ∧ Ejk+1〉
= δµ,i1,...,ikj1,...,jk+1

(2.32)

To calculate intEµ , notice the following useful formula

intEµ(Ej1 ∧ . . . ∧ Ejk+1) =
k+1∑
ν=1

(−1)ν−1Ejν (Eµ)Ej1 ∧ . . . Êjν . . . ∧ Ejk+1

=

{
(−1)ν−1Ej1 ∧ . . . Êµ . . . ∧ Ejk+1 , ∃ν : µ = jν ,

0, otherwise.

(2.33)
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Therefore, we distinguish two cases: If there exists 1 ≤ ν ≤ m such that µ = jν , we
calculate

〈Ei1 ∧ . . . Eik , intEµ(Ej1 ∧ . . . ∧ Ejk+1)〉
(2.33)

= 〈Ei1 ∧ . . . Eik , (−1)ν−1Ej1 ∧ . . . Êjν ∧ . . . ∧ Ejk+1)〉
= (−1)ν−1δi1,...,ik

j1,...,ĵν ,...,jk+1
= (−1)ν−1δµ,i1,...,ik

jν ,j1,...,ĵν ,...,jk+1
= δµ,i1,...,ikj1,...,jν ,...,jk+1

(2.32)
= 〈extEµ(Ei1 ∧ . . . ∧ Eik), Ej1 ∧ . . . ∧ Ejk+1〉.

In case µ /∈ {j1, . . . , jk+1}, we obtain

〈extEµ(Ei1 ∧ . . . ∧ Eik), Ej1 ∧ . . . ∧ Ejk+1〉 (2.32)
= 0

(2.33)
= 〈Ei1 ∧ . . . Eik , intEµ(Ej1 ∧ . . . ∧ Ejk+1)〉.

Since (Eµ)[ = Eµ and both sides of (2.31) are linear in all arguments, the claim
follows.

(iii) Both sides are linear in the argument, so let Ei1 ∧ . . . ∧ Eik , ξ ∈ TU , be arbitrary.
We calculate for any 1 ≤ ν, µ ≤ m

intEµ( extEν (Ei1 ∧ . . . ∧ Eik) =

{
intEµ(Eν ∧ Ei1 ∧ . . . ∧ Eik), ν /∈ {i1, . . . , ik}
0, otherwise

=


Ei1 ∧ . . . ∧ Eik , ν /∈ {i1, . . . , ik}, ν = µ

(−1)rEν ∧ Ei1 ∧ . . . Êir . . . ∧ Eik , ν /∈ {i1, . . . , ik}, µ = ir

0, otherwise
(2.34)

extEµ( intEν (Ei1 ∧ . . . ∧ Eik)) =

{
extEµ((−1)r−1Ei1 ∧ . . . Êir . . . ∧ Eik), ir = ν,

0, otherwise

=


Ei1 ∧ . . . ∧ Eik , ir = ν = µ,

(−1)r−1Eµ ∧ Ei1 ∧ . . . Êir . . . ∧ Eik , ir = ν, µ /∈ {i1, . . . , ik}
0, otherwise

(2.35)

Now we distinguish several cases, in which we calculate using (2.34) and (2.35).
Case 1 (ν = µ): Now exactly two subcases may occur.
Case 1.1 (ν ∈ {i1, . . . , ik}): We calculate

(intEµ ◦ extEν + extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

= (extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

= Ei1 ∧ . . . ∧ Eik

Case 1.2 (ν /∈ {i1, . . . , ik}):

(intEµ ◦ extEν + extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

= (intEµ ◦ extEν )(Ei1 ∧ . . . ∧ Eik)

= Ei1 ∧ . . . ∧ Eik
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In both subcases we obtain

(intEµ ◦ extEµ + extEµ ◦ intEµ)(Ei1 ∧ . . . ∧ Eik) = Ei1 ∧ . . . ∧ Eik (2.36)

Case 2 (ν 6= µ): Several subcases occur.
Case 2.1 (ν ∈ {i1, . . . , ik}, µ ∈ {i1, . . . , ik}):

(intEµ ◦ extEν + extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

= (extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

= 0

Case 2.2 (ν ∈ {i1, . . . , ik}, µ /∈ {i1, . . . , ik}):

(intEµ ◦ extEν + extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

= (extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

= (−1)r−1Eµ ∧ Ei1 ∧ . . . Êir . . . ∧ Eik

We will write r = r(ν) in order to stress that r depends on ν.
Case 2.3 (ν /∈ {i1, . . . , ik}, µ ∈ {i1, . . . , ik}):

(intEµ ◦ extEν + extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

= (intEµ ◦ extEν )(Ei1 ∧ . . . ∧ Eik)

= (−1)rEν ∧ Ei1 ∧ . . . Êir . . . ∧ Eik

We will write r = r(µ) in order to stress that r depends on µ.
Case 2.4 (ν /∈ {i1, . . . , ik}, µ /∈ {i1, . . . , ik}):

(intEµ ◦ extEν + extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

= (intEµ ◦ extEν )(Ei1 ∧ . . . ∧ Eik)

= 0

Combining all these subcases, we obtain
m∑

µ,ν=1
µ6=ν

ξµξν(intEµ ◦ extEν + extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

=
∑

ν∈{i1,...,ik}
µ/∈{i1,...,ik}

ξµξν(−1)r(ν)−1Eµ ∧ Ei1 ∧ . . . Êir(ν) ∧ . . . Eik

+
∑

ν /∈{i1,...,ik}
µ∈{i1,...,ik}

ξµξν(−1)r(µ)Eν ∧ Ei1 ∧ . . . Êir(µ) ∧ . . . Eik

=
∑

ν∈{i1,...,ik}
µ/∈{i1,...,ik}

ξµξν(−1)r(ν)−1Eµ ∧ Ei1 ∧ . . . Êir(ν) ∧ . . . Eik

+
∑

ν∈{i1,...,ik}
µ/∈{i1,...,ik}

ξνξν(−1)r(ν)Eµ ∧ Ei1 ∧ . . . Êir(ν) ∧ . . . Eik

= 0

(2.37)
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Combining both cases, we obtain

(extξ ◦ intξ[ + intξ[ ◦ extξ)(E
i1 ∧ . . . ∧ Eik)

=

m∑
µ,ν=1

ξνξµ(intEµ ◦ extEν + extEµ ◦ intEν )(Ei1 ∧ . . . ∧ Eik)

(2.37)
=

m∑
µ=1

ξ2
µ(intEµ ◦ extEµ + extEµ ◦ intEµ)(Ei1 ∧ . . . ∧ Eik)

(2.36)
=

m∑
µ=1

ξ2
µE

i1 ∧ . . . ∧ Eik = ‖ξ‖2Ei1 ∧ . . . ∧ Eik .

2.4.7 Theorem (de Rahm complex). Let (Ωk
C (M), d) be the complexified de Rahm com-

plex over a Riemannian manifold (M, g).
(i) The exterior derivative d satisfies d ∈ Diff1(M ; Ωk

CM,Ωk+1
C M) and

∀ω ∈ Ωk
C (M) : σd(ξ)(ω|p) = i extξ(ω)|p.

Clearly d is not elliptic. Locally d is given on functions by

∀f ∈ C∞(U,C ) : d(f) =
m∑
j=1

∂ϕj(f)dϕj .

(ii) Let d∗ = (−1)m(k+1)+1 ∗ d∗ : Ωk+1
C (M) → Ωk

C (M) be the codifferential. Then
d∗ ∈ Diff1(M ; Ωk+1

C M,Ωk
CM) is the adjoint of d and its symbol is given by

σd∗(ξ)(ω|p) = −i intξ(ω|p).

Clearly d∗ is not elliptic. Locally d∗ is given on functions by

∀ω =
m∑
j=1

ωjdϕ
j ∈ Ω1

C : (U) : d∗(ω) =
1
√
g

m∑
j,k=1

∂ϕj(
√
ggkjωk)

(iii) The Dirac operator

D := d+ d∗ ∈ Diff1(M ; ΛkCM,ΛkCM)

is elliptic and has the symbol

σD(ξ) = i(extξ − intξ).

(iv) The Hodge Laplacian

∆ := D2 = d ◦ d∗ + d∗ ◦ d ∈ Diff2(M ; ΛkCM,ΛkCM)

is elliptic and has the symbol

σ∆(ξ) = −‖ξ‖2 id

Locally ∆ is given on funtions by

∆(f) = (d∗ ◦ d)(f) =
1
√
g

m∑
j,k=1

∂ϕj(
√
ggkj∂ϕk(f)).
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Proof.
(i) In any chart ϕ of M dω =

∑
I

∑m
i=1 ∂ϕi(ωI)ωIdϕI, where the sum is taken over all

increasing multi-indices I. Thus d is a differential operator. Using 2.2.19 we choose
a function f ∈ C∞(M) such that f(p) = 0 and df |p = ξ and calculate

σd(ξ)(ωp) = id(fω)|p = i(df ∧ ω)|p + i(f ∧ dω)(p) = iξ ∧ ω(p) = i extξ(ω)|p.

(ii) By d∗ is adjoint to d. Therefore 2.3.15 implies ref

d∗ ∈ Diff1(M ; Ωk+1
C M,Ωk+1

C M).

Its easyier to calculate the principal symbol directly instead of using 2.3.15. But
first of all, we establish a Leibniz rule for d∗. For any f ∈ C∞(M,R ), η ∈ Ωk

C (M),
ω ∈ Ωk+1

C (M):

〈d∗(fω), η〉L2 = 〈fω, dη〉L2 =

∫
M
fω ∧ ∗dη =

∫
M
ω ∧ ∗f̄dη

= 〈ω, f̄dη〉L2 = 〈ω, fdη〉L2 = 〈ω, d(fη)− df ∧ η〉L2

= 〈d∗(ω), fη〉 − 〈ω, extdf (η)〉L2
2.4.6
= 〈fd∗ω, η〉 − 〈intdf ω, η〉L2

= 〈fd∗(ω)− intdf (ω), η〉L2

Since η was arbitrary, we obtain

d∗(fω) = fd∗(ω)− intdf (ω) (2.38)

In case f(p) = 0, df |p = ξ, we obtain

σd∗(ξ)
2.13
= id∗(fω)(p)

2.38
= i(f(p)d∗(ω)|p − intdf(p)(ω|p)) = −i intξ(ω|p).

To obtain the local coordinate representation for functions, notice that for any local
chart ϕ : U → V and any f ∈ C∞(U)

df =
m∑
j=1

∂ϕj(f)dϕj =
m∑
j=1

dj∂ϕj(f),

where dj : C∞(U) = Λ0T ∗C U → Λ1T ∗C U is the homomorphism f 7→ fdϕj . We have
to calculate its adjoint d∗j . We choose the coordinate frame 1 on for Λ0T ∗C U and the
coordinate frame {dϕj} for Λ1T ∗C U . Then the coordinate matrix of dj with respect
to these frames is ej ∈ Cm×1. The coordinate matrix of the fibre metric in Λ0T ∗CU is
(1) ∈ C 1×1 and the coordinate matrix of the fibre metric in Λ1T ∗C U is by definition
the same as the coordinate matrix of the fibre metric in Λ1T ∗U , which is given by

〈dϕj , dϕi〉 = g((dϕj)], (dϕi)]) =

m∑
ν,µ=1

g(gνi∂ϕν , g
µj∂ϕµ =

m∑
ν,µ=1

gνigµjgνµ

=

m∑
µ=1

(G−1G)iµg
µj =

m∑
µ=1

δiµg
µj = gij .

Using A.3.1 the coordinate matrix of d∗j is given by

1ētj(G
−1) = (gj1, . . . , gjm).

Therefore

d∗(ω)
(2.24)

=
1
√
g

m∑
j,k=1

∂ϕj(
√
ggkjωk)
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(iii) It follows from (i) and (ii) that

σD(ξ) = i(extξ − intξ).

It remains to show that D is elliptic. By definition we have to show that for any
ξ 6= 0, σD(ξ) is an isomorphism. It will be more convenient to proceed with the next
part first.

(iv) We obtain

∆ = D2 = (d+ d∗)2 = d2 + d ◦ d∗ + d∗ ◦ d+ (d∗)2

= d ◦ d∗ + d∗ ◦ d ∈ Diff2(M ; ΛkCM,ΛkCM)

by 2.3.6. This theorem also implies for any ξ ∈ TpM

σ∆(ξ) = (i(extξ − intξ))
2 = −(ext2

ξ − extξ ◦ intξ − intξ ◦ extξ + int2
ξ)

= intξ ◦ extξ + extξ ◦ intξ
2.4.6(iii)

= ‖ξ‖2 id .

This implies that σ∆(ξ) is an isomorphism for any ξ 6= 0. In turn this implies also
that σD is elliptic: If it were not ellitplic, there would be a ξ 6= 0 such that σD was
no isomorphism. But then σ∆(ξ) = σD(ξ) ◦ σD(ξ) would not be an isomorphism as
well.

2.4.8 Definition (elliptic complex). Let M be a smooth compact manifold. For any
j ∈ J ⊂ Z let πj : Ej →M be a smooth vector bundle over M and

Pj ∈ Diff(M ;Ej , Ej+1)

be a PDO. We say (Ej , Pj)j∈J is a complex over M , if for any j ∈ Z , Pj+1 ◦ Pj = 0. The
complex is elliptic, if for any j ∈ J , Dj := Pj + P ∗j is an elliptic operator.

2.4.9 Corollary. The de Rham complex is an elliptic complex.

Proof. This is just a reformulation of 2.4.7.

2.4.10 Lemma. Let (Ej , Pj)j∈J be a complex and let σj := σPj .
(i) For any ξ ∈ T ∗M

imσj(ξ) ⊂ kerσj+1(ξ).

(ii) Denote by π : T ∗M → M the cotangent bundle. In view of 2.2.17, we may
also consider the bundles π∗(Ej) over T ∗M and think of σj as a section σj ∈
Γ(T ∗M ;π∗(Ej), π

∗(Ej+1).
(iii)

2.5. Locality

2.5.1 Definition (local). A linear map P : Γ(M,E)→ Γ(M,F ) is local, if

∀s ∈ Γ(M,E) : suppP (s) ⊂ supp(s).

2.5.2 Theorem (Peetre). A linear map P : Γ(M,E)→ Γ(M,F ) is a PDO if and only if
it is local.
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3. Basics from Functional Analysis

Topological Vector Spaces and Basic Properties: Separation Axioms, Basis for Topology,
Morphisms, Characarization of Continuity, Completeness, Frechet Spaces, Locally Con-
vex Spaces, Minkowski-Functionals, Half-Norms => Vector Space Normed, Semi-Normed,
Banach, Hilbert Spaces: Definitions Notation Konvergenz, Konvergenz und Folgenkon-
vergenz, Abzählbarkeitsaxiome Dicht Definierte Operatoren Fourier-Transformation und
Faltung

3.1. Topological Vector Spaces

3.1.1 Definition (Topological vector space). A topological vector space X is a real or
complex vector space endowed with a topology such that every point is closed and that
addition X × X → X and scalar multiplication K × X → X are continuous (w.r.t. the
product topology). We define TVS to be the category whose objects are topological vector
spaces and whose morphisms are continuous linear maps between them.

3.1.2 Definition (operations on sets). Let X be any vector space, A,B ⊂ X, x ∈ X,
λ ∈ K . We define

x+A := {x+ a | a ∈ A}
x−A := {x− a | a ∈ A}
A+A := {a− b | a ∈ A, b ∈ B}

λA := {λa | a ∈ A}

3.1.3 Definition (special subsets). Let X be a vector space.
(i) Y ⊂ X is a subspace if it is itself a vector space with the restricted vector space

operations.
(ii) C ⊂ X is convex if

∀t ∈ [0, 1] : tC + (1− t)C ⊂ C.

This is equivalent of stating that for any two points x, y ∈ C the entire line tx+(1−t)y
is contained in C. Notice that it is superflous to check this condition for t ∈ {0, 1}.

(iii) B ⊂ X is balanced if
∀λ ∈ K : |λ| ≤ 1⇒ λB ⊂ B.

3.1.4 Lemma. Topological vector spaces are Hausdorff.

3.1.5 Definition. For any topological space X and any x ∈ X we denote by

U(x) := {U ⊂ X | U is a neighbourhood of x}
O(x) := {U ⊂ X | U is an open neighbourhood of x}

A subset B(x) ⊂ U(x) is a local base at x if

∀U ∈ U(x) : ∃B ∈ B(x) : B ⊂ U.

3.1.6 Lemma. The topology of a TVS X is completely determined by its topology at 0.
More precisely:

∀x ∈ X : U(x) = x+ U(0).

Therefore the word ”neighbourhood”, ”local base” etc. always refer to the point 0 and we
write U := U(0).
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3.1.7 Definition. Let X be a TVS and (xn)n∈N be a sequence in X.
(i) We say (xn) is a Cauchy sequence if

∀U ∈ U : ∃N ∈ N : ∀n,m ≥ N : xn − xm ∈ U

(ii) We say (xn) converges in X if

∃x ∈ X : ∀U ∈ U(x) : ∃N ∈ N : ∀n ≥ N : xn ∈ U.

We denote this by
xn

n→∞
X
// x .

(iii) A subset E ⊂ X is bounded if

∀U ∈ U : ∃s > 0 : ∀t > s : E ⊂ tU.

A sequence (xn) is bounded if {xn|n ∈ N } ⊂ X is bounded.

3.1.8 Remark. The definition of boundedness may eventually seem odd. If (X, ‖_‖) is a
normed space, we temporariliy define a set E ⊂ X to be ‖_‖-bounded, if

∃R > 0 : E ⊂ BR(0).

This is the usuall definition of boundedness. Now ‖_‖ induced a topology O on X. Let’s
say E is O-bounded, if the definition 3.1.7,(iii) holds. Then a set E is ‖_‖-bounded if and
only if it is O-bounded:
”⇒”: Assume E ⊂ BR(0). Let U ∈ U be arbitrary. By definition there exists r > 0 such
that Br(0) ⊂ U . Define s := R/r. Then for any t > s

∀x ∈ E : ‖x‖ < R = sr < tr =⇒ x ∈ tBr(0) ⊂ tU.

”⇐”: Conversely consider B1(0) ∈ U. There exists s > 0 such that for any t > s

E ⊂ tB1(0) = Bt(0).

3.1.9 Corollary. Let X be a TVS.
(i) X has a balanced local base.
(ii) If X is locally convex, then X has a balanced convex local base.

Proof. [5, 1.14]

3.1.10 Definition (Operator). Let X,Y be topological vector spaces. A continuous linear
map T : X → Y is an operator. An operator X → K is a functional.
A linear map T : X → Y is bounded, if for any bounded set E ⊂ X, the set T (E) ⊂ Y is
bounded.

3.1.11 Theorem (Characterizations of Operators). Let X,Y be TVS and T : X → Y be
a linear map. Among the following properties
(i) T is continuous.
(ii) T is bounded.
(iii) If xn

X
// 0 then {T (xn)|n ∈ N } is bounded.
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(iv) If xn
X
// 0 , then T (xn)

Y
// 0 .

the implications
(i)⇒ (ii)⇒ (iii)

are always true. If X is metrizable, the implications

(iii)⇒ (iv)⇒ (i)

are also true. Hence in that case all properties are equivalent.

3.1.12 Definition (invariant metric). A metric d on a vector space X is (translation-
)invariant, if

∀x, y, z ∈ X : d(x+ z, y + z) = d(x, y).

3.1.13 Definition (Types of TVS). Let (X,O) be a TVS.
(i) X is locally convex if there exists a local base B whose members are all convex.
(ii) X is metrizable if O is induced by some metric d.
(iii) X is an F -space if it is complete and metrizable by an invariant metric.
(iv) X is a Fréchet space if it is a locally convex F -space.
(v) X is normable if O is induced by some norm.
(vi) X has the Heine-Borel property if every closed and bounded subset is compact.

3.1.14 Definition (seminorm). Let V be a vector space. A function p : V → R is a
seminorm if
(i) Subadditivity : ∀x, y ∈ V : p(x+ y) ≤ p(x) + p(y).
(ii) Semi-homogenity : ∀x ∈ V : ∀λ ∈ K : p(λx) = |λ|p(x).

A seminorm is a norm provided

∀x ∈ V : p(x) = 0⇒ x = 0

and usually is denoted by p = ‖ ‖. The tuple (V, ‖_‖) is a normed space. The category
Nrm consists of all normed spaces and continuous maps between them.
A family P of seminorms is separating, if

∀x ∈ V : x 6= 0⇒ ∃p ∈ P : p(x) 6= 0.

3.1.15 Definition (absorbing, Minkowski functional). A set A ⊂ X is absorbing, if⋃
t∈]0,∞[

tA = X.

In that case we call µA : X → [0,∞],

x 7→ inf t > 0 | x ∈ tA,

the associated Minkowski functional.

3.1.16 Theorem (properties of seminorms). Let X be a vector space and let p be a
seminorm on X.
(i) p(0) = 0.
(ii) ∀x, y ∈ X : |p(y)− p(x)| ≤ p(y − x).
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(iii) ∀x ∈ X : p(x) ≥ 0.
(iv) {x ∈ X | p(x) = 0} ⊂ X is a vector space.
(v) The set B := {x ∈ X | p(x) < 1} is convex, balanced, absorbing and µB = p.

Proof. [5, 1.34]

3.1.17 Lemma (operations on seminorms). Let X be a K vector space, let p, q : X → R
be semi-norms and λ ∈ R≥0. Then
(i) p+ q,
(ii) cp,
(iii) max(p, q)

are seminorms on X as well.
If X is a topological vector space and p and q are continuous, so are p+q, cp and max(p, q).

3.1.18 Theorem. Let A ⊂ X be a convex, absorbing set in a vector space X.
(i) ∀x, y ∈ X : µA(x+ y) ≤ µA(x) + µA(y).
(ii) ∀x ∈ X : ∀t ≥ 0 : µA(tx) = tµA(x).
(iii) If A is balanced, then µA is a seminorm.
(iv) If B := {x ∈ X | µA(x) < 1} and C := {x ∈ X | µA(x) ≤ 1}, then A ⊂ B ⊂ C and

µA = µB = µC .

Proof. [5, 1.35]

3.1.19 Theorem (seminorms induced by local base). Let X be a locally convex TVS. By
3.1.9 X has a convex balanced local base B. For any V ∈ B let µB be the associated
Minkowski function.
(i) ∀V ∈ B : {x ∈ X | µV (x) < 1} = V .
(ii) {µV | V ∈ B} is a separating family of continuous seminorms on X.

Proof. [5, 1.36]

3.1.20 Theorem (Topological vector spaces induced by Seminorms). Let P be a family
of seminorms on a vector space V . For any p ∈ P and every positive n ∈ N define

B(p, n) := {x ∈ V | p(x) <
1

n
}.

Then the collection B of finite intersections of those B(n, p) is a convex balanced local
base for a topology O := OP on V , which turns V into a locally convex space such that
(i) Every p ∈ P is continuous.
(ii) A set E ⊂ X is bounded if and only if every p ∈ P is bounded on M .
(iii) A sequence (xj) in X converges to x with respect to the induced topology if and only

if
∀p ∈ P : xj

j→∞
p
// x .

The analogous statement holds for Cauchy sequences.
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If additionally P = {pi}i∈N is countable, then OP is metrizable. If (ci) is any positive real
sequence, such that ci → 0, the function d : X ×X → R

d(x, y) := max
i∈N

ci
pi(x− y)

1 + pi(x− y)

is a translation invariant metric such that Od = OP.

Proof.
Step 1 (Construction of O): We just declare

O := {O ⊂ X | ∀x ∈ O : ∃B ∈ B : x+B ⊂ O}.

Step 1.1 (Topology Axioms): Clearly ∅, X ∈ O. It is also clear that O is closed under
arbitrary unions. It is closed under finite intersections by construction of B (this is the
reason why we defined B to be the set of finite intersections of the B(p, n)). Thus O is a
topology. By construction O is translation invariant.
Step 1.2 (Closed points): We show that {0} ∈ X is closed: Let 0 6= x ∈ X be arbitrary.
Since P is separating, there exists p ∈ P such that p(x) > 0. Thus there exists n ∈ N ,
such that p(x) > 1

n . Therefore x /∈ B(p, n), thus 0 /∈ x+B(p, n). Consequently X \ {0} is
open and therefore {0} is closed.
Step 1.3 (Continuity of Addition): Denote by A : X ×X → X the addition. It suffices to
show that A is continuous at (0, 0) ∈ X ×X. Let U ∈ U(0) be any neighbourhood. Then
there exist n1, . . . , nm ∈ N , p1, . . . , pm ∈ P, such that

U ⊃ B(p1, n1) ∩ . . . ∩B(pm, nm) (3.1)

Define

V := B(p1, 2n1) ∩ . . . ∩B(pm, 2nm) (3.2)

and observe

∀(x, y) ∈ V × V : ∀ 1 ≤ ν ≤ m : pν(x+ y) ≤ pν(x) + pν(y) =
1

2nν
+

1

2nν
=

1

nν
.

Therefore V + V ⊂ U , i.e. (0, 0) ∈ V × V ⊂ A−1(U).
Step 1.4 (Continuity of Scalar Multiplication): Let (α, x) ∈ K ×X and U ,V as in (3.1)
and (3.2) above. There exists s > 0 such that x ∈ sV . Define t := s/(a+ |α|s). Denoting
the scalar multiplication by SM : K ×X → X we claim that (α, x) ∈ B1/s(α)×(x+ tV ) ⊂
SM−1(U). Therefore let (β, y) ∈ B1/s × (x+ tV ) be arbitrary. We calculate

|β|t =
|β|s

1 + |α|s
<
|α|s+ 1

ss

1 + |α|s
= 1

⇒ βy − αx = β(y − x) + (β − α)x ∈ |β|tV + |β − α|sV ⊂ V + V ⊂ U,

since V is balanced.
Step 2: Now we proof the additional properties.
Step 2.1 (Continuity of the Semi-Norms): This follows directly from the definitions.
Step 2.2 (Bounded Sets): Let E ⊂ X and U, V as in (3.1) and (3.2) above.
”⇒”: Let p ∈ P be arbitrary. Sicne B(p, 1) is a neighboorhood of 0 by construction there
exists k ∈ N such that E ⊂ kB(p, 1). Therefore any x ∈ E satisfies p(x) < k. Therefore p
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is bounded on E.
”⇐”: The definition of V and the hypothesis implies

∀1 ≤ ν ≤ m : ∃Mν ∈ R>0 : ∀x ∈ E : pν(x) < Mν .

Take any n > max1≤ν≤m(Mνnν). This implies

∀x ∈ E : ∀1 ≤ ν ≤ m : pν(x) < Mν < n
1

nν
⇒ x ∈ nU,

thus E ⊂ nU and E is bounded.
Step 2.3 (Sequential Convergence): If fj converges to 0 with respect to the induced topol-
ogy, item (i) implies converges with respect to all the seminorms. Conversely, assume a
sequence converges with respect to all the seminorms. Let U ∈ U(0) be arbitrary. By
definition there exists B ∈ B, such that B ⊂ U . By definition there exist p1, . . . , pk ∈ P,
n1, . . . , nk ∈ N such that B = B(p1, n1) ∩ . . . ∩B(pk, nk). By hypothesis

∀1 ≤ ν ≤ k : ∃Nν : ∀j ≥ Nν : pν(fj) <
1

nν
.

Consequently for any j ≥ max1≤ν≤kNν : fj ∈ B ⊂ U .
Step 3 (Metrizability): We now assume that P is countable.
Step 3.1 (Metric Axioms): Since pi ≥ 0 the sequence

pi(x− y)

1 + pi(x− y)
∈ [0, 1]

is bounded and non-negative. Since ci is positive and converges to zero, the sequence
d(x, y) is positive and converges to zero from above. Therefore d is well-defined. It is clear
that d translation-invariant and symmetric. Since P is separating

d(x, y) = 0⇔ x = y.

To see the triangle inequality, notice that the function f : R → R , x 7→ x
1+x , satisfies

f ′(x) =
1 + x− x
(1 + x)2

> 0

and therefore f is monotonously increasing. Consequently since every pi is subadditive

pi(x− z)
1 + pi(x− z)

= f(pi((x− y)− (z − y))) ≤ f(pi(x− y) + pi(z − y))

=
pi(x− y)

1 + pi(z − y) + pi(x− y)
+

pi(z − y)

1 + pi(z − y) + pi(x− y)
≤ pi(x− y)

1 + pi(x− y)
+

pi(z − y)

1 + pi(z − y)
.

Therefore d satisfies the triangle inequality.
Step 3.2 (OP = Od): First we claim that the balls

Br := {x ∈ X | d(0, x) < r}, 0 < r <∞,

are a convex balanced local base for OP. This basically follows from the identity

∀ 0 < r <∞ : Br =
⋂

i∈N :ci>r

{
x ∈ X | pi(x) <

r

ci − r

}
.
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First notice that since ci converges to zero, the intersection is finite. Since all the pi are
OP-continuous, the right hand side is an OP-open set. The identitiy follows from the fact,
that if ci > r,

cipi(x)

1 + pi(x)
< r ⇔ cipi(x) < r + pi(x)r ⇔ (ci − r)pi(x) < r ⇔ pi(x) <

r

ci − r
.

This proves Br ∈ OP. The Br are also convex and balanced (!ToDoRef).
Now assume that W ∈ OP is an open neighbourhood of 0 ∈ X. By definition there exist
p1, . . . , pk ∈ P, δ1, . . . , δk ∈]0, 1[ such that

W ⊃
k⋂
i=1

B(pi, δi) =: B.

Choose 0 < r <∞, such that 2r < min{c1δ1, . . . , ckδk}. This implies

∀x ∈ Br : ∀1 ≤ i ≤ k :
cipi(x)

1 + pi(x)
< r <

ciδi
2
⇒ 2pi(x) < δi(1 + pi(x))⇒ pi(x)(2− δi) < δi

⇒ pi(x) <
δi

2− δi
< 1⇒ x ∈ B(pi, δi).

Therefore Br ⊂ B ⊂ W . Consequently the Br are a local base as claimed, W is an
Od-neighbourhood of 0 and alltogether Od = OP.

3.1.21 Lemma (continuous seminorms). Let X be topologized as in 3.1.20 above with a
family P = {pi}i∈I of seminorms. Let q : X → R be an arbitrary seminorm. The following
are equivalent:
(i) q is continuous on X.
(ii) There exists a finite subset J ⊂ I and a constant C > 0 such that

∀x ∈ X : q(x) ≤ C max
j∈J

pj(x). (3.3)

(iii) There exists a finite subset J ⊂ I and a constant C > 0 such that

∀x ∈ X : q(x) ≤ C
∑
j∈J

pj(x).

Proof. ”(i)⇒(ii)”: Let q be continuous. By definition

0 ∈ q−1(I1(0))⊆̊X,

where I1(0) =]− 1, 1[⊂ R is open. Consequently there exists an open neighbourhood U of
0 such that V ⊂ q−1(Iq(0)). By definition 3.1.20 of the topology on X there exists a finite
J ⊂ I and εj > 0 such that

0 ∈ V :=
⋂
j∈J

Bj ⊂ U,

where Bj := B
pj
εj (0). Define

ε :=
1

2
min
j∈J

εj > 0.
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Now let x ∈ X be arbitrary. Clearly x = 0 satisfies inequality (3.3), so let x 6= 0. Define

x′ :=
εx

maxj∈J pj(x)
.

This implies

∀i ∈ J : pi(x
′) =

pi(x)

maxj∈J pj(x)

1

2
min
j∈J

εj ≤
εi
2
< εi.

Consequently x′ ∈ Bi for any i ∈ J . By definition this implies

1 ≥ q(x′) =
ε

maxj∈J pj(x)
q(x),

thus

q(x) ≤ ε−1 max
j∈J

pj(x) =
2

minj∈J εj︸ ︷︷ ︸
=:C

max
j∈J

pj(x).

”(ii)⇒(i)”: We show that q is continuous at 0 ∈ X: Let ε > 0 be arbitrary. The set

V :=
⋂
j∈J

B
pj
ε

2C
(0)

is open by construction and it satifies

∀x ∈ V : q(x)
(3.3)
≤ C max

j∈J
pj(x) ≤ C ε

2C
< ε,

thus
V ⊂ q−1(Iε(0)).

”(ii)⇔(iii)”: This follows from

max
j∈J

pj(x) ≤
∑
j∈J

pj(x) ≤ |J |max
j∈J

pj(x).

3.1.22 Theorem (Characterization of continuous maps). Assume X,Y are locally convex
spaces, let {qj}j∈J be a family of seminorms on Y that generate the topology on Y as
in 3.1.20 and let {pi}i∈I be the analogous family for X. Let T : X → Y be linear. The
following are equivalent:
(i) T is continuous.
(ii) For any continuous seminorm q on Y there exists a finite subset Ĩ ⊂ I and a C > 0

such that
∀x ∈ X : q(T (x)) ≤ C max

i∈Ĩ
pi(x).

(iii) For any continuous seminorm q on Y there exists a continuous seminorm p on X
such that

∀x ∈ X : q(T (x)) ≤ p(x).

(iv) For any j ∈ J there exists a continuous seminorm p on X such that

∀x ∈ X : qj(T (x)) ≤ p(x).
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(v) For any j ∈ J there exists a finite subset Ĩ ⊂ I and a C > 0 such that

∀x ∈ X : qj(T (x)) ≤ C max
i∈Ĩ

pi(x).

Proof.
”(i)⇒(ii)”: Let q be a continuous seminorm on Y . By 3.1.21 there exists a finite subset
J̃ ⊂ J and C ′ > 0 such that

∀y ∈ Y : q(y) ≤ C ′max
j∈J̃

qj(y). (3.4)

By hypothesis T is linear and continuous. Thus for any j ∈ J̃ , the map qj ◦ T : X → R
is a continuous seminorm on X. Again by 3.1.21 this implies that there exists a constant
Cj > 0 and a finite Ĩj ⊂ I such that

∀x ∈ X : qj(T (x)) ≤ Cj max
i∈Ĩj

pi(x). (3.5)

Define Ĩ := Ĩ1 ∪ . . . ∪ Ĩ|J |. Combining both, we obtain

∀x ∈ X : q(T (x))
(3.4)
≤ C ′max

j∈J̃
qj(T (x))

(3.5)
≤ C ′max

j∈J
Cj︸ ︷︷ ︸

=:C

max
i∈Ĩ

pi(x).

”(ii)⇒(iii)”: By 3.1.17
p(x) := C max

i∈Ĩ
pi(x)

is a continuous seminorm on X.
”(iii)⇒ (iv)”: By construction qj is a continuous seminorm on Y .
”(iv)⇒(v)”: Follows from 3.1.21.
”(v)⇒(i)”: Let J̃ ⊂ J be finite, Bj := B

qj
εj (0) and

V =
⋂
j∈J̃

Bj

be an element of the local base for Y . By hypothesis, for any j ∈ J̃ there exists a finite
Ĩj ⊂ I and Cj > 0 such that

∀x ∈ X : qj(T (x)) ≤ Cj max
i∈Ĩj

pi(x).

Define

Ĩ :=
⋃
j∈J

Ĩj , C := max
j∈J

Cj , ε :=
1

2
min
j∈J

εj , U :=
⋂
i∈I

Bpi
ε (0)⊆̊X

For any x ∈ U we calculate

qj(T (x)) ≤ Cj max
i∈Ĩj

pi(x) ≤ C max
i∈Ĩ

pi(x) < εj .

Thus U ⊂ T−1(V ).
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3.1.23 Definition (equivalence seminorms). Let X be a K vector space and let P :=
{pi}i∈I , Q := {qj}j∈J be two families of seminorms on X. Both induce a topology τP , τQ
on X according to 3.1.20. We say P is equivalent to Q, if τP = τQ.

3.1.24 Lemma. In the situation of 3.1.23 above: P is equivalent to Q if and only if
id : (X, τP )→ (X, τQ) is a homeomorphism.

3.1.25 Remark. That statement is of course totally trivial. Its strength comes from the
fact that one may check the continuity of id and id−1 using the various characterizations
given in 3.1.22.

3.1.26 Definition (weak-*-topology). Let X be a TVS and X ′ be its topological dual
space. For any x ∈ X, let

px : X ′ → K
x′ 7→ |x′(x)|

be the seminorm on X ′ induced by X. The topology on X ′ generated by the family
{px | x ∈ X} via 3.1.20 is the weak-*-topology on X ′.

3.1.27 Theorem (Topologization of the Dual). Let X be an F-space and assume X ′ has
the weak-*-topology.
(i) For any sequence (x′j) in X ′

x′j X′
// x′ ⇐⇒ ∀x ∈ X : x′j(x)

K
// x′(x) .

(ii) X ′ is complete.

Proof.
(i) It suffices to check this for x′ = 0. By 3.1.20 the sequence (x′j) converges in X

′ if and
only if it converges with respect to all the seminorms px, x ∈ X. By construction

|xj(x)| = px(x′j).

(ii) Let (x′j) be a Cauchy sequence in X ′. By 3.1.20, this implies that x′j is a Cauchy
sequence with respect to all the px. So let x ∈ X, ε > 0. There exists N0 ∈ N such
that

∀j, k ≥ N0 : |x′j(x)− x′k(x)| = px(x′j − x′k) < ε.

This implies that x′k(x) is a Cauchy sequence in K . Thus

∃x′(x) ∈ K : x′j(x)
K
// x′(x) .

This defines a linear map x′ : X ′ → K . By construction

x′j X′
// x′ .

The fact that x′ ∈ X ′ follows from the Banach-Steinhaus theorem, c.f. [5, 2.8].
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3.1.28 Theorem (Dual Operator). Let X,Y be TVS and T : X → Y be linear. Let
X ′, Y ′ be the topological dual spaces endowed with the weak*-topology (i.e. the topology
of pointwise convergence). Then T ′ : Y ′ → X ′ defined by T ′(y′)(x) := y′(T (x)) is a
continuous operator Y ′ → X ′.

Proof. Assume
y′j Y ′

// 0 .

By definition this is equivalent to

∀y ∈ Y : y′j(y)
C
// 0 .

Thus
∀x ∈ X : T ′(y′j)(x) = y′j(T (x))

C
// 0

and therefore
T ′(y′j) X′

// 0 .

3.2. Completeness and dense subspaces

3.2.1 Theorem (Extension of Operators). Let (X, ‖_‖X) be a normed space, such that
D ⊂ X is a dense subspace with the induced norm ‖_‖D := ‖_‖X |D. Let (Y, ‖_‖Y ) be
a Banach space and T ∈ L ((D, ‖_‖D), (Y, ‖_‖Y )) be a continuous linear operator. Then
there exists a unique continuous operator T̂ ∈ L ((X, ‖_‖X), (Y, ‖_‖Y )), such that

T̂ |D = T ‖T̂‖L (X,Y ) = ‖T‖L (D,Y ).

3.2.2 Theorem (Continuity of bilinear forms). c.f. Rudin 2.17

3.2.3 Theorem. An operator T ∈ L (X,Y ) between Banach spaces, that is norm-
preserving has closed image.

Proof. Assume
Txj

j→∞
Y
// y .

Since T preserves the norm,

‖xj − xi‖X = ‖Txj − Txi‖Y .

Since (Txj) is a Cauchy sequence in Y , this implies that (xj) is a Cauchy sequence in X.
Since this space is complete,

∃X ∈ X : xj
j→∞
X
// x .

Since T is continuous
Tx = lim

j→∞
Txj = y.

3.2.4 Theorem. Let T ∈ L (X,Y ) be an operator between Banach spaces. For any subset
D ⊂ X, we obtain T (D̄) ⊂ T (D). In case T is an isometry, T (D̄) = T (D).
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Proof. Let x ∈ D̄. Then there exists (xj) ∈ D, such that

xj
X
// x .

Since T is continuous,
Txj

Y
// Tx ,

thus Tx ∈ T (D). In case T is an isometry, its image is closed by 3.2.3. Therefore

T (D) = T (D) ⊂ T (D̄).

3.3. Complex interpolation method

3.3.1 Theorem (Hadamard-3-Line-Theorem). Let

Ω := {z ∈ C | 0 < Re z < 1}

and let f : Ω̄→ C be continuous and bounded and let f |Ω be holomorphic. Define

Mj := sup
t∈R
|f(θ + it)|, j = 0, 1.

Then
∀z ∈ Ω : |f(z)| ≤M1−Re z

0 MRe z
1 .

Proof. We proceed in two steps.
Step 1 (Case M0 = M1 = 1): Assume M0 = M1 = 1. Define

fn : Ω̄ → C
z 7→ exp

(
z2−1
n

)
f(z).

Then fn is continuous on Ω̄ and holomorphic on Ω.
Step 1.1 (|fn| ≤ 1 on Ω \ [0, 1]×]−R,R[): Since f is bounded, there exists C > 0 such
that

∀z ∈ Ω̄ : |f(z)| ≤ C.

This implies for any x ∈ [0, 1] and any y ∈ R

|fn(x+ iy)| ≤ C
∣∣∣∣exp

(
x2 + 2iy − y2 − 1

n

)∣∣∣∣ ≤ C exp

(
−y2

n

)
. (3.6)

Choose R > 0 such that C exp(−R2/n) ≤ 1. This directly implies

∀z ∈ Ω̄ : Im(z) ≥ R⇒ |fn(z)| ≤ 1. (3.7)

Step 1.2 (|fn| ≤ 1 on [0, 1]× [−R,R]): On the other hand, we estimate for any y ∈ R :

|fn(iy)| =
∣∣∣∣exp

(
−y2 − 1

n

)∣∣∣∣ |f(iy)| ≤ exp

(
−y2 − 1

n

)
,

|fn(1 + iy)| =
∣∣∣∣exp

(
(1 + iy)2 − 1

n

)∣∣∣∣ |f(1 + iy)| =
∣∣∣∣exp

(
1 + 2iy − y2 − 1

n

)∣∣∣∣ ≤ ∣∣∣∣exp

(
−y2

n

)∣∣∣∣ .
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Consequently,

∀z ∈ ∂Ω : |fn(z)| ≤ exp

(
− Im(z)2

n

)
≤ 1.

Combining this with (3.7), we obtain the same estimate on ∂([0, 1] × [−R,R]). Thus by
the maximum principle, we obtain

∀z ∈ [0, 1]× [−R,R] : |fn(z)| ≤ 1.

Step 1.3: Alltogether we obtain

∀z ∈ Ω̄ : |fn(z)| ≤ 1.

Since for any z ∈ Ω

fn(z)
n→∞
C
// f(z) ,

this implies
∀z ∈ Ω̄ : |f(z)| ≤ 1.

Step 2 (Reduction to the case M0 = M1 = 1): Define

g : Ω̄ → C
z 7→ M z−1

0 M−z1 f(z).

Then g is continuous on Ω̄, holomorphic on Ω. Since f is bounded and Re(z) ∈ [0, 1], the
estimate

∀z ∈ Ω̄ : |g(z)| ≤MRe(z)−1
0 M

−Re(z)
1 |f(z)|

shows that g is bounded. Furthermore

∀y ∈ R : |g(iy)| = |M iy−1
0 M−iy1 ||f(iy)| ≤M−1

0 |f(iy)| ≤ 1

∀y ∈ R : |g(1 + iy)| = |M iy
0 M

−1−iy
1 ||f(1 + iy)| ≤M−1

1 |f(1 + iy)| ≤ 1.

Thus the first step implies
∀z ∈ Ω̄ : |g(z)| ≤ 1.

Consequently
∀z ∈ Ω : |f(z)| = |M1−z

0 M z
1 g(z)| ≤M1−Re z

0 MRe z
1 .

3.3.2 Theorem and Definition (Existence of interpolation spaces). Let E and F be
Banach spaces and assume there exists a continuous inclusion E ↪→ F . Define

Ω := {z ∈ C | 0 < Re z < 1},

H(F,E) := {u ∈ C0
b (Ω̄, F ) | u is holomorphic on Ω and

∀t ∈ R : u(1 + it) ∈ E and sup
t∈R
‖u(1 + it)‖E <∞}

and for any u ∈ H(F,E)

‖u‖H(F,E) := sup
z∈Ω̄

‖u(z)‖E + sup
t∈R
‖u(1 + it)‖F = ‖u‖C0

b (Ω̄,E) + ‖u(1 + i_)‖C0
b (R ,F ).
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Then H(F,E) is a Banach space.
For any 0 ≤ θ ≤ 1, define the interpolation spaces

[F,E]θ := {u(θ) | u ∈ H(F,E)}, [E,F ]θ := [F,E]1−θ.

The map
ϕθ : H(F,E) → [F,E]θ

u 7→ u(θ)

is surjective with kernel kerϕθ = {u ∈ H(F,E)|u(θ) = 0}. Therefore it descends to an
isomorphism

ϕ̄θ : H̄(F,E) :=
H(F,E)

kerϕθ
→ [F,E]θ.

The space [F,E]θ is a Banach space itself by declaring ϕθ to be an isometry, i.e.

∀u(θ) ∈ [F,E]θ : ‖u(θ)‖[F,E]θ := ‖ϕ̄−1
θ (u)‖H̄(F,E).

Furthermore there are isomorphisms [E,F ]0 ∼= E, [E,F ]1 ∼= 1.

Proof.
Step 1 (H(E,F ) is Banach): Since E and F a vector spaces, the triangle inequality im-
mediately implies that H(F,E) is a vector space. We have to check that it is complete.
Therefore, let (uj) be a H(F,E)-Cauchy sequence. This implies that (uj) is a Cauchy
sequence in C0

b (Ω̄, F ) and (uj(1+ i_)) is a Cauchy-sequence in C0
b (R , E). Since these space

are complete,

∃u ∈ C0
b (Ω̄, F ) : uj C0

b (Ω̄,F )
// u

∃ũ ∈ C0
b (R , E) : uj(1 + i_)

C 0
b (R ,E)

// ũ .

By continuity
∀t ∈ R : u(1 + it) = ũ(t).

Weierstrass’ convergence theorem states that the uniform limit of holomorphic function is
holomorphic. Therefore u : Ω→ F is holomorphic, u ∈ H(F,E) and

uj H(F,E)
// u .

Step 2: The statements concerning ϕ and ϕ̄ follows directly from the defininitions. It is
also clear that [E,F ]θ is a Banach space.
Step 3 (θ ∈ {0, 1}): For any u ∈ H(E,F ), u(0) ∈ E and u(1) = u(1 + i · 0) ∈ F . Conse-
quently

ϕ̄0 : H̄(F,E)→ [F,E]0, ϕ̄1 : H̄(F,E)→ [F,E]1.

3.3.3 Theorem (Interpolation operators). Assume E,E′, F, F ′ are Banach spaces such
that there are continuous inclusions E ↪→ F , E′ ↪→ F ′. Let T : F → F ′ be a bounded
linear operator, such that T (E) ⊂ E′. For any 0 ≤ θ ≤ 1

T : [F,E]θ → [F ′, E′]θ

is a bounded linear operator.
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Proof. Let u(θ) ∈ [F,E]θ. Since T is linear and continuous T ◦ u ∈ H(F ′, E′). Thus

‖T (u(θ))‖[F ′,E′]θ = ‖ϕ−1((T ◦ u)‖H(F ′,E′) ≤ ‖T‖‖u‖[F,E]θ .
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4. Function Spaces

4.0.4 Definition (compactly contained). Let X be a topological space and A ⊂ B ⊂ X.
Then A is compactly contained in B,

A b B :⇐⇒ Ā ⊂ B◦

and Ā is compact.

4.1. Continuously differentiable functions

4.1.1 Definition. Let U ⊂ Rm be open. For any k ∈ N let C k(U,C r) be the space of
k-times continuously differentiable functions.
Let U ⊆̊Rm be open and bounded (hence Ū is compact). For any k ∈ N let

C k(Ū ,C r) := {f ∈ C 0(Ū ,C r) | f |U ∈ C k(U,C r)}

endowed with the norm

‖f‖C k(Ū) :=
∑
|α|≤k

‖∂αf‖C 0(Ū).

4.1.2 Definition. Let π : E → M be a smooth vector bundle of rank r over a compact
manifoldM . Denote by Γk(M,E) the space of C k sections in E. The topology in Γk(M,E)
is defined as follows: Let {ϕi : Ūi ⊂M → V̄i ⊂ Rm}i∈I be a finite cover of M by compact
coordinate neighbourhoods such that there exist trivializations Φi : Ei := EUi → Ui ×C r.
For any section s ∈ Γk(M,E) define

‖s‖C k(M) :=
∑
i∈I
‖ϕi∗Φi∗s‖C k(V̄i)

4.1.3 Lemma. The C k topology on Γk(M,E) is independent of the choice of charts and
trivializations.

Proof. Assume {ϕ̃j : Ūj → V̄j}j∈J is another such cover of M . Clearly, for any j ∈ J and
any i ∈ I such that Ui ∩ Uj 6= ∅∑

j∈J
‖ϕj∗Φj∗s‖C k(V̄j)

≤
∑
i∈I
‖ϕi∗Φi∗s‖C k(V̄i)

4.2. The Space of smooth (compactly supported) Functions

4.2.1 Definition (E ,D ,DK). Let U ⊂ R n be open. Define

E (U,C r) := C∞(U,C r) := {f : U → C r | f is smooth}.

Remember that if X is any topological space and f : X → C is a function

supp f := {x ∈ X | f(x) 6= 0}.
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If K ⊂ U is compact

DK(U,C r) := {f ∈ E(U,C r) | supp f ⊂ K},

and
D(U,C r) := C∞c (U,C r) := {f ∈ E (U,C r) | supp f is compact}.

To simplify notation, we will sometimes just write E ,D ,DK .

It makes no apparent sense to introduce the new letters E , D for the well-known spaces
C∞, C∞c . The reason for this is that both are sets at the moment. We use E , D in order
to stress the fact, that we see them as topological spaces, where the topology is given by
the next theorem.

4.2.2 Theorem (Topologization of E ,DK). Let ∅ 6= U ⊂ R n be open and K ⊂ U be
compact. Let (Km)m∈N be a compact exhaustion of U , i.e. all Km ⊂ U are compact,
Km b Km+1, U =

⋃
m∈N Km. Then the maps pm : E (U,C r)→ R

pm(f) := ‖f‖Cm(Km) := max
x∈Km,|α|≤m

‖∂αf‖(x)

assemble to a separating family P := {pm}m∈N of semi-norms and induce a Fréchet-space
topology on E , such that E has the Heine-Borel property and such that DK ⊂ E is a
closed subspace. Therefore DK is a Fréchet space as well and its topology is induced by
the semi-norms

PK := {‖_‖Cm(U) | m ∈ N }.

Proof.
Step 1 (Topologization): The family P is a countable family of separating seminorms.
By Theorem 3.1.20 they induce a topology on E , which turns E into a topological vector
space that is locally convex and metrizable by a translation-invariant metric.
Step 2 (Completeness): So the only property E does not yet posses in order to be a
Fréchet space is the completness. Therefore let (fj) be a Cauchy sequence in E . Thus for
any m ∈ N , the (fj) are a ‖_‖Cm(U)-Cauchy sequence. Since this is a Banach space, fj
converges uniformly on every compact subset with all its derivatives to some f ∈ E .
Step 3 (Closedness of DK): For any x ∈ U define δx : E (U,C r) → C r, f 7→ f(x).
We claim that δx is continuous. By 3.1.11 is suffices to show that it is bounded. So let
E ⊂ E (U,C r) be bounded. By 3.1.20 this is the case if and only if all the pm are bounded
on E. Since x ∈ U and (Km) is a compact exhaustion, there exists m ∈ N such that
x ∈ Km. This implies

∀f ∈ E : ‖δx(f)‖ = ‖f(x)‖ ≤ ‖f‖C0(Km) ≤ sup
f∈E

pm(f) =: R,

thus δx(E) ⊂ BR(0). So all the δx are continuous and

DK(U,C r) =
⋂

x∈U\K

ker δx

is closed as an intersection of closed spaces.
Step 4 (Heine-Borel property): Let E ⊂ E (U) be closed and bounded...

a sketch
of proof is
in Rudin,
p.35
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4.2.3 Convention. Without further reference we will always assume the spaces E and
DK to be topologized as described in the previous Theorem 4.2.2.

We now proceed to the topologization of D , which is a bit more subtle. We could see D
as an LF -space, i.e. an inductive limit of Frechét spaces (c.f. [6, 13]). This would require
an even deeper discussion of the general theory of topological vector spaces. Therefore we
follow [5, 6.3-6.6] for a more direct yet less general approach.

4.2.4 Theorem (Topologization of D). Let ∅ 6= U ⊂ R n be open. For any compact
subset K ⊂ U let τK be the Fréchet space topology on DK(U,C r). For any m ∈ N define
the norms

‖f‖m := max
|α|≤m,x∈U

‖∂αf‖(x)

on D(U,C r). Define

B := {W ⊂ D(U,C r) |W is convex, balanced and for any
K b U : W ∩DK(U,C r) ∈ τK}.

Then B is intersection stable family of sets all of which contain 0 (since balanced sets
always do) and the family

{f +W | f ∈ D(U,C r),W ∈ B}.

is a basis for a topology τ such that (D(U,C r), τ) is a locally convex topological vector
space and B is a local base for τ .

Proof. For simplicity we write DK := DK(U,C r), D := D(U,C r).
Step 1 (topology): Let V1, V2 ∈ τ and f ∈ V1 ∩ V2. It suffices to show that

∃W ∈ B : f +W ⊂ (V1 ∩ V2). (4.1)

By definition of τ , there exist fν ∈ D , Wν ∈ B, ν = 1, 2, such that

f ∈ (fν +Wν) ⊂ Vν . (4.2)

Choose a K b U such that f, f1, f2 ∈ DK . By construction

f − fν ∈Wν ∩DK ⊆̊DK . (4.3)

Now we claim

∃δν > 0 : f − fν ∈ (1− δν)Wν . (4.4)

The existence of δν follows by contradiction: If for all δν > 0, f − fν /∈ (1− δν)Wν ∩DK ,
this implies

f−fν
1−δν

δ→0

DK
// f − fν /∈Wν ,

since the complement of Wν ∩DK in DK is closed. This contradicts (4.3).
By hypothesis Wν is convex, thus

f − fν + δνWν

(4.4)
⊆ (1− δν)Wν + δνWν = Wν (4.5)

Thus

f + δνWν

(4.5)
⊆ fν +Wν

(4.2)
⊂ Vν .

Therefore the set W := δ1W1 ∩ δ2W2 ∈ B satisfies (4.1).
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Step 2 (Hausdorff property): Let f1 6= f2 ∈ D . Define

W := {f ∈ D | ‖f‖C0(U) < ‖f1 − f2‖‖C0(U)︸ ︷︷ ︸
6=0

} ∈ B,

since W is clearly convex and balanced; the fact that W ∩ DK ∈ τK follows from the
definition of τK by the family of norms, which includes ‖_‖C0(U). Clearly f1 /∈ f2 + W ,
thus {f1} is closed in D .
Step 3 (addition): Since all the W ∈ B are convex,

∀f1, f2 ∈ D : ∀W ∈ B : (f1 +
1

2
W ) + (f2 +

1

2
W ) = f1 + f2 +W.

This shows that addition is continuous.
Step 4 (scalar multiplication): First we claim

∀f0 ∈ D : ∀W ∈ B : ∃δ > 0 : δf0 ∈
1

2
W. (4.6)

Again this follows by contradiction: Assume there exists f0 ∈ DK ⊂ D such that for all
δ > 0, δf0 /∈ 1

2W . This implies

2δf0
DK

δ→0
// 0 /∈W,

which contradicts the assumption that W is balanced.
So let α0 ∈ C , f0 ∈ D and choose W ∈ B, and δ > 0 such that (4.6) holds. Define

c :=
1

2c(|α0|+ δ)
.

We calculate for any α ∈ Bδ(α0) and any f ∈ f0 + cW

αf − α0f0 = α(f − f0) + (α− α0)f0 ∈ αcW +
α− α0

δ
δf0

⊂ 1

2

α

c(|α0|+ δ)︸ ︷︷ ︸
|_|≤1

W +
α− α0

δ︸ ︷︷ ︸
|_|≤1

1

2
W ⊂ 1

2
W +

1

2
W = W.

4.2.5 Convention. From now on we will always assume that D := D(U,C r) is endowed
with the topology τ defined in 4.2.4.

4.2.6 Theorem (Properties of D(U,C r)). The space (D := D(U,C r), τ) has the following
properties:
(i) A convex balanced subset V ⊂ D is open if and only if V ∈ B, c.f. 4.2.4.
(ii) The topology τK conicides with the subspace topology τ ∩DK .
(iii) If E ⊂ D is bounded, then there exists a K b U such that E ⊂ DK and E is bounded

in DK . Consequently there are numbers MN ∈ R such that

∀f ∈ E : ∀N ∈ N : ‖ϕ‖N ≤MN .

(iv) D has the Heine-Borel property.
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(v) If (fi) is a Cauchy sequence in D , then there exists a K b U such that {fi} ⊂ DK

and for any N ∈ N (fi) is a ‖_‖N -Cauchy sequence.
(vi) Let (f)i be a sequence in D . Then

fi
D
// f

if and only if there exists a compact subsetK ⊂ U such that for all i ∈ N , supp fi ⊂ K
and

∀N ∈ N : fi
CN (K)

// f .

(vii) The space D is complete.

Proof.
(i) ”τ ⊂ B”: Let V ∈ τ be convex and balanced and K b U . For any f ∈ DK ∩V , there

exists W ∈ B such that f +W ⊂ V by 4.2.4. Thus

f + (DK ∩W ) = DK ∩ (f +W ) ⊂ DK ∩ V.

By definition DK ∩W ∈ τK , hence DK ∩W is a neighbourhood of f . Since f was
arbitrary, we have shown

∀V ∈ τ : ∀K b U : DK ∩ V ∈ τK . (4.7)

Consequently τ ⊂ B.
”B ⊂ τ ”: This follows from the definition.

(ii) ”(τ ∩DK) ⊂ τK”: This follows directly from (4.7).
”τK ⊂ (DK ∩ τ)”: Let E ∈ τK . We have to construct a V ∈ τ such that E = DK ∩V .
By definition of τK via a family of norms, for any f ∈ E there exists m ∈ N , δ > 0
such that

{g ∈ DK | ‖g − f‖m < δ} ⊂ E.

This uses the fact that the semi-balls in τK are actually balls since ‖_‖m ≤ ‖_‖m+1

(c.f. 4.2.4). Now define

Wf := {g ∈ D | ‖g‖m < δ} ∈ B.

This implies
DK ∩ (f +Wf ) = f + (DK ∩Wf ) ⊂ E

by definition of Wf and m. Consequently the set

V :=
⋃
f∈E

Wf

satisfies
DK ∩ V =

⋃
f∈E

DK ∩Wf ⊂ E.

Since E ⊂ DK ∩ V anyway (note that 0 ∈Wf ), this implies the statement.
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(iii) Assume that E ⊂ D is a set such that E ( DK for any K b U . Then there exists a
compact exhaustion Km b U , fm ∈ DKm , xm ∈ Km \Km−1 such that fm /∈ DKm−1 ,
fm(xm) 6= 0 and such that the sequence (xm) has no limit point in U . Define

W := {f ∈ D | ∀m ∈ N : ‖f(xm)‖ < 1

m
‖fm(xm)‖}

We claim that W ∈ B: Notice that

∀K b U : ∃N0 ∈ N : ∀m ≥ N0 : xm /∈ K.

Therefore, by choosing

0 < ε < min
m≤N0

1

m
‖fm(xm)‖,

we obtain that for any f ∈ DK ∩W

B0
ε (f) ⊂W,

where the ball is formed with respect to the ‖_‖0-norm. Thus DK ∩W ∈ τK , hence
W ∈ B. Now this implies that for any m ∈ N

E ( mW,

since fm /∈ mW . Consequently E is not τ -bounded in D .
For the second part, recall that by definition E ⊂ D is τ -bounded, iff for any τ -
neighbourhood W of 0:

∃s > 0 : ∀t > t : E ⊂ tW.

Let WK ⊂ DK be a τK-neighbourhood of 0. By (ii) there exists a τ -neighbourhood
W̃ such that WK = W̃ ∩DK . Thus for s, t as above

E = E ∩DK ⊂ t(W̃ ∩DK) = tWK .

Since DK carries a Frechét space topology, the rest follows from 3.1.20.
(iv) Assume E ⊂ D is closed and τ -bounded. By (iii) there exists K b U such that

E ⊂ DK and E is τK-bounded. By (ii) E is also τK-closed. Since DK is Heine-Borel
by 4.2.4 E is τK-compact. Again by (ii), E is τ -compact.

(v) By the Cauchy sequence (fi) is τ -bounded. By (iii) there exists K b U such that

ref, Rudin
1.29 c)

{fi} ⊂ DK and by (ii), (fi) is also a τK-Cauchy sequence. The rest of the claim
follows from 3.1.20 defining the topology τK .

(vi) Since any convergent sequence is Cauchy, the existence of K follows from (v). By (ii)
(fi) is a τK-Cauchy sequence. Since DK is complete by 4.2.4 (fi) converges in DK ,
which implies that it converges in all the CN -norms by 3.1.20. Since DK carries the
subspace topology and since D is Hausdorff, the two limits agree.

(vii) Any Cauchy sequence in D is a Cauchy sequence in some DK by (v). Since DK is
complete, it has a τK-limit in DK and again this equals the τ -limit of the sequence.

4.2.7 Theorem (charactarization of linear operators). Let Y be a locally convex TVS
and T : D := D(U,C r)→ Y be linear. Then the following are equivalent:
(i) T is continuous.
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(ii) T is bounded.
(iii) For any sequence (fi) ∈ D

fi
D
// 0 =⇒ T (fi)

Y
// 0 .

(iv) For any K b U , T |DK : DK → Y is continuous.

Proof.
”(i)⇒(ii): This follows from 3.1.11.
”(ii)⇒(iii): Let T be bounded and let (fi) be a sequence such that fi

D
// 0 . By 4.2.6,(vi)

there exists K b U such that
fi

DK
// 0 .

Clearly T |DK is also bounded. Therefore 3.1.11 applied to T |DK implies the claim.
”(iii)⇒(iv)”: Since DK is metrizable T |DK is continuous if and only if it is sequentially
continuous. Thus if fi

DK
// 0 , thus by 4.2.6,(ii) fi

D
// 0 . By hypothesis, this implies

T (fi)
Y
// 0 . Thus T |DK is continuous.

”(iv)⇒(i)”: It suffices to check that the reversed images of a local base in Y under T
are open in D . So let W ⊂ Y be a convex balanced neighbourhood of 0. This implies
V := T−1(W ) is convex and balanced in D , since T is linear. Now for any K b U

V ∩DK = T−1(W ) ∩DK = (T |DK)−1(W ) ∈ τK

by hypothesis. By 4.2.6,(i) this implies V ∈ τ .

4.2.8 Corollary. For every α ∈ N n, |α| = k, the operator Dα ∈ Diffk(U,C r,C s) is a
continuous map Dα : D(U)→ D(U).

Proof. By 4.2.7 it suffices to check that Dα is continuous from DK(U) → DK(U). But
for any m ∈ N

∀f ∈ DK(U,C r) : ‖Dαf‖m ≤ ‖f‖k+m,

thus Dα : DK → DK is continuous by definition 4.2.4 of the topology on DK .

4.2.9 Theorem (Smooth Urysohn). Let K ⊂ U ⊂ R n, K compact, U open. Then there
exists Φ ∈ D(U), such that

Φ|K = 1.

4.2.10 Theorem (Sum Decomposition). Let U1, . . . , Uk ⊂ R n be open and let U :=⋃k
j=1 Uj . For any ϕ ∈ D(U) there exist ϕj ∈ D(Uj), such that

ϕ =
k∑
j=1

ϕj .

4.3. Lp-Spaces

We assume the reader to be familiar with the notion of Lp-spaces. We will nevertheless
introduce some notation and briefly discuss the vector-valued case. For a very elaborate
discussion of this topic, the reader may consult [1].
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4.3.1 Definition (Lp-space). Let (X,A, µ) be a measure space and let (Y, ‖_‖) be a
K -Banach space. Define

L0(X,Y ) := {f : X → Y | f is measurable},

and for any 1 ≤ p <∞

Lp(X,Y ) := {f ∈ L0(X,Y ) | ‖f‖pp := ‖f‖pLp(X,Y ) :=

∫
X
‖f(y)‖pY dµ <∞}.

In case p =∞, we define

L∞(X,Y ) := {f ∈ L0(X,Y ) | ‖f‖Lp(X,Y ) := ess supx∈X ‖f(x)‖Y <∞.}

In both cases Lp(X,Y ) denotes the space of all those functions modulo equality a.e. In
case X is a topological space, we define

Lploc(X,Y ) := {f ∈ L0(X,Y ) | ∀K b X : f ∈ Lp(K,Y )}.

Notice that equivalent norms on Y produce equivalent associated Lp-norms. In particular,
if Y is finite dimensional, the topology generated on Lp(X,Y ) does not depend on the choice
of the norm on Y . In particular, if Y = C r, a natural choice would be ‖_‖Y := ‖_‖p,
where ‖_‖p is the p-norm on C r. On the other hand, by choosing the maximum norm on
C r one may treat the integration of function f : R n → C r almost as if one had r functions
fi : R n → C , which is often convenient.

4.4. Convolution, The Schwartz-Space and Fourier Transform

4.4.1. Convolution

4.4.1 Theorem and Definition (Convolution and Young’s Inequality). Let f ∈ L1(R n)
and g ∈ Lp(R n), 1 ≤ p ≤ ∞. The integral

(f ∗ g)(x) :=

∫
R n

f(x− y)g(y)dy

exists for almost every x ∈ R n. Therefore it defines an Lp-class f ∗ g ∈ Lp(R n) called the
convolution of f and g.
Furthermoore the convolution satisfies Young’s Inequality

‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

The same holds if f ∈ Lp(R n), g ∈ L1(R n).

Proof. The proof works slightly different for the various cases of p, but the structure of
argumentation will always rely on the two arguments: A function is integrable if and only
if its absolute value is integrable and

∫
X h(x)dx <∞ implies |h(x)| <∞ for almost every

x ∈ X.
Step 1: Let 1 ≤ p <∞ and define hp : R n → C̄

hp(x) :=

∫
R n

|f(x− y)|g(y)|pdy
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‖hp‖1 =

∫
R n

|hp(x)|dx =

∫
R n

∫
R n

|f(x− y)||g(y)|pdydx =

∫
R n

|g(y)|p
∫
R n

|f(x− y)|dxdy

= ‖f‖1
∫
R n

|g(y)|pdy = ‖f‖1‖g‖pp.

Therefore hp(x) <∞ for almost every x ∈ R n. Since∫
R n

∣∣∣ ∫
R n

f(x− y)g(y)dy
∣∣∣dx ≤ ∫

R n

h1(x)dx <∞,

both statement are already proven for p = 1.
Step 2 (1 < p < ∞): Let q be the Hölder conjugate index of p, i.e. 1

p + 1
q = 1. Then

Hölder’s inequality implies∫
R n

|f(x− y)||g(y)|dy =

∫
R n

|f(x− y)|
1
q (|f(x− y)|

1
p |g(y)|)dy

≤
(∫

R n

|f(x− y)|dy
) 1
q
(∫

R n

|f(x− y)||g(y)|pdy
) 1
p

= ‖f‖
1
q

1 ‖hp‖
1
p

1 <∞.

This proves the existence claim and Young’s inequality is proven by

‖f ∗ g‖pp =

∫
R n

∣∣∣ ∫
R n

f(x− y)g(y)dy
∣∣∣pdx ≤ ∫

R n

(∫
R n

|f(x− y)||g(y)|dy
)p
dx

≤
∫
R n

(∫
R n

|f(x− y)|
1
q · (|f(x− y)|

1
p |g(y)|)dy

)p
dx

≤
∫
R n

((∫
R n

|f(x− y)|dy
) 1
q
(∫

R n

|f(x− y)||g(y)|p)dy
) 1
p
)p
dx

≤ ‖f‖
p
q

1 ‖hp‖1 ≤ ‖f‖
p
q

1 ‖f‖1‖g‖
p
p,

thus ‖f ∗ g‖p ≤ ‖f‖1‖g‖p.
Step 3 (p =∞): In that case we may simply argue that∫

R n

|f(x− y)||g(y)|dy ≤ ‖g‖∞
∫
R n

|f(x− y)|dy = ‖g‖∞‖f‖1.

4.4.2 Theorem (Properties of Convolutions). Let f, g, h ∈ L1(R n).
(i) Bilinearity: ∀λ, µ ∈ C : (λf) ∗ (µg) = λµ · f ∗ g.
(ii) Integral Identity:

∫
R n (f ∗ g)(x)dx =

∫
R n f(x)dx

∫
R n g(y)dy.

(iii) Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h).
(iv) Commutativity: f ∗ g = g ∗ f .
(v) Support: supp(f ∗ g) ⊂ supp f + supp g.

4.4.3 Theorem (Differentiation Theorem). Let f ∈ L1(R n), g ∈ Ckb (R n). Then f ∗ g ∈
Ck(R n) and for any α ∈ N n, |α| ≤ k,

∂α(f ∗ g) = f ∗ (∂αg).

4.4.4 Definition (Dirac sequence). A sequence of functions δk ∈ L1(R n) is a Dirac-
sequence if
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(i) ∀k ∈ N : δk ≥ 0.
(ii) ∀k ∈ N :

∫
R n δk(x)dx =: c ∈ C .

(iii) For any ball Br(0) : limk→∞
∫
R n\Br(0)δk(x)dx = 0.

In case c = 1 the sequence is normalized.

4.4.5 Theorem and Definition (Existence of Dirac sequences). Define ψ : R → R≥0

by

t 7→

{
exp(−1

t ) , t > 0

0 , t ≤ 0

and for any ε > 0 define η, ηε : R n → R by

c−1 :=

∫
R n

ψ(1− |x|2)dx, η(x) := cψ(1− |x|2), ηε(x) :=
1

εn
η
(x
ε

)
.

Then ηε is the standard mollifier and satisfies
(i) ψ ∈ C∞(R ),
(ii) ηε ∈ C∞c (R n),
(iii) supp ηε ⊂ Bε(0),
(iv) 0 ≤ ψ ≤ 1, 0 ≤ η ≤ c, 0 ≤ ηε ≤ c

εn ,
(v)

∫
R n ηε(x)dx = 1.

In particular δk := η 1
k
is a normalized Dirac sequence, the standard Dirac sequence.

Proof.
Step 1 (ψ ∈ C∞(R )): This is the decicive point! We will show by induction over n that
there are polynomials p2n ∈ R [X] satisfying deg(p2n) ≤ 2n, such that the n-th derivative
of ψ satisfies

ψ(n)(t) = p2n(t−1)ψ(t).

In case n = 0 this is clear. For the induction step n → n + 1 consider any t > 0 and
calculate

ψ(n+1)(t) = (ψ(n))′(t) = (p2n(t−1)e−t
−1

)′ = −t−2p′2n(t−1)e−t
−1 − p2n(t−1)t−2e−t

−1

= (p2n(t−1)t−2 − t−2p′2n(t−1))︸ ︷︷ ︸
=:p2(n+1)(t

−1)

e−t
−1
.

Clearly deg p2(n+1) ≤ 2(n+ 1).
In case t < 0 we obtain ψ(n)(t) = 0 by definition. Since the exp growth faster than any
polynomial

lim
t↘0

ψ(n)(t) = lim
t↘0

p2n(t−1) exp(−t−1) = 0 = lim
t↗0

ψ(n)(t).

This implies that every ψ(n) exists and is continuous. Therefore ψ is smooth.
Step 2 (c well-defined): If |x| > 1, then ψ(1− |x|2) = 0. Therefore

0 <

∫
R n

ψ(1− |x|2)dx =

∫
B1(0)

ψ(1− |x|2) <∞.

Step 3 (supp ηε ⊂ Bε(0)): First we analyse the support of η. Since c 6= 0, we obtain

ψ(1− |x|2) = 0⇔ 1− |x|2 ≤ 0⇔ |x|2 ≥ 1⇔ x /∈ B1(0).
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Therefore supp η = B̄1(0). Similar

0 = ηε(x) = εnψ(1− |x/ε|2)⇔ x

ε
/∈ B1(0)⇔ x /∈ Bε(0).

Step 4 (Range): By definition if t < 0, ψ(t) = 0. Since ψ′(t) > 0 on R+

0 = lim
t↘0

ψ(t) ≤ ψ ≤ lim
t↗∞

ψ(t) = 1.

This implies the estimates.
Step 5 (

∫
ηε = 1): By the transformation theorem∫

R n

ηε(x)dx =

∫
R n

η(x/ε)
1

εn
dx =

∫
R n

η(x)dx = c

∫
R n

ψ(1− |x|2)dx = 1.

The other statements follow directly from what we have proven so far.

4.4.6 Theorem (Approximation). Let δk be a Dirac sequence. For any f ∈ L1(R n)

f ∗ δk
k→∞
L1
// cf ,

where c =
∫
R n δk(x)dx.

4.4.7 Theorem. For any open set U ⊂ R n the inculsion C∞c (U) → Lp(U) is continuous
with dense image.

4.4.2. Schwartz Space

4.4.8 Definition (rapidly decreasing). A function f ∈ C∞(R n,C r) is rapidly decreasing,
if

∀α ∈ N n : sup
x∈R n

‖xαf(x)‖ <∞.

Various other characterizations are used throughout the literature.

4.4.9 Lemma (Characterization of rapidly decreasing functions). Let f ∈ C∞(R n,C r)
be arbitrary. The following are equivalent.
(i) f is rapidly decreasing.
(ii) ∀α ∈ N n : lim|x|→∞ x

αf(x) = 0.
(iii) For all polynomials p : R n → C : lim|x|→∞ p(x)f(x) = 0.
(iv) ∀m ∈ N : lim|x|→∞ |x|mf(x) = 0.
(v) ∀m ∈ N : supx∈R n (1 + |x|m)‖f(x)‖ <∞.
(vi) ∀m ∈ N : supx∈R n (1 + |x|)m‖f(x)‖ <∞.
In the last three conditions one may replace N by an arbitrary unbounded subset of N .

Proof.
”(i)⇒(ii)”: Let α ∈ N and let (xj) be a sequence satisfying limj→∞ |xj | =∞. Then there
exists at least one 1 ≤ i ≤ n such that the i-th component satisfies limj→∞ |xij | = ∞ as
well (in particular this implies xij 6= 0 for large j). Apply (i) to β := α+ ei and obtain

∃C > 0 : ∀x ∈ R n : ‖xβf(x)‖ ≤ C.
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For large j this implies ‖xαf(x)‖ ≤ C/|xij | and therefore

0 ≤ lim
j→∞

‖xαj f(xj)‖ ≤ C lim
j→∞

1

|xij |
= 0.

”(ii)⇒(iii)”: Any polynomial p has a representation p =
∑m

k=0

∑
|α|≤kcαx

α for some con-
stants cα ∈ C . Therefore (ii) implies

lim
|x|→∞

p(x)f(x) =

m∑
k=0

∑
|α|≤k

cα lim
|x|→∞

xαf(x) = 0.

”(iii)⇒(iv)”: Since the limit approaches infinity and since

∀|x| > 1 : |x|m−1 ≤ |x|m ≤ |x|m+1,

we may restrict our attention to even m. In that case

p(x) :=
( n∑
k=1

x2
k

)m/2
= |x|m

is a polynomial and therefore (iii) implies

lim
m→∞

|x|mf(x) = lim
m→∞

p(x)f(x) = 0.

”(iv)⇒(v)”: Applying (iv) to 0 and m, we obtain

0 = lim
|x|→∞

|x|0|f(x)| = lim
|x|→∞

|f(x)| and 0 = lim
|x|→∞

|x|m|f(x)|.

Since f is smooth, this implies (v).
”(v)⇒(vi)”: By the binomial theorem and (v)

(1 + |x|)m|f(x)|) =
m∑
k=0

(
m

k

)
|x|k|f(x)| <∞.

”(vi)⇒(i)”: Follows from

|xα|
A.2.1
≤ |x||α| ≤ (1 + |x|)|α|.

4.4.10 Definition (Schwartz space). A function f ∈ C∞(R n,C r) is a Schwartz-function,
if all its derivatives (including f itself) are rapidly decreasing. The collection S of these
functions is the Schwartz space. Somewhat more explicitly

S := {f ∈ C∞(R n,C r) | ∀α, β ∈ N n : pS
α,β(f) := sup

x∈R n
‖xαDβ(f)(x)‖ <∞}.

4.4.11 Theorem (Topologization of the Schwartz Space). The set

P := {pS
α,β | α, β ∈ N n}

is a separating family of seminorms, which induce a Fréchet space topology on S .

Proof. Denote pα,β := pS
α,β .
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Step 1: It follows directly from the definition that pS
α,β is a semi-norm and thus S is a

vector space. If f 6= 0, then pS
0,0(f) 6= 0 and therefore P is separating.

Consequently we may apply Theorem 3.1.20 to the family P and obtain that S is a locally
convex topological vector space. Since P is obviously countable, the topology is metrizable
by a translation invariant metric.
Step 2 (Completeneess): Let (fj) be a Cauchy sequence in S . By 3.1.20 this is equivalent
to (fj) being a pα,β-Cauchy sequence for all α, β ∈ N n. On the one hand, this implies

∀α, β ∈ N n : ∃Cα,β > 0 : ∀j ∈ N : pα,β(fj) ≤ Cα,β, (4.8)

since Cauchy sequences are bounded. On the other hand this means that for every α, β the
sequence (xαDβ(fj)) is a C0

b := C0
b (R n,C r)-Cauchy sequence. Since the later is a Banach

space,

∀α, β ∈ N n : ∃gα,β ∈ C0
b : xαDβ(fj)

j→∞

C0
b

// gα,β . (4.9)

In particular this holds for α := 0 and all β. By a standard theorem from calculus,this reference

implies f := g0,0 ∈ C∞ and g0,β = Dβ(f). Since uniform convergence implies pointwise
convergence, we deduce from (4.9)

∀α, β ∈ N n : ∀x ∈ R n : gα,β(x) = lim
j→∞

xαDβ(fj)(x) = xα lim
j→∞

g0,β(x) = xαDβ(f)(x).

By (4.9) this pointwise convergence is uniform, i.e.

xαDβ(fj) C0
b

// xαDβ(f) .

Thus
∀α, β ∈ N n : fj pα,β

// f ,

which by 3.1.20 on the one hand is equivalent to

∀α, β ∈ N n : fj
S
// f

and on the other hand implies

∀α, β ∈ N n : pα,β(f) = lim
j→∞

pα,β(fj)
(4.8)
≤ Cα,β.

Consequently f ∈ S .

Sometimes another topologization of the Schwarz space is used and useful.

4.4.12 Theorem (Equivalent seminorms). For any m ∈ N , β ∈ N n define

∀f ∈ C∞(R n,C r) : qm,β(f) := sup
x∈R n

(1 + |x|)m|Dβf(x)|.

We claim that the families of seminorms

P := {pα,β | α, β ∈ N n}, Q := {qm,β | m ∈ N , β ∈ N n}

are equivalent on S in the sense of 3.1.23.
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Proof. We already know from 4.4.9 that for any f ∈ C∞(U,C r)

∀α, β : pα,β(f) <∞ ⇐⇒ ∀m ∈ N : ∀β ∈ N n : qm,β(f) <∞.

But this is not enough. We will prove the equvialence using the strategy explained in 3.1.25.
To that end we choose any f ∈ C∞(U,C r) and carry out the following calculations:
Step 1: For any α, β ∈ N n

pα,β(f) = sup
x∈R n

|xαDβ(f)(x)|
A.2.1
≤ sup

x∈R n
|x||α||Dβ(f)(x)|

≤ sup
x∈R n

(1 + |x|)|α||Dβ(f)(x)| = q|α|,β(f).

Step 2: Let m ∈ N , β ∈ N n. By Lemma A.2.2 for any 0 ≤ k ≤ m there are constants
c

(k)
α > 0 such that

|x|k ≤
∑
|α|≤2k

c(k)
α |xα|

Consequently there exist constants c̃α > 0 such that

m∑
k=0

|x|k ≤
m∑
k=0

∑
|α|≤2k

c(k)
α |xα| ≤

∑
|α|≤2m

|xα| (4.10)

Thus

qm,β(f) = sup
x∈R n

(1 + |x|)m|Dβ(f)(x)| ≤ sup
x∈R n

m∑
k=0

|x|k|Dβ(f)(x)|

(4.10)
≤

∑
|α|≤2m

sup
x∈R n

|cαxα||Dβ(f)(x)| ≤ max
|α|≤2m

cα︸ ︷︷ ︸
=:C

∑
|α|≤2m

pα,β(f).

4.4.13 Theorem (Schwarz space and friends). The Schwartz space S := S (R n,C r) is
related to various other important function spaces in the following manner.
(i) For any k ∈ N

Ckc ⊂ C∞c ⊂ S ⊂ Ckb ⊂ C∞b .

(ii) The inclusion S ↪→ Ckb is continuous.
(iii) The inclusion D := D(R n,C r) ↪→ S is continuous and
(iv) has dense image.
(v) For any 1 ≤ p ≤ ∞, S ⊂ Lp := Lp(R n,C r) and the inclusion S ↪→ Lp is continuous.

Proof. Let pα,β := pS
α,β .

(i) This follows directly from the definitions of the pα,β , in particular p0,β .
(ii) This follows from the fact that for any f ∈ S

‖f‖Ck =
∑
|β|≤k

sup
x∈R n

|Dβ(f)(x)| ≤ C max
|β|≤k

p0,β(f).
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(iii) By 4.2.7 it suffices to check that for anyK b U the restriction DK → S is continuous.
For any f ∈ DK we calculate

∀α, β ∈ N n : pα,β(f) = sup
x∈R n

‖xαDβ(f)(x)‖ = sup
x∈K
‖xαDβ(f)(x)‖

≤ max
x∈K
|x||α|︸ ︷︷ ︸

=:C

‖f‖C|β|(K).

Now the claim follows from the definition of the topology on DK and ??.
(iv) To show that D ⊂ S is dense, let f ∈ S be arbitrary. Choose a smooth bump

function ρ ∈ D such that ρ|B1(0) ≡ 1. The existence of such a function is discussed
in more detail in . For any 0 < ε < 1 define ρε(x) := ρ(εx). This function satisfies ref

ρε ∈ D and ρε|B1/ε
(0) ≡ 1. Clearly, the function fε := ρεf ∈ D satisfies

fε
ε→0
p.w.

// f .

We calculate for any α, β ∈ N n, k := |β|, x ∈ R n

|xαDβ(fε − f)(x)| = |xαDβ((ρε − 1)f)(x)|

≤
∑
γ≤β

(
β

γ

)
|xαDγ(ρε − 1)(x)Dβ−γ(f)(x)| (4.11)

Now we distinguish two cases: If γ 6= 0,

|xαDγ(ρε − 1)(x)Dβ−γ(f)(x)| = |xαDγ(ρ)(x)εγDβ−γ(f)(x)|

≤ εγ‖ρ‖Ck |xαDβ−γ(f)(x)| ≤ ε‖ρ‖Ckpα,β−γ(f) ≤ Cε ε↘0
// 0 .

In case γ = 0, we claim that

|xα(ρε − 1)(x)Dβ(f)(x)| ≤ sup
y∈R n\B1/ε(0)

|yαDβ(f)(y)| ε↘0
// 0 .

To see this last convergence, we argue by contradiction: If this does not hold, there
exists a sequence (yj), yj ∈ R n \ Bj(0), such that |yαj Dβ(f)(yj)| ≥ δ for some δ >.
This is due to the fact that if ε→ 0, B1/ε(0) becomes larger and larger. This sequence
satisfies |yj | → ∞ and therefore this sequence directly contradicts 4.4.9,(ii).
Both cases together imply that (4.11) tends to zero as well.

(v) For p =∞ this follows from the definitions. So let 1 ≤ p <∞, f ∈ S and

m := d(n+ 1)/pe.

Using the fact that x 7→ |x|−(n+1) ∈ L1(R n \B1(0)) by A.2.4, we obtain

‖f‖pLp(R n) =

∫
R n

|f(x)|pdx =

∫
B1(0)

|f(x)|pdx+

∫
R n\B1(0)

1

|x|n+1

(
|x|

n+1
p |f(x)|

)p
dx

≤ |B1(0)|p0,0(f)p + pm,0(f)p‖x−(n+1)‖L1(R n\B1(0) ≤ C(p0,0(f)p + pm,0(f)p).

This shows f ∈ Lp(R n) and the continuity of the inclusion.
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4.4.14 Lemma. Let Lp := Lp(R n). The map

〈_〉 : Lp → S ′

f 7→ (φ 7→
∫
R n f(x)φ(x)dx)

is well-defined, linear, injective and continuous.

Proof. For any f ∈ Lp, φ ∈ S , we obtain using Hölder’s inequality∣∣∣ ∫
R n

f(x)φ(x)dx
∣∣∣ ≤ ‖fφ‖L1 ≤ ‖f‖Lp)‖φ‖Lq , (4.12)

where q is Hölder conjugate to p. By 4.4.13(v) this quantity is finite. Thus 〈f〉 is well-
defined. It is clear that 〈_〉 and 〈f〉 are linear. To see that 〈f〉 ∈ S ′, we have to check
continuity: But

φj
S
// 0

implies
φj

Lq
// 0 ,

by 4.4.13(v). Thus
〈f〉(φj) C

// 0

by (4.12). Similar if
fj

Lp
// 0 ,

we obtain
∀φ ∈ S : 〈fj〉(φ)

Lp
// 0 ,

again by (4.12). Consequently 〈_〉 is continuous.

4.4.15 Theorem. The Fréchet Space S := S (R n,C r) is closed under the following
operations:
(i) complex conjugation,
(ii) scalar products and products in case r = 1,
(iii) differentiation,
(iv) polynomial multiplication,
(v) convolutions.

Proof. Assume that f, g ∈ S .
(i) Clear.
(ii) In case r = 1 the Leibniz rule A.1.3 implies

∀α, β ∈ N n : ∀x ∈ R n : xα∂β(fg) =
∑
γ≤β

(
γ

β

)
xα∂γfx0∂β−γg,

thus fg ∈ S . The general case follows from the formula

〈f, g〉 =
r∑
j=1

fj ḡj .
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(iii) Follows from the definition of pS
α,β .

(iv) Follows from 4.4.9.
(v) It suffices to check this for r = 1. For any x ∈ R n, α, β ∈ N n, we calculate

|xα(∂β(f ∗ g)(x))| 4.4.3
= |xα(∂βf ∗ g)(x)| ≤

∫
R n

|xα∂β(f)(x− y)g(y)|dy

≤ sup
y∈R n

|xαg(y)|
∫
R n

|∂β(f)(x− y)|dy ≤ sup
y∈R n

|yαg(y)|
∫
R n

|∂β(f)(y)|dy

= pα,0(g)‖∂β(f)‖L1

4.4.13(v)
< ∞.

Although we have already established all this wonderful properties of S , the most famous
one is yet missing. As we will see in the next section, the Schwarz space is ideally suited
for the Fourier transform.
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4.4.3. Fourier Transform

4.4.16 Definition (Fourier Transform). Let f ∈ L1(R n,C ). Depending on the context
both of the functions

f̂ : R n → C
ξ 7→

∫
R n e

−i〈x,ξ〉f(x)dx

F(f) : R n → C
ξ 7→ (2π)−

n
2 f̂(ξ)

are the Fourier transform of f . For functions f ∈ L1(R n,C r) these operations are defined
component wise.

4.4.17 Remark. Notice that the notation conventions concerning the Fourier transform
are far from coherent throughout the literature. We have chosen this convention since f̂ is
very quick to write and usually the constant in F(f) does not change anything substantial.
The constant is relevant for the Inverse Theorem 4.4.26, the fixed point theorem 4.4.23 and
the Theorem of Plancherel 4.4.27. The constant in F is chosen such that it is an isometry
(and not only an isometry up to constants).

4.4.18 Lemma (Elementary properties of the Fourier transform). The Fourier transform
satisfies the following properties:
(i) For every f ∈ L1 := L1(R n,C r), f̂ exists and is well-defined and ‖f̂(ξ)‖1 ≤ ‖f‖L1 .
(ii) Fourier transform defines an operator F ∈ L(L1, Cb).

Proof. For r = 1 the simple estimate

|f̂(ξ)| ≤
∫
R n

|ei〈x,ξ〉f(x)|dx ≤
∫
R n

|f(x)|dx = ‖f‖L1(R n)

shows that the integral f̂ always exists. It also shows that F is a bounded function.
Together with the continuity theorem of parameter-dependent integrals , this calculation ref

also implies that F(f) is continuous. It is clear that F is linear. To see that F itself it
continuous, assume

fj
L1
// 0 .

This implies

∀ξ ∈ R n : |f̂j(ξ)| ≤
∫
R n

|e−i〈x,ξ〉fj(x)|dx ≤ ‖fj‖L1 .

Consequently
F(fj) C0

b

// 0 .

Applying this in all the components yields the statement for general r.

4.4.19 Theorem (Convolution Theorem). Let f, g ∈ L1(R n,C ). Then

f̂ ∗ g = f̂ · ĝ.
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Proof. By Theorem 4.4.1 f ∗ g ∈ L1(R n). By definition and Fubini’s theorem

f̂ ∗ g(ξ) =

∫
R n

e−i〈x,ξ〉(f ∗ g)(x)dx =

∫
R n

e−i〈x,ξ〉
∫
R n

f(x− y)g(y)dydx

=

∫
R n

∫
R n

e−i〈x−y,ξ〉f(x− y)e−i〈y,ξ〉g(y)dydx

=

∫
R n

e−i〈y,ξ〉g(y)

∫
R n

e−i〈x−y,ξ〉f(x− y)dxdy

= ĝ(ξ)f̂(ξ).

4.4.20 Definition. For any function f : R n → C r define the
(i) translation

∀y ∈ R n : τy(f) : R n → C r

x 7→ f(x+ y),

(ii) rotation
∀y ∈ R n : my(f) : R n → C r

x 7→ ei〈x,y〉f(x),

(iii) scaling
∀λ ∈ C× : sλ(f) : R n → C r

x 7→ f(λx),

(iv) reflection
R(f) : R n → C r

x 7→ f̌(x) := f(−x)

of f .

4.4.21 Theorem. Let f ∈ L1(R n,C r), y ∈ R n, λ ∈ C×. Then τy(f),my(f), sλ(f),R(f) ∈
L1(R n,C ) and
(i) F(τy(f)) = my(F(f)).
(ii) F(my(f)) = τ−y(F(f)).
(iii) F(sλ(f)) = |λ|−ns 1

λ
F(f).

(iv) F(f̄) = R ◦ F(f), F ◦ R = R ◦ F .
The same is true for ˆ instead of F .

Proof. It suffices to check these statements for r =1. It is clear that τy(f),my(f), sλ(f),R(f) ∈
L1, since f ∈ L1 by hypothesis. Since all operations are linear, the prefactor (2π)−

n
2 does

not matter. We verify the various formulas using the transformation theorem.
(i) We calculate

τ̂y(f)(ξ) =

∫
R n

e−i〈x,ξ〉τy(f)(x)dx =

∫
R n

e−i〈x,ξ〉f(x+ y)dx

=

∫
R n

e−i〈z−y,ξ〉f(z)dz = ei〈y,ξ〉
∫
R n

e−i〈z,ξ〉f(z)dz = my(f̂)(ξ).

68



(ii) We calculate

m̂y(f)(ξ) =

∫
R n

e−i〈x,ξ〉my(f)(x)dx =

∫
R n

e−i〈x,ξ〉ei〈x,y〉f(x)dx

=

∫
R n

e−i〈x,ξ−y〉f(x)dx = f̂(ξ − y) = τ−y(f̂)(ξ).

(iii) We calculate

ŝλ(f)(ξ) =

∫
R n

e−i〈x,ξ〉sλ(f)(x)dx =

∫
R n

e−i〈λx,
1
λ
ξ〉f(λx)|λ|n|λ|−ndx

= |λ|−n
∫
R n

e−i〈z,
1
λ
ξ〉f(z)dz = |λ|−nf̂

( ξ
λ

)
= |λ|−ns 1

λ
(f̂)(ξ).

(iv) We calculate

̂̄f(ξ) =

∫
R n

e−i〈x,ξ〉f̄(x)dx =

∫
R n

e−i〈x,−ξ〉f̄(x)dx = f̂(−ξ) = R(f̂)(ξ).

R̂(f)(ξ) =

∫
R n

ei〈−x,ξ〉f(−x)dx =

∫
R n

ei〈x,ξ〉f(x)dx =

∫
R n

e−i〈x,−ξ〉f(x)dx = R(f̂)(ξ)

4.4.22 Theorem (Differentiation Theorem). Let f ∈ S = S (R n,C r), α ∈ N n. Then

F(Dαf)(ξ) = ξαF(f), DαF(f)(ξ) = F((−x)αf)(ξ),

F(∂αf)(ξ) = (iξ)αF(f), ∂αF(f)(ξ) = F((−ix)αf)(ξ).

Proof. Clearly it suffices to check the last line for r = 1. Integrating by parts yields

∂̂αx f(ξ) =

∫
R n

e−i〈x,ξ〉∂αx f(x)dx = (−1)α
∫
R n

∂αx (e−i〈x,ξ〉)f(x)dx

= (−1)α
∫
R n

(−iξ)αe−i〈x,ξ〉f(x)dx = (iξ)αf̂(ξ).

The boundary terms vanish since f ∈ S .
For the second statement we calculate

∂αξ (f̂)(ξ) = ∂αξ

∫
R n

e−i〈x,ξ〉f(x)dx =

∫
R n

∂αξ (e−i〈x,ξ〉)f(x)dx

=

∫
R n

(−ix)αe−i〈x,ξ〉f(x)dx = ̂((−ix)αf)(ξ).

4.4.23 Theorem (Fixed Point). The function

f : R n → R

x 7→ e−
|x|2

2

satisfies
F(f) = f.
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Proof. We will require the equation∫
R
e−

x2

2 dx =
√

2π, (4.13)

which is proven in elementary calculus courses. ref

Step 1 (n = 1): Using partial integration we calculate

f̂ ′(ξ) = ∂ξ

∫
R
e−ixξf(x)dx =

∫
R
∂ξ(e

−ixξ)f(x)dx =

∫
R
−ixe−ixξe−

|x|2
2 dx

= i

∫
R
e−ixξ∂x(e−

|x|2
2 )dx = ie−ixξe−

|x|2
2

∣∣∣∞
∞
− i
∫
R
∂x(e−ixξ)e−

|x|2
2 dx

= −ξ
∫
R
e−ixξf(x)dx = −ξf̂(ξ).

Therefore the Fourier transform satisfies the ODE

F(f)′(ξ) + ξF(f)(ξ) = 0

as well as the function f . Since

F(f)(0) =
1√
2π

∫
R
eix·0f(x)dx =

1√
2π

∫
R
e−

x2

2 dx
(4.13)

= 1 = f(0),

we obtain F(f) = f , i.e.

1√
2π

∫
R
e−ixξe−

x2

2 dx = e−
ξ2

2 , (4.14)

by uniqueness of initial value problems.
Step 2: For general n this is a consequence of Fubini’s Theorem:

f̂(ξ) =

∫
R n

e−i〈x,ξ〉e−
|x|2

2 dx =

∫
R n

e−i
∑n
j=1 xjξje−

∑n
j=1 x

2
j

2 dx =

∫
R n

n∏
j=1

e−ixjξje−
x2
j
2 dx

=

n∏
j=1

∫
R
e−ixjξje−

x2
j
2 dxj

(4.14)
=

n∏
j=1

√
2πe−

ξ2j
2 = (2π)

n
2 f(ξ).

4.4.24 Theorem (Adjoint Formula). For any f, g ∈ L1(R n,C r),

〈F(f), g〉L2(R n,C r) = 〈f, (R ◦ F)(g)〉L2(R n,C r)

and both sides are finite. In particular for r = 1, we obtain the adjoint formula∫
R n

F(f)(ξ)g(ξ)dξ =

∫
R n

f(x)F(g)(x)dx

Proof. First of all, the calculation∫
R n

|〈F(f)(ξ), ḡ(ξ)〉|dξ ≤
∫
R n

‖F(f)(ξ)‖2‖ḡ(ξ)‖2dξ ≤
∫
R n

‖F(f)(ξ)‖1‖ḡ(ξ)‖1dξ

4.4.18
≤ ‖f‖L1

∫
R n

‖ḡ(ξ)‖1dξ = ‖f‖L1‖g‖L1
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shows that all the integrals exist. Therefore by Fubini’s theorem for r = 1

〈F(f), ḡ〉L2(R n,C ) =

∫
R n

F(f)(ξ)g(ξ)dξ

= (2π)−
n
2

∫
R n

∫
R n

e−i〈x,ξ〉f(x)dx g(ξ)dξ

= (2π)−
n
2

∫
R n

f(x)

∫
R n

e−i〈x,ξ〉g(ξ)dξdx

=

∫
R n

f(x)F(g)(x)dx = 〈f,F(g)〉L2(R n,C )

(4.15)

This implies

〈F(f), g〉L2(R n,C )
(4.15)

= 〈f,F(ḡ)〉L2(R n,C )
4.4.21

= 〈f,R(F(g))〉L2(R n). (4.16)

Applying this to all the component functions yields the statement for general r.

4.4.25 Definition (Inverse Fourier Transform). Let g ∈ S = S (R n,C ). Then

ǧ : R n → C
x 7→

∫
R n e

i〈x,ξ〉g(ξ)dξ

and
F−1(g) : R n → C

x 7→ (2π)−
n
2 ǧ

are called inverse Fourier transform of g. For g ∈ S (R n,C r) this is again defined com-
ponent wise.

4.4.26 Theorem (Inversion Theorem). The Fourier transform is a linear homeomorphism

F : S → S

and its inverse is given by
F−1 = F ◦ R.

Here S = S (R n,C r).

Proof. It suffices to check this for r = 1. The linearity of F is clear.
Step 1 (range): We have to show that for any f ∈ S , F (f) ∈ S as well. Therefore let
α, β ∈ N n and calculate

ξαDβF(f)
4.4.22

= ξαF(−xβf)(ξ)
4.4.22

= F(Dα
x (−xβf))(ξ).

Now Dα
x (−xβf) ∈ S ⊂ L1 by 4.4.13 and therefore

∀ξ ∈ R n : |ξα(DβF(f))(ξ)| = |F(Dα
x (−xβf))(ξ)|

4.4.18
≤ (2π)−

n
2 ‖Dα

x (−xβf)‖L1(R n) <∞.
(4.17)

Step 2 (bijectivity): It is clear from the Definition 4.4.25 that the inverse Fourier trans-
form F−1 satisfies F−1 = F ◦R. We have to show that it really is an inverse to F . So let
f ∈ S and consider

F−1(F(f))(x) = (2π)−
n
2

∫
R n

ei〈x,ξ〉F(f)(ξ)dξ. (4.18)
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Denote by ϕ the fixed point of F described in Theorem 4.4.23. Let ε > 0, x ∈ R n and
define

g : R n → C

ξ 7→ mx(sε(ϕ))(ξ) = ei〈x,ξ〉−
ε2|ξ|2

2

and notice that by 4.4.21

F(g)(η) = τ−x(F(sε(ϕ)))(η) = τ−x(ε−ns1/ε(F(ϕ)))(η)

4.4.23
= τ−x(ε−ns1/ε(ϕ))(η) = ε−ne−

|η−x|2

2ε2 .
(4.19)

Therefore

Iε(x) := (2π)−
n
2

∫
R n

g(ξ)F(f)(ξ)dξ
4.4.24

= (2π)−
n
2

∫
R n

F(g)(ξ)f(ξ)dξ

(4.19)
= (2π)−

n
2

∫
R n

ε−ne−
|ξ−x|2

2ε2 f(ξ)dξ = (2π)−
n
2 (f ∗ ϕε)(x),

(4.20)

where ϕε(x) := ε−nϕ(x/ε) is a Dirac sequence. By Theorem 4.4.6

Iε = (2π)−
n
2 f ∗ ϕε ε→0

L1
// (2π)−

n
2

∫
R n e

− |x|
2

2 dxf
(4.13)

= f .

By the Theorem of Riesz/Fischer there is a subsequence εk > 0 such that ref

Iεk
k→∞
a.e.

// f .

Thus for almost every x ∈ R n, Lebesgue’s dominated convergence Theorem implies

f(x) = lim
k→∞

Iεk(x) = (2π)−
n
2 lim
k→∞

∫
R n

ei〈x,ξ〉−
ε2k|ξ|

2

2 F(f)(ξ)dξ

= (2π)−
n
2

∫
R n

ei〈x,ξ〉F(f)(ξ)dξ
(4.18)

= F−1(F(f))(x).

Since both sides are continuous, equality holds for all x ∈ R n.
By Theorem 4.4.21, the operator R commutes with F . This implies

id = F−1 ◦ F = F ◦ R ◦ F = F ◦ F ◦ R = F ◦ F−1.

Therefore F−1 is indeed the inverse of F and F is bijective as claimed.
Step 3 (continuity): It is clear that R : S → S is a linear homeomorphism with inverse
R−1 = R. Therefore it suffices to check that F is continuous. So let fj ∈ S , such that

fj
S
// 0 .

Using the Leibniz this implies that for any α, β ∈ N n

Dα
x ((−xβ)fj)

S
// 0 .

By Theorem 4.4.13 this implies

Dα
x ((−xβ)fj)

L1
// 0 .

Now the claim follows from

pS
α,β(F(fj)) = sup

ξ∈R n
|ξαDβ

ξF(fj)(ξ)|
(4.17)
≤ (2π)−

n
2 ‖Dα

x ((−xβ)fj)‖L1(R n) → 0.
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4.4.27 Theorem (Plancherel). The Fourier transform F : S → S is an L2-isometry.
Therefore it extends to an L2-isometry

F : L2 → L2.

Here L2 = L2(R n,C r).

Proof. By Theorem 3.2.1, we have to check

∀f ∈ S : ‖F(f)‖L2 = ‖f‖L2 .

We calculate

〈F(f),F(f)〉L2
4.4.24

= 〈f, (R ◦ F ◦ F)(f)〉L2
4.4.21

= 〈f, (F ◦ R ◦ F)(f)〉L2

4.4.26
= 〈f, (F−1 ◦ F)(f)〉L2 = 〈f, f〉L2 .

4.4.28 Lemma (Riemann/Lebesgue Lemma).
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4.5. Symbols and their asymptotic expansions

4.5.1 Definition (Symbol). Let U ⊂ Rm and k ∈ R . A function σ ∈ C∞(U×R n,C r′×r)
is a symbol of order k, if

∀α, β ∈ N n : ∃Cα,β > 0 : ∀(x, ξ) ∈ U × R n : |∂αx ∂
β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)k−|β|. (4.21)

The space of all those symbols is denoted by Sk := Sk(U × R n,C r′×r). Define

S+∞ :=
⋃
k∈R
Sk, S−∞ :=

⋂
k∈R
Sk.

Furthermore if σ ∈ Sk has compact x-support, we say σ ∈ Skc . Define

pkα,β(σ) := sup
(x,ξ)∈U×R n

|∂αx ∂βxσ(x, ξ)|(1 + |ξ|)|β|−k.

4.5.2 Theorem (Elementary Properties of Symbols). Let k ∈ R .
(i) Sk is a complex vector space.
(ii) For any k ∈ R and the family

{pkα,β | α, β ∈ N n}

is a countable separating family of semi-norms, which induce a Frechét space topology
on Sk.

(iii) If k1 ≤ k2, then Sk1 ⊂ Sk2 and the inclusion is a bounded linear operator.
(iv) If σ1 ∈ Sk1(U ×R n,C s×r), σ2 ∈ Sk2(U ×R n;C t×s), then σ2σ1 ∈ Sk1+k2(R n;C t×r)

and multiplication
Sk1 × Sk2 → Sk1+k2

(σ1, σ2) 7→ σ1σ2

is bilinear and continuous.
(v) If σ ∈ Sk = Sk(U×R n;C s×r), α, β ∈ N n, then ∂αx ∂

β
ξ (σ) ∈ Sk−|β| and differentiation

Sk → Sk−|β|

σ 7→ ∂αx ∂
β
ξ (σ)

is a bounded linear operator.
(vi) If σ ∈ Sk(U × R n,C s×r) and f ∈ S (C r), then

τ : U × R n → C s

(x, ξ) 7→ σ(x, ξ)f(ξ)

satisfies σ ∈ S−∞.

Proof.
(i) If σ, σ′ ∈ Sk, λ ∈ C , α, β ∈ N n and C, C ′ are the constants from (4.21), we simply

calculate for any x ∈ U, ξ ∈ R n

|Dα
xD

β
ξ (σ1 + λσ2)(x, ξ)| ≤ C(1 + |ξ|)k−|β| + |λ|C ′(1 + |ξ|)k−|β|

≤ (C + |λ|C ′)(1 + |ξ|)k−|β|.
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(ii) It is clear that this is a family of semi-norms and that it is countable. It is separating
through pk0,0. By Theorem 3.1.20 it is a locally convex space. To check completeness,
assume that σi is a Cauchy sequence in Sk, i.e. in all the pkα,β-seminorms. This
implies that ∂αx ∂

β
ξ (σi)(1 + |ξ|)|β|−k is a Cauchy sequence in C 0(U ×R n,C s×r). Since

this space is complete

∃σα,β ∈ C 0(U × R n,C s×r) : ∂αx ∂
β
ξ (σi)(1 + |ξ|)|β|−k i→∞

C 0
// σα,β . (4.22)

Define σ := σ0,0 ·(1+ |ξ|)|β|−k. Remember that a sequence of differentiable functions,
which converges pointwise, and whose derivatives converge uniformly, has a limit
that is differentiable and the limit and differentiation may be interchanged. Since
the convergence above holds for all α and (1+ |ξ|) is obviously independent of x, this
implies ∂xνσα,β = σα+eν ,β . This defines functions σβ , such that ∂αxσβ = σα,β . To
obtain the statement for β, we have to ensure the derivatives converges uniformly.
Therefore take any 0 ≤ ν ≤ n and calculate

|∂ξν
(
∂βξ ∂

α
xσi(x, ξ)(1 + |ξ|)−k+ρ|β|−δ|α|

)
|

≤ ∂β+eν
ξ ∂αxσi(x, ξ)(1 + |ξ|)−k+ρ|β+eν |−δ|α||

+ |∂βξ ∂
α
xσi(x, ξ)(1 + |ξ|)−k+ρ|β|−δ|α| (−k + ρ|β| − δ|α|) ξν

|ξ|
(1 + |ξ|)−1︸ ︷︷ ︸

≤const

|.

By (4.22) both summands converge uniformly. Therefore, we obtain a function σ,
such that ∂βξ σ = σβ . Alltogether this implies

σi
i→∞

‖_‖
Sk,ρ,δ
α,β,Kj

// σ(1 + |ξ|)k−ρ|β|+δ|α| .

(iii) We simply remark that for any λ ∈ R , λ ≥ 1, the map

R → R
x 7→ λx

is monotonously increasing. Therefore, if σ ∈ Sk1 , then

∀x ∈ U : ∀ξ ∈ R n : |∂αx ∂
β
ξ σ(x, ξ)| ≤ Cα,β(1 + |ξ|)k1−|β| ≤ Cα,β(1 + |ξ|)k2−|β|,

thus σ ∈ Sk2 .
(iv) Let α, β ∈ N n. By hypothesis there exist C1, C2 > 0 such that for any x ∈ U, ξ ∈ R n

|∂αx ∂
β
ξ (σ1)(x, ξ)| ≤ C1(1 + |ξ|)k1−|β|,

|∂αx ∂
β
ξ (σ2)(x, ξ)| ≤ C2(1 + |ξ|)k2−|β|.

(4.23)
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We calculate

|∂αx ∂
β
ξ (σ2σ1)(x, ξ)| A.1.5

=
∣∣∣∂αx ∑

γ≤β

(
β

γ

)
∂β−γξ (σ1)∂γξ (σ2)

∣∣∣
A.1.5
≤

∑
γ≤β

∑
γ′≤α

(
β

γ

)(
α

γ′

)
|∂α−γ′x ∂β−γξ (σ1)∂αx ∂

γ
ξ (σ2)|

(4.23)
≤

∑
γ≤β

∑
γ′≤α

(
β

γ

)(
α

γ′

)
C1(1 + |ξ|)k1−|β−γ|C2(1 + |ξ|)k2−|γ|

= (1 + |ξ|)k1+k2−|β|
∑
γ≤β

∑
γ′≤α

(
β

γ

)(
α

γ′

)
C1C2.

(v) We just calculate for any α′, β′

|∂α′x ∂
β′

ξ (∂αx ∂
β
ξ σ)(x, ξ)| = |∂α+α′

x ∂β+β′

ξ σ(x, ξ)| ≤ Cα+α′,β+β′(1 + |ξ|)k−|β|−|β′|.

(vi) Since f ∈ S (C r), we obtain from 4.4.9

∀m ∈ N : ∀β ∈ N n : sup
ξ∈R n

(1 + |ξ|)m|∂β(f)(ξ)| =: Cm,β(f) <∞.

Those constants exist also for all l ∈ R>0. Choose any such l and calculate

|∂αx ∂
β
ξ τ(x, ξ)| = |∂αx ∂

β
ξ (σ(x, ξ)f(ξ))| ≤

∑
γ≤β

(
β

γ

)
|∂αx ∂

γ
ξ (σ)(x, ξ)∂β−γξ (f)(ξ)|

≤
∑
γ≤β

(
β

γ

)
pkα,γ(σ)(1 + |ξ|)k−|γ||∂β−γξ (f)(ξ)|

≤
∑
γ≤β

(
β

γ

)
pkα,γ(σ)(1 + |ξ|)k−l−|β|(1 + |ξ|)l|∂β−γξ (f)(ξ)|

≤
∑
γ≤β

(
β

γ

)
pkα,γ(σ)(1 + |ξ|)k−l−|β|Cl,β−γ(f)

≤ C(1 + |ξ|)k−l−|β|,

thus τ ∈ Sk−l. Since l ∈ R>0 was arbitrary, this proves the result (remember that
Sk ⊂ Sk+l anyway.)

4.5.3 Definition (positively homogenous). Let X be a real vector space. A function
f : X \ {0} → R is positively homogenous of degree k ∈ R , if

∀t > 0 : ∀x ∈ X \ {0} : f(tx) = tkf(x).

4.5.4 Lemma (Properties of potivitely homogeonous functions). Let f, g : X \ {0} → R
be positively homogenous of degree k and k′.
(i) If k = k′ and λ ∈ R , then f + λg is positively homogenous of degree k.
(ii) The function fg is positively homogenous of degree k + k′.
(iii) A function f ∈ C 1(R n \ {0},R ) is positively homogenous of degree k if and only if

∀x ∈ R n \ {0} : ∇f(x)x = kf(x).
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(iv) If f ∈ C 1(R n \ {0},R ) is positively homogenous of degree k, any ∂jf is positively
homogenous of degree k − 1.

(v) If f ∈ C0(R n{0},R ) is positively homogenous of degree k, then

∀x ∈ R n \ {0} : |f(x)| ≤ C|x|k, C := max
y∈§n−1

|f(y)|.

(vi) If f ∈ Cl(R n \ {0},R ) is positively homogenous of degree k, then for any α ∈ N n
0 ,

|α| ≤ l, ∂αx f is positively homogenous of degree k − |α| and

∃C > 0 : ∀x ∈ R n \ {0} : |∂αx f(x)| ≤ Cα|x|k−|α| (4.24)

Proof.
(i) We just calculate

∀x ∈ X \ {0} : ∀t > 0 : (f + λg)(tx) = f(tx) + λg(tx) = tk(f(x) + λg(x)).

(ii) This is also very simple:

∀x ∈ X \ {0} : ∀t > 0(fg)(tx) = f(tx)g(tx) = tkf(x)tk
′
g(x) = tk+k′(fg)(x).

(iii) ”⇒”: By differentiating, we obtain

∀x ∈ R n \ {0} : 0 = ∂t(f(tx)− tkf(x))|t=1 = (∇f |txx− ktk−1f(x))|t=1 = ∇f |xx− kf(x).

”⇐”: Let x ∈ R n and define F : R>0 → R , t 7→ t−kf(tx). Clearly F (1) = f(x). We
calculate

∂tF = ∂t(f(tx))t−k − kt−k−1f(tx) = ∇f |txxt · t−k−1 − kt−k−1f(tx)

= kf(tx)t−k−1 − kt−k−1f(tx) = 0.

Therefore F ≡ f(x).
(iv) Consider any x ∈ R n \ {0} , t > 0 and calculate

∂jf |tx = lim
h↘0

f(tx+ hej)− f(tx)

h
= lim

h↘0

f(tx+ thej)− f(tx)

th

= lim
h↘0

tk
f(x+ hej)− tkf(x)

th
= tk−1 lim

h↘0

f(x+ hej)− (x)

h
= tk−1∂jf |x.

(v) We calculate for any x ∈ R n \ {0}

|f(x)| =
∣∣∣f( x

‖x‖‖x‖
)∣∣∣ = ‖x‖k =

∣∣∣f( x
‖x‖

)∣∣∣ ≤ C‖x‖k.
(vi) This follows from the previous claims.

4.5.5 Theorem (Famous Symbols).
(i) ”Any symbol of a bounded PDO is a symbol”, i.e. if

σ(x, ξ) =
∑
|α|≤k

Pα(x)ξα, ∀|α| ≤ k : Pα ∈ C∞b (U,C r′×r),

then σ ∈ Sk(U × R n;C r′×r).
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(ii) ”Schwarz functions”, i.e. if σ ∈ C∞(U × R n,C r′×r) satisfies

∀α, β ∈ N n : ∀K b U : ∀d ∈ N : sup
x∈K
|∂αx ∂

β
ξ σ(x, ξ)|(1 + |ξ|m) <∞,

then σ ∈ S−∞. In particular, if σ has compact ξ-support, σ ∈ S−∞.
(iii) ”A positively homogenous function”, i.e. let σ ∈ C∞(U ×R n,C r′×r), which depends

only on ξ and which is positively homogenous of degree k ∈ R in ξ. Then σ ∈ Sk.
(iv) The function R n × R n, (x, ξ) 7→ (1 + |ξ|2)

k
2 , k ∈ R is a symbol in Sk.

Proof.
(i) Since σ is a polynomial of degree k, ∂βξ σ = 0, if |β| > k (see Lemma A.1.6). For any
|β| ≤ k and any α ∈ N n we calculate

|∂αx ∂
β
ξ σ(x, ξ)| ≤

∑
|γ|≤k

|∂αx (Pγ)(x)||∂βξ ξ
γ |

A.1.6
≤

∑
|γ|≤k

|∂αx (Pγ)(x)||β!

(
γ

β

)
ξγ−β|

A.2.1
≤

∑
|γ|≤k

β!

(
γ

β

)
‖Pγ‖C |α| |ξ|

|γ|−|β|

≤ max
|γ|≤k
‖Pγ‖C |α|

∑
|γ|≤k

β!

(
γ

β

)
(1 + |ξ|)k−|β| ≤ Cα,β(1 + |ξ|)k−|β|.

(ii) This follows directly from the definition of the Schwarz space and the symbols.
(iii) This follows from Lem:PropPosHomo.
(iv) The function

f : R n+1 = R × R n → R

(a, ξ) 7→ (a2 + |ξ|2)
k
2

is smooth on R n+1 \{0} and positively homogenous of degree k. Therefore by (4.24)

∀α ∈ N n+1
0 : ∃Cα > 0 : ∀(a, ξ) ∈ R × R n+1 : |∂αξ f(a, ξ)| ≤ Cα‖(a, ξ)‖k−|α|

Specifying to those α satisfying α0 = 0 and to a = 1, we obtain

|∂αξ ((1 + |ξ|2)
k
2 )| = |∂αξ f(1, ξ)| ≤ Cα‖(1, ξ)‖k−|α| ≤ Cα(1 + ‖ξ‖)k−|α|

4.5.6 Definition (Exhaustion function). Let 0 < c1 < c2. A function χ = χc1,c2 ∈
C∞(R n), such that

∀ξ ∈ R n : χ(ξ) =

{
0 , |ξ| ≤ c1

1 , |ξ| ≥ c2

is an exhaustion function.

4.5.7 Lemma (Family of exhaustion functions). Let χ be an exhaustion function and
χε : R n → R , ξ 7→ χ(εξ). Then

∀α ∈ N n : ∃Cα > 0 : ∀0 < ε ≤ 1 : |∂αξ ξε(ξ)| ≤ Cα(1 + |ξ|)−|α|.

So the functions χε are symbols of order zero with symbol estimates that are independent
of ε. In other words {χε|0 < ε ≤ 1} ⊂ S0 is bounded.
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Proof. Let α ∈ N n be arbitrary.
Case 1 (|α| ≥ 1): If |α| ≥ 1, then ∂αξ χε is compactly supported and smooth. Therefore

sup
ξ∈R n

|∂αξ χ(ξ)(1 + |ξ|)|α|| =: Cα <∞.

Since 1 + |ξ| 6= 0, this implies

|∂αξ (χε)(ξ)| = |∂αξ (χ)(ξ)|ε|α| ≤ ε|α|Cα(1 + |ξ|)−|α|.

Since ε ≤ 1, this implies the statement.
Case 2 (α = 0): We just have to show that {χε|0 ≤ ε ≤ 1} is uniformly bounded. Define

C ′ := max
c1≤|ξ|≤c2

|χ(ξ)|.

By definition of an exhaustion function

∀ξ ∈ R n : |χ(ξ)| ≤ max(1, C ′) =: C0.

Now by construction for any ξ ∈ R n

|ξ| ≤ ε−1c1 ⇒ |εξ| ≤ c1 ⇒ |χε(ξ)| = 0

|ξ| ≥ ε−1c2 ⇒ |εξ| ≥ c2 ⇒ |χε(ξ)| = 1

ε−1c1 ≤ ξ ≤ ε−1c2 ⇒ c1 ≤ εξ ≤ c2 ⇒ |χε| ≤ C ′.

In all cases |χε| ≤ C0.

4.5.8 Definition (Asymptotic expansion). Let σ ∈ Sk. Suppose (kj) is a real sequence,
which diverges monotonously to −∞. Assume there are σj ∈ Skj , such that

∀N ∈ N : σ −
N−1∑
j=0

σj ∈ SmN .

Then we call
∑∞

j=0 σj an asyptotic expansion of σ (some authors call it a formal develop-
ment). We denote this by

σ ∼
∞∑
j=0

σj .

4.5.9 Theorem (Asyptotic expansion). Let (kj) be a real monotonous sequence such that
kj → −∞, and let σj ∈ Skj . Then there exists σ ∈ Sk0 , such that

σ ∼
∞∑
j=0

σj .

Moreover, any two symbols σ, τ with the same asyptotic expansion satisfy

σ − τ ∈ S−∞.

Proof.
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Step 1 (Construction of σ): Let χ = χ1,2 be an exhaustion function as in 4.5.6 and define
χε(ξ) := χ(εξ), 0 < ε ≤ 1. By 4.5.7 for any β ∈ N n there exists a constant Cβ > 0, such
that

∀ξ ∈ R n : |∂βξ (χε)(ξ)| ≤ Cα(1 + |ξ|)−|β|.

The Leibniz rule implies

∃Cj,α,β > 0 : ∀x ∈ U : ∀ξ ∈ R n :|∂αx ∂
β
ξ (χεpj)(x, ξ)| ≤ Cj,α,β(1 + |ξ|)kj−|β|

= Cj,α,β(1 + |ξ|)−1(1 + |ξ|)kj+1−|β|. (4.25)

Choose a monotone sequence (εj), such that 0 < εj ≤ 1, εj → 0 and

∀j ∈ N : ∀α, β ∈ N n : |α|+ |β| ≤ j ⇒ εj ≤ 2−jC−1
j,α,β. (4.26)

Define χj := χεj and

σ(x, ξ) :=
∞∑
j=0

χj(ξ)σj(x, ξ).

Since |ξ| ≤ ε−1
j ⇒ χj(ξ) = 0, this sum is locally finite. Hence σ is a well-defined function.

Step 2 (Estimates): Now let N ∈ N be arbitrary. We may decompose

σ −
N−1∑
j=0

σj =

N−1∑
j=0

(χj − 1)σj︸ ︷︷ ︸
=:pN

+

∞∑
j=N

χjσj︸ ︷︷ ︸
=:qN

.

For any ξ, such that |ξ| ≥ 2ε−1
N−1, we obtain pN (ξ) = 0 by construction. Consequently pN

has compact support and therefore pN ∈ S−∞ by 4.5.5. Therefore it suffices to analyse
qN : By construction, we obtain

∀(x, ξ) ∈ U × R n : ∀|α|+ |β| ≤ j : |∂αx ∂
β
ξ (χjσj)(x, ξ)| ≤ Cj,α,β(1 + |ξ|)−1(1 + |ξ|)kj+1−|β|

(4.26)
≤ 2−jεj(1 + |ξ|)−1(1 + |ξ|)kj+1−|β| ≤ 2−j(1 + |ξ|)kj+1−|β| (4.27)

Now choose any fixed α, β ∈ N n. Choose j0 ∈ N , such that

j0 ≥ max(N, |α|+ |β|), kj0 + 1 ≤ kN . (4.28)

Since χjpj ∈ Skj and since kj ↘ −∞

qN =

j0−1∑
j=N

χjσj︸ ︷︷ ︸
∈SkN

+

∞∑
j=j0

χjσj︸ ︷︷ ︸
=:qj0

.

By the choice of j0 in (4.28) and (4.27), we calculate

|∂αx ∂
β
ξ qj0(x, ξ)| ≤

∞∑
j=j0

2−j(1 + |ξ|)kj+1−|β| ≤
∞∑
j=j0

2−j(1 + |ξ|)kN−|β| ≤ (1 + |ξ|)kN−|β|.

Consequently qN ∈ SkN . For N = 0, we obtain in particular

σ =

∞∑
j=0

χjσj = q0 ∈ Sk0 .

80



Step 3 (Uniqueness): Assume that

σ, τ ∼
∞∑
j=0

σj .

By construction

∀N ∈ N : σ − τ =
(
σ −

N−1∑
j=0

σj

)
−
(
τ −

N−1∑
j=0

σj

)
∈ SkN .

Since kj ↘ −∞, this implies σ − τ ∈ S−∞.
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5. Distribution Theory

”We Magog know the Divine exists. We know it created the stars, and the plan-
ets, the soft winds, and the gentle rains. We also know He created nightmares,
because He created us.”

Rev Bem, 10087 CY

In the previous section we described spaces of functions, which are the heaven of analysis.
The dual of this is hell, which we describe in this chapter.

5.1. Basic Definitions

5.1.1 Remark (Reminder of convergence). For those of you who just tuned in here is an
overview of the most important function spaces in distribution theory (introduced in detail
in section 4): Let U ⊆̊R n and let

D(U) := C∞c (U,C )

endowed with the following notion of convergence: We say φj converges to φ in D(U), if
there exists a compact K b U such that

∀j ∈ N : suppφj ⊂ K

and for any k ∈ N
φj

C k(K)
// φ .

We denote this by
φj

D
// φ .

Let
S := {φ ∈ C∞(U,C ) | ∀α, β ∈ N n : pα,β(f) := sup

x∈R n
|xαDβ(f)(x)| <∞}

endowed with the following notion of convergence: We say φj converges to φ, if

∀α, β ∈ N n : φj pα,β
// φ .

We denote this by
φj

S
// φ .

Let
E (U) := C∞(U,C )

endowed with the following notion of convergence: We say a sequence φj converges to φ
in E (U), if

∀K b U : ∀k ∈ N : φj
C k(K)

// φ .

We denote this by
φj

E
// φ .

In the last chapter, we constructed topologies on D , S , E and showed in excruciating
detail that these topologies induce this notion of convergence. For many applications you
can just forget about topology and take this as a definition. Whenever the continuity
statements are involved, you can read them as sequential continuity and the convergence
of a sequence was just defined.
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5.1.2 Definition (Distribution). Let U ⊂ R n be open. The topological dual space, i.e.
the space of continuous linear functionals,
(i) D ′(U) is the space of distributions.
(ii) S ′ is the space of tempered distributions.
(iii) E ′(U) is the space of distributions having compact support.
All these spaces are topologized by Theorem 3.1.27, i.e. they are endowed with the
weak-*-topology, i.e. the topology of pointwise convergence. More explicitely, if H ∈
{D(U),E (U),S }, then

Tj
H ′

// T ⇐⇒ ∀ϕ ∈H : Tj(ϕ)
C
// T (ϕ)

By the remark 5.1.1 above, a linear map T : H (U)→ C is a distribution, if

∀(φj) ∈H N : φj
H
// 0 =⇒ T (φj) C

// 0 .

On the other hand, if we use the topology on D(U), we can give another characterization
of distributions.

5.1.3 Theorem and Definition (order). A linear form T : D(U)→ C is a distribution
(i.e. is continuous) if and only if for every K b U there exist constants C > 0, k ∈ N ,
such that

∀ϕ ∈ D(U) : |T (ϕ)| ≤ C‖u‖C k(K).

If the constant k may be chosen independently of K, we call the smallest such k the order
of u.

Proof. The existence of k is a direct consequence of 4.2.7 and the definition of the topology
on DK .

From 3.1.27 we also obtain:

5.1.4 Theorem. All the distribution spaces D ′(U), E ′(U) and S ′ are complete.

The following is completely trivial and therefore often a source of confusion.

5.1.5 Lemma (inclusions and restrictions).
(i) D(U) ⊂ E (U), the inclusion

ι : D(U) ↪→ E (U)

is continuous and hase dense image. The dual operator gives a continuous map

ι′ : E ′(U) → D ′(U)
T 7→ ι′(T ) = T |D(U)

(ii) In case U = R n, D := D(R n), E := E (R n), we have the relations

D ⊂ S ⊂ E

and the inclusions

i : D ↪→ S , j : S ↪→ E

are continuous. Their dual operators give continuous maps

i′ : S ′ → D ′ j′ : E ′ → S ′

T 7→ i′(T ) = T |D(U) T 7→ j′(T ) = T |S .
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Proof. It suffices to check the statements for ι, i, j, since refThm:DualOperator implies
the statements for the dual operatrs.
(i) The relation D(U) ⊂ E (U) follows from the definition. So it is clear that the inclusion

maps between the right spaces. To check continuity assume

φj
D(U)

// 0 .

By definition there exists K̃ b U such that

∀j ∈ K̃ : suppφj ⊂ K̃

and
∀k ∈ N : φj

C k(K̃)

// 0 .

Now clearly, for any other K b U

∀k ∈ N : ‖φj‖C k(K) = ‖φj‖C k(K∩K̃) ≤ ‖φj‖C k(K̃),

thus
φj

C k(K)
// 0

as well. By definition, this implies

ι(φj)
E (U)

// 0 .

(ii) For i : D → S we argue as in the first part and check for any α, β ∈ N n

pα,β(φj) = sup
x∈K̃
|xαDβ(φj)| ≤ C‖φj‖C |β|(K̃) → 0.

For j we assume that
φj

S
// 0 .

For any K b R n this implies in particular

∀β ∈ N n : sup
x∈K
|Dβφj(x)| ≤ p0,β(φj)→ 0.

Thus
φj

E
// 0 .

5.1.6 Remark. We have not yet shown that the dual operators ι′, i′, j′ are injective as
well. Of course they are, but it will be much more convenient to derive this statement
later, c.f. 5.4.6.

How does a typical distribution look like?

5.1.7 Theorem and Definition (regular distributions). A distribution T ∈ D ′(U) is
regular, if there exists f ∈ L1

loc(U,C ) such that

∀ϕ ∈ D(U) : T (ϕ) = 〈f〉(ϕ) :=

∫
U
f(x)ϕ(x)dx.

This defines an injection 〈_〉 : L1
loc(U) ↪→ D ′(U). (This is why some people, in particular

physisics, do not distinguish between f and 〈f〉, but we will do so.) The inverse map on
the image will be denoted by 〉_〈: 〈L1

loc(U)〉 ⊂ D ′(U)→ L1
loc(U).
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Proof. By definition for any φ ∈ D(U) there exists a K b U such that suppφ ⊂ K. Since
f is integrable over any compact subset

|〈f〉(φ)| ≤
∫
U
|f(x)||φ(x)|dx ≤ ‖φ‖C 0(K)‖f‖L1(K).

Therefore 〈f〉 ∈ D ′(U) is a distribution of order 0 by Lemma 5.1.3.
So the map 〈_〉 : L1

loc(U) → D ′(U) is well-defined. Its injectivity is a direct consequence
of the stronger statement 5.1.8 below.

5.1.8 Theorem (Fundamental Lemma of the Calculus of Variations). Let U ⊂ R n be
open and f ∈ [f ] ∈ L1(U) be a representative of an L1-class. The following are equivalent:
(i) For any ϕ ∈ D(U):

∫
U f(x)ϕ(x)dx = 0.

(ii) For any measurable bounded subset M b U :
∫
U f(x)dx = 0.

(iii) f = 0 a.e.

Proof. ref

5.2. Algebraic Properties

5.2.1. Module Structure

5.2.1 Definition (Multiplication by functions). Let T ∈ D ′(U) and f ∈ E (U). Then

fT : D(U) → C
φ 7→ T (fφ).

is the multiplication of f and T .

5.2.2 Lemma. For any f ∈ E (U) the functional fT satisfies fT ∈ D ′(U). Therefore
D ′(U) is a module over E (U).

Proof. Follows from the Leibniz rule.

5.2.2. Sheaf Structure

5.2.3 Definition (extensions and restrictions). Let V ⊂ U ⊂ R n be open. Any function
φ ∈ D(V ) can be extended by zero to a function φ0 ∈ D(U) (since suppφ b V , φ0 is still
smooth).
This defines a restriction

ρUV : D ′(U) → D ′(V )
T 7→ T |V ,

where
T |V : D(V ) → C

φ 7→ T (φ0).

5.2.4 Theorem (Sheaf Structure). D ′ is a sheaf of C -vector spaces on R n (c.f. ??) (hence
on any U ⊆̊). In particular it satisfies the sheaf axioms
(i) For any T ∈ D ′(R n) and any open cover R n =

⋃
i∈I Ui

∀i ∈ I : T |Ui = 0 =⇒ T = 0.
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(ii) For any open cover R n =
⋃
i∈I Ui and any system Ti ∈ D ′(Ui) such that

∀i, j ∈ I : Ti|Ui∩Uj = Tj |Ui∩Uj
there exists T ∈ D ′(R n) such that

∀i ∈ I : T |Ui = Ti.

This T is unique by (i).

Proof. Since R n is paracompact, we may assume I to be countable.
Step 1 (Presheaf Structure): Clearly if T ∈ D ′(U) is of order k and K b U

∀φ ∈ D(V ) : |T |V (φ)| = |T (φ0)| ≤ C‖φ‖C k ,

thus T |V really is a distribution (of order ≤ k). By construction D satisfies the presheaf
axioms.
Step 2 (First Sheaf Axiom): Let U ⊂ R n and assume U =

⋃
i∈I Ui is an open cover and

T ∈ D ′(U) satisfies

∀i ∈ I : T |Ui = 0. (5.1)

Let φ ∈ D(U) be arbitrary. Since suppφ ⊂ K ⊂ U , where K is compact, there exists a
finite subset I ′ ⊂ I, such that K ⊂

⋃
i∈I′ Ui. By Theorem 4.2.10 for any i ∈ I ′, there exists

φi ∈ D(Ui), such that

φ =
∑
i∈I′

φi. (5.2)

By linearity this implies

T (φ) =
∑
i∈I′

T (φi) =
∑
i∈I′

T |Ui(φi)
(5.1)
= 0.

Step 3 (Second Sheaf Axiom): Again let U =
⋃
i∈I Ui be an open cover and assume for

any i ∈ I, there exists Ti ∈ D ′(Ui) such that

∀i, j ∈ I : Ti|Ui∩Uj = Tj |Ui∩Uj . (5.3)

Let φ ∈ D(U) be arbitrary again decompose it into φ =
∑

i∈I′ φi as in (5.2). Define

T (φ) :=
∑
i∈I′

Ti(φi).

We have to show that T is well-defined, i.e. that it does not depend on the chosen decom-
position. It suffices to check∑

i∈J
φj = 0 ∈ D(U) =⇒

∑
j∈J

Tj(φj) = 0,

where J is any finite index set and φj ∈ D(Uj). Define K :=
⋃
j∈J suppφj ⊂ U compact.

By Theorem ... (!ToDoRef) there exist functions ψk ∈ D(Uk), k ∈ J ′, J ′ finite, such that∑
k∈J ′ ψk = 1. Then ψkφj ∈ D(Uj ∩ Uk) Therefore∑

j∈J
Tj(φj) =

∑
j∈J

Tj

(∑
k∈J ′

ψkφj

)
=
∑
j∈J

∑
k∈J ′

Tj(ψkφj)
(5.3)
=
∑
j∈J

∑
k∈J ′

Tk(ψkφj)

=
∑
k∈J ′

∑
j∈J

Tk(ψkφj) =
∑
k∈J ′

Tk

(
ψk
∑
j∈J

φj

)
= 0
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by hypothesis.
Consequently T is a well-defined map, which is obviously linear.
To see that it is continuous let φ ∈ D(U) again let suppφ ⊂ K as in Step 2 and ψiD(Ui),
i ∈ I ′, such that

∑
i∈I′ ψi = 1. This implies

|T (φ)| =
∣∣∣T(∑

i∈I′
ψiφ
)∣∣∣ ≤∑

i∈I′
|Ti(ψiφ)| ≤

∑
i∈I′

Ci‖ψiφ‖C ki (K) ≤ C‖φ‖C k(K)

(!ToDo noch etwas unpräzise).

5.3. Differentiation

Distributions are a perfect setting for differential operators.

5.3.1 Definition (Derivatives of Distributions). Let T ∈ D ′(U) and α ∈ N n. Then

∂αT : D(U) → C
ϕ 7→ (−1)|α|T (∂αϕ)

is a derivative of T . Analogously we define DαT := (−i)|α|∂αT .
A linear combination

P =
∑
|α|≤k

PαD
α,

where Pα ∈ E (U) is a distributional differential operator.

5.3.2 Lemma (Properties of Differentiation).
(i) Let T ∈ D ′(U). Then ∂αT ∈ D ′(U). If T is of order k and |α| ≤ l. Then ∂αT ∈

D ′(U) is of order k + l.
(ii) Any distributional differential operator P is a continuous operator

P : D ′(U)→ D ′(U).

(iii) For any k and |α| ≤ k the following diagram commutes

C k(U)

∂α

��

〈_〉
// D ′(U)

∂α

��

C 0(U)
〈_〉
// D ′(U)

i.e. ∂α〈f〉 = 〈∂αf〉.

Proof.
(i) Let K b U . By definition there exists C > 0 and k ∈ N , such that

∀ϕ ∈ D(U) : |T (ϕ)| ≤ C‖ϕ‖C k(K)

This implies

∀ϕ ∈ D(U) : |∂αT (ϕ)| = |T (∂αϕ)| ≤ C‖∂αϕ‖C k(K) ≤ C‖ϕ‖C k+l(K).

This shows ∂α ∈ D ′(U) and the statement about the orders.
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(ii) Follows from (i) and Lemma 5.2.2.
(iii) This is a direct application of partial integration: Let f ∈ C k(U) and ϕ ∈ D(U) with

support suppϕ =: K b U . We extend ϕ, f∂iϕ, ∂ifϕ ∈ C k−1
c (R n) by zero, choose

R > 0 such that K b BR(0) and denote by ν the outward pointing unit normal field
on BR(0). By Green’s formula this implies for any 1 ≤ j ≤ n ref

∂j〈f〉(ϕ) =− 〈f〉(∂jϕ) = −
∫
U
f(x)∂j(ϕ)(x)dx = −

∫
BR(0)

f(x)∂j(ϕ)(x)dx

= −
∫
∂BR(0)

f(x)ϕ(x)νi(x)dx+

∫
BR(0)

∂j(f)(x)ϕ(x)dx = 〈∂jf〉(ϕ),

since suppϕ b K. By induction we obtain the statement for arbitrary differentials
∂α.

This explains the mysterious sign convention: If we had not introduced the factor (−1)|α|,
the diagram were only commutative up to sign.
Also notice that there is no notion of ”differentiability” for distributions: The are all dif-
ferentiable of arbitrary order. Nevertheless it would not make sense to call them smooth
since they are the most irregular objects in analysis. Differentiation of distributions works
so well, because a distributional derivative is one of the weakest possible forms of differen-
tiation.
Nevertheless there are several rules from classical calculus, which still hold.

5.3.3 Theorem (local constancy). Let U ⊂ R n be connected and for any c ∈ C denote
by

fc : U → C
x 7→ c

the constant function. Then for any T ∈ D ′(U)

∀1 ≤ i ≤ n : ∂iT = 0 ⇐⇒ ∃c ∈ C : T = 〈fc〉.

Proof.
”⇒”: In classical calculus this is proven by the mean value theorem, which we do not have
at our disposal. Therefore this is the hard direction.
Step 1 (reduction to local problem): We will check that T |V is generated by a constant
function, where V is of the form

∅ 6= V = Ṽ × I ⊆̊U, ∅ 6= Ṽ ⊆̊R n−1, ∅ 6= I ⊆̊R .

It is clear that if T |V = 〈fc〉 and T |W = 〈fc′〉, where V ∩ W 6=, this implies c = c′,
since D ′(U) is a sheaf (c.f. Theorem 5.2.4). 5.2.4 also implies that it suffices to check the
statement for T := T |V .
Step 2 (vanishing criterion): We claim

∀f ∈ D(I) :

∫
I
f(t)dt = 0⇒ T (f) = 0. (5.4)

The argument for this is the following: Extend f to a function f ∈ D(R ) by zero. By
assumption the function

F : I → C
x 7→

∫ x
−∞ f(t)dt
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satisfies

F ∈ D(I), F ′ = f.

Consequently, we obtain
T (f) = T (F ′) = −T ′(F ) = 0.

Step 3 (dimensional reduction): For any f ∈ D(V ), define

f̃ : Ṽ → C
x̃ 7→

∫
I f(x̃, xn)dxn.

We will now prove that for any T ∈ D ′(V )

∂nT = 0 =⇒ ∃T̃ ∈ D ′(Ṽ ) : ∀f ∈ D(V ) : T (f) = T̃ (f̃), (5.5)

Choose a function

ψ ∈ D(I),

∫
I
ψ(t)dt = 1 (5.6)

Let f ∈ D(V ) be arbitrary (again extended by zero to a function f ∈ D(Ṽ ×R ) and define

g : V → C
x = (x̃, xn) 7→

∫ xn
−∞ f(x̃, s)−

∫
I f(x̃, t)dt ψ(s)ds.

Since for any x̃ ∈ Ṽ ∫
I
g(x̃, xn)dxn = f̃(x̃)− f̃(x̃)

∫
I
ψ(s)ds = 0,

this implies g ∈ D(V ) and

∀x = (x̃, xn) ∈ V : ∂ng(x) = f(x)− f̃(x̃)ψ(xn) =: f(x)− (f̃ ⊗ ψ)(x) (5.7)

Consequently by defining the distribution T̃ ∈ D ′(Ṽ ) by

T̃ : D(Ṽ ) → C
h 7→ T (h̃⊗ ψ),

we obtain

0 = −∂n(T )(g) = T (∂ng)
(5.7)
= T (f)− T (f̃ ⊗ ψ) = T (f)− T̃ (f̃).

Step 4: We will prove the statement by induction over n.

Step 4.1 (n = 1): Define
c := T (ψ),

where ψ is from (5.6). Let φ ∈ D(I) be arbitrary. Define the function f ∈ D(I) by

f(x) := φ(x)− ψ(x)

∫
I
φ(t)dt.

We obtain ∫
I
f(x)dx =

∫
I
φ(x)dx−

∫
I
ψ(x)dx

∫
I
φ(t)dt = 0

and therefore

0
(5.4)
= T (f) = T

(
φ− ψ

∫
I

1φ(t)dt
)

= T (φ)− T (ψ)〈f1〉(φ) = T (φ)− 〈fc〉(φ).

89



Step 4.2 (n− 1→ n): By hypothesis there exists c̃ ∈ R such that

∀φ ∈ D(V ) : T (φ)
(5.5)
= T̃ (φ̃) = 〈fc̃〉(φ̃).

We define c := c̃ and claim that T = 〈fc〉 ∈ D ′(V ): We calulate for any φ ∈ D(V )

T (φ) = 〈fc̃〉(φ̃) =

∫
Ṽ
c̃φ̃(x̃)dx̃ =

∫
Ṽ
c̃

∫
I
φ(x̃, xn)dxndx̃

=

∫
Ṽ×I

cφ(x̃, xn)d(x̃, xn) =

∫
V
cφ(x)dx = 〈fc〉(φ).

”⇐”: We simply calculate

∂iT = ∂i〈fc〉
5.3.2,(iii)

= 〈∂ifc〉 = 〈0〉 = 0.

5.4. Supports

You might have been wondering why the space E ′ is called the distributions with compact
support. This will be apparent in a moment.

5.4.1 Definition (support). Let T ∈ D ′(U) be a distribution. Then

suppT := U \ {x ∈ U | ∃V ⊆̊U : T |V = 0}

is the support of T . We say T is compactly supported, if suppT ⊂ U is compact.

5.4.2 Lemma (Properties of supports). Let T ∈ D ′(U).
(i) suppT ⊂ U is closed.
(ii) T |U\suppT = 0.
(iii) For any ϕ ∈ D(U) : suppϕ ∩ suppT = ∅ =⇒ T (ϕ) = 0.

Proof.
(i) Follows from the definition.
(ii) Follows from 5.2.4,(ii).
(iii) Since V := U \ suppT is open, suppϕ ⊂ V implies by definition

T (ϕ) = T |V (ϕ) = 0.

The following Lemma should convice you that the notion of a support of a distribution is
reasonable.

5.4.3 Lemma.
(i) If f ∈ C 0(U), then

supp〈f〉 = supp f.

(ii) In case f ∈ L1
loc(U) a point x ∈ U is in supp〈f〉 if and only if for all sufficiently small

ε > 0 ∫
Bε(0)

|f(x)| > 0.
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Proof.
(i) Let x ∈ U . By definition

x /∈ supp〈f〉 ⇐⇒ ∃x ∈ V ⊆̊U : 〈f〉|V = 0

⇐⇒ ∃x ∈ V ⊆̊U : ∀φ ∈ D(V ) : 0 = 〈f〉|V (φ) =

∫
V
f(x)φ(x)dx

5.1.8⇐⇒ ∃x ∈ V ⊆̊U : f |V = 0

⇐⇒ x /∈ supp f.

(ii) Assume x /∈ supp〈f〉. Then there exists δ > 0 such that 〈f〉|Bδ(x) = 0. By 5.1.8 this
implies f |Bδ(x) = 0 a.e. Consequently for any 0 < ε < δ∫

Bε(x)
|f(x)| = 0.

Conversely assume ∫
Bε(x)

|f(x)| = 0

for all sufficiently small ε > 0. Take any such ε. By 5.1.8 again, f |Bε(x) = 0 a.e. and

∀φ ∈ D(Bε(x)) : 0 =

∫
Bε(x)

f(x)φ(x)dx = 〈f〉(φ),

thus x /∈ supp〈f〉.

5.4.4 Theorem (Distributions with compact support). Let U ⊂ R n be open. Denote by
ι : D(U) ↪→ E (U) the canonical inclusion from 5.1.5.
(i) We claim

ι′(E ′(U)) =: D ′c(U) = {T ∈ D ′(U) | T has compact support} ⊂ D ′(U)

and ι′ is a linear homeomorphism E ′(U)→ D ′c(U). The inverse ι′−1 : D ′c(U)→ E ′(U)
may be explicitely computed as follows: Let T ∈ D ′c(U) with compact support
suppT =: K, let K b V ⊆̊U , ψ ∈ D(U) such that ψ|V = 1 and φ ∈ E (U). Then

ι′−1(T )(φ) = T (ψφ).

(ii) The set E ′(U) ∼= D ′c(U) ⊂ D ′(U) is dense. For any T ∈ D ′(U) there exists a sequence
Tj ∈ E ′(U) such that

Tj
D ′
// T

and for any K b U there exists j(K) ∈ N such that

∀j ≥ j(K) : ∀ϕ ∈ DK(U) : Tj(ϕ) = T (ϕ).

Proof.
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Step 1 (ι′(E ′(U)) ⊂ D ′c(U)): Let T ∈ E ′(U) be arbitrary. Since T is continuous, Theorem
3.1.22 implies, there exist constants C > 0, k ∈ N , and a K b U , such that

∀φ ∈ E (U) : |T (φ)| ≤ C‖φ‖C k(K)

We claim that supp ι′(T ) = suppT |D(U) ⊂ K: Let x ∈ U \ K. Since this is open, there
exists an open neighbourhood V ⊂ U \K of x. For any ϕ ∈ D(V ), we obtain

|T (ϕ)| ≤ C‖ϕ‖C k(K) = 0.

Thus T |V = 0. Therefore x /∈ suppT and consequently supp ι′(T ) ⊂ K. At this point we
have established that

ι′ : E ′(U)→ D ′c(U)

is a continuous linear map.
Step 2 (ι′−1 is well-defined): Assume ψ1, ψ2 ∈ D(U), K b V1 ⊆̊U , K b V2 ⊆̊U and
ψ|V1 = ψ|V2 = 1. This implies

∀φ ∈ E (U) : supp((ψ1 − ψ2)ϕ) ∩K = ∅.

Since (ψ1 − ψ2)ϕ ∈ D(U), we obtain

0
5.4.2
= T ((ψ1 − ψ2)φ) = T (ψ1φ) = T (ψ2φ).

Thus ι′−1 : D ′c(U)→ E ′(U) is a well-defined linear map.
To see that it is continuous, let T ∈ D ′c(U), K := suppT , ψ ∈ D(U) such that ψ|V = 1.
By 5.1.3 T has some order on K, i.e. there exist constants C1 > 0, k ∈ N , such that

∀φ ∈ E (U) : |ι′−1(T )(φ)| = |T (ψφ)| ≤ C1‖ψφ‖C k(K) ≤ C2‖φ‖C k(K),

where the last inequality follows from the Leibniz rule. Therefore ι′−1(T ) ∈ E ′(U) by
Theorem 3.1.22.
Step 3: Let T , K, ψ be as above. For any φ ∈ D(U) the function ψφ − φ = (ψ − 1)φ
satisfies supp(ψ − 1)φ ∩K = ∅. Therefore

0
5.4.2
= T ((ψ − 1)φ) = T (ψφ)− T (φ).

We obtain
ι′(ι′−1(T ))(φ) = ι′−1(T )(ι(φ)) = T (ψφ) = T (φ).

On the other hand, for any T ∈ E ′(U), φ ∈ E (U)

ι′
−1

(ι′(T ))(φ) = ι′(T )(ψφ) = T (ψφ) = T (φ)

by the same reasoning.
Step 4 (dense image): Let T ∈ D ′(U). We have to show that there are Tj ∈ D ′c(U) such
that

Tj
D ′(U)

// T .

Define the compact exhaustion

Kj := {x ∈ U | |x| ≤ j, d(x,R n \ U) ≥ 1

j
}.
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(In case U = R n, just drop the second condition and set Kj := Bj(0).) Chose ψj ∈ D(U)
such that

ψj |Kj = 1, suppψj ⊂ Kj+1.

Define Tj ∈ D ′(U) by
∀φ ∈ D(U) : T (ψjϕ).

Then suppTj ⊂ Kj+1 and thus Tj ∈ D ′c(U). Let φ ∈ D(U) and suppφ =: K. This implies

∀j ∈ N : suppψjϕ ⊂ K.

For almost every j, we obtain ψj |K = 1, thus

ψjϕ
D(U)

// ϕ .

Since T is continuous
Tj(ϕ) = T (ψjϕ)

C
// T (ϕ) .

By definition, this implies
Tj

D ′(U)
// T .

5.4.5 Convention. From now on we will no longer distinguish between D ′c(U) and E ′(U).

5.4.6 Corollary. Lemma 5.1.5 may now be restated by saying that there are continuos
inclusions

D �
�

// S �
�

// E ,

E ′ �
�

// S ′ � � // D ′,

all of which have dense image. (We consider these spaces on U = R n. In case U 6= R n

one has to ignore S and S ′.)

5.4.7 Theorem (point support). Let T ∈ E ′(U) be of order k and suppose there exists
a ∈ U , such that suppT = {a}. Then there exists cα ∈ C , such that

T =
∑
|α|≤k

cα∂
αδa.

5.4.8 Lemma. The map 〈_〉 : E (U)→ D ′(U) is an embedding.

Proof. We already know that it is injective.
Step 1: !ToDo
Step 2: To see that the inverse is continuous, we have to show that for a sequence uj ∈
E (U), such that

〈uj〉
D ′(U)

// 0 ,

this implies
uj

E (U)
// 0 .
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Assume to the contrary there exists K b U and infinitely many j ∈ N (for notational
convenience we will assume all j ∈ N ), an ε > 0 and an α ∈ N n, such that

∀j ∈ N : ∀x ∈ K : |∂αxuj | ≥ ε > 0.

We may assume that K is connected, thus ∂αxuj is either stricly positive or negative. We
assume the further and choose ϕ ∈ D(U), 0 ≤ ϕ ≤ 1, such that ϕ|K ≡ 1. This implies

0 = | lim
j→∞

〈uj〉(∂αxϕ)| = |(−1)α lim
j→∞

〈∂αxuj〉(ϕ)| =
∫
U
∂αxuj(x)ϕ(x)dx ≥

∫
K
∂αxuj(x)ϕ(x)dx ≥ εµ(K),

which is a contradiction.

5.5. Convolutions

Remember the notation from 4.4.20.

5.5.1 Definition (Convolution). Let T ∈ D ′(R n) and ϕ ∈ D(R n). For any x ∈ R n define
τ̌x : R n → R n by y 7→ R(τ−x) = x− y. Then T ∗ ϕ : R n → C defined by

x 7→ T (ϕ ◦ τ̌x) = T (y 7→ ϕ(x− y))

is the convolution of T with ϕ.

5.5.2 Lemma (paramatrized Test functions). Let U ⊂ R n, V ⊂ Rm be open, Φ ∈
E (U × V ), K ⊂ U compact, such that supp Φ ⊂ K × V , T ∈ D ′(U). Then TV : V → C ,
defined by

y 7→ T (Φ(_, y))

is smooth and
∂αy TV = T (∂αy Φ(_, y)).

5.5.3 Theorem (Properties of convolutions).
(i) Convolution defines a bilinear map ∗ : D ′(R n)×D(R n)→ E (R n) and ∗ : E ′(R n)×

E (R n)→ E (R n).
(ii) In case T = 〈f〉, f ∈ L1

loc(R n)

〈f〉 ∗ ϕ = f ∗ ϕ.

(iii) The supports satisfy
supp(T ∗ ϕ) ⊂ suppT + suppϕ.

(iv) The differentiation theorem holds analogously as

∂α(T ∗ ϕ) = ∂αT ∗ ϕ = T ∗ ∂αϕ.

(v) ∗ is continuous in both factors.

Proof.
(i) Bilinearity follows from the definitions and the smoothness from Lemma 5.5.2.
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(ii) We calculate

∀x ∈ R n : (〈f〉 ∗ ϕ)(x) = 〈f〉(ϕ ◦ τ̌x)) =

∫
R n

f(y)ϕ(x− y)dy = (f ∗ ϕ)(x).

(iii) Let x ∈ R n such that
0 6= (T ∗ ϕ)(x) = T (ϕ ◦ τ̌x)).

This implies T 6= 0 and there exists some y ∈ suppT∩suppϕ (by 5.4.2). By definition
there exist yj ∈ {z ∈ R n|(ϕ ◦ τ−x)(z) 6= 0} such that yj → y. This implies

∀j ∈ N : 0 6= (ϕ◦τ−x)(yj) = ϕ(x−yj) =⇒ ∀j ∈ N : x−yj ∈ suppϕ =⇒ x−y ∈ suppϕ.

Alltogether
x ∈ suppT + suppϕ.

By taking the closure of all such x this implies the statement (since + is continuous).
(iv) We calculate

∂αx (T ∗ ϕ)(x) = ∂αx (T (ϕ ◦ τ̌x)))
5.5.2
= T (∂αx (ϕ ◦ τ̌x)) = T (∂αxϕ ◦ τ̌x)),

which on the one hand equals (T ∗ ∂αϕ)(x) and on the other hand

T (∂αx (ϕ ◦ τ̌x)) = T (∂αx (y 7→ ϕ(x− y))) = (−1)αT (∂αy (y 7→ ϕ(x− y)))

= ∂αT (ϕ ◦ τ̌x) = (∂αT ∗ ϕ)(x).

(v) Laut Hörmi ist immerhin T* stetig. (p. 101) !ToDo Assume

ϕj
D
// 0 .

This implies there exists a compact K ⊂ R n, such that ϕj ⊂ K. By definition T has
some order k on K. Thus

∀x ∈ R n : |T ∗ ϕj |(x) = |T (ϕj ◦ τ̌x)| ≤ C‖ϕj ◦ τ̌x)‖C k(K) = C‖ϕj‖C k(K) → 0.

Clearly this implies
∀x ∈ R n : ϕj ◦ τ̌x

D
// 0

and therefore
∀x ∈ R n : (T ∗ ϕj)(x) = T (ϕj ◦ τ̌x)

C
// 0

Tj
D ′
// 0

and let ϕ ∈ D(R n). Let K ⊂ R n be any compact subset. We obtain

‖Tj ∗ ϕ‖C k(K) = max
x∈K

max
|α|≤k

|∂α(Tj ∗ ϕ)|(x)

5.5.4 Lemma. Let ϕ ∈ C j
0 (R n), ψ ∈ C 0

c (R n). Then the Riemann sum satisfies

∑
k∈Z n ϕ ◦ τ̌khhnψ(kh)

h→0

C j0

// ϕ ∗ ψ
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5.5.5 Theorem (Associativity). Let T ∈ D ′(R n), ϕ,ψ ∈ D(R n). This implies

(T ∗ ϕ) ∗ ψ = T ∗ (ϕ ∗ ψ).

Proof. !ToDo

5.5.6 Lemma. For any f ∈ D(R n) we obtain

∀ϕ ∈ D(R n) : 〈T ∗ f〉(ϕ) = T (f̌ ∗ ϕ).

Proof. We just calculate

〈T ∗ f〉(ϕ) =

∫
R n

(T ∗ f)(y)ϕ(y)dy =

∫
R n

(T ∗ f)(−y)ϕ(−y)dy =

∫
R n

(T ∗ f)(0− y)ϕ̌(y)dy

= ((T ∗ f) ∗ ϕ̌)(0)
5.5.5
= (T ∗ (f ∗ ϕ̌))(0) = T (f ∗ ϕ̌ ◦ τ̌0) = T (f̌ ∗ ϕ),

where in the last step we used that

((f∗ϕ̌)◦τ̌0)(x) = (f∗ϕ̌)(−x) =

∫
R n

f(−x− y)ϕ(−y)dy =

∫
R n

f̌(x+ y)ϕ(−y)dy = (f̌∗ϕ)(x).

5.5.1. Singular Support, Regularity, Regularization

Approximation is a standard application of the convolution in classical calculus. We are
now in a position to further develop this theory in the context of distributions. In 5.1.7 we
considered a distribution T to be regular if it may be identified with a function f ∈ L1

loc.
The general idea behind this is, that a distribution is something of ”worse” regularity than
a function. However this way of thinking has two serious disadvantages: First of all L1

loc is
not a space of particularly ”nice” functions. So even a ”regular distribution” in the above
sense is still a rather ”irregular” object. The second problem is, that this point of view
is rather rigid: Just as a function it may be very regular somewhere and very irregular
somewhere else. The following definition makes this idea precise.

5.5.7 Definition (Singular Support). Let T ∈ D ′(U). Then

sing-suppT := U \ {x ∈ U | ∃V ⊆̊U : ∃f ∈ E (V ) : T |U = 〈f〉}

is the singular support of T . We say T is smooth if T = 〈f〉 for some f ∈ E (U).

Notice the similarity to the definition of the support of T in 5.4.1.

5.5.8 Lemma (Smooth Approximation). Let T ∈ D ′(R n) and let ηε be the standard
mollifier from 4.4.5 (or any other Dirac sequence). This implies

〈T ∗ ηε〉
ε↘0

D ′
// T .

Proof. We already showed in Lemma 5.5.6 that

∀ϕ ∈ D(R n) : 〈T ∗ ηε〉(ϕ) = T (η̌ε ∗ ϕ).
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Theorem 4.4.6 from classical calculus implies

η̌ε ∗ ϕ
r↘0

D
// ϕ ,

and thus
T (η̌ε ∗ ϕ)

r↘0

C
// T (ϕ) .

Therefore
〈T ∗ ηε〉

D ′
// T .

5.5.9 Theorem (Smooth Approximation). The map 〈_〉 : D(U) → D ′(U) has dense
image. So for any distribution T ∈ D ′(U) there exists Φj ∈ D(U), such that

〈Φj〉
D ′
// T .

Proof. Let T ∈ D ′(U). We already showed in Theorem 5.4.4, that E (U) ⊂ D(U) is dense.
Therefore there exist Tj ∈ E (U), such that

Tj
D ′
// T .

Let K ⊂ U be compact. We also showed in 5.4.4, that there exists j(K) ∈ N , such that

∀j ≥ j(K) : ∀ϕ ∈ DK(U) : Tj(ϕ) = T (ϕ). (5.8)

Let
Kj := {x ∈ U | |x| ≤ j and d(x,R n \ U) ≥ 1

j
},

where the second condition is dropped in case U = R n. Let ηε be the standard mollifier.
Define

Φj := Tj(K2j) ∗ ηε(j),

where ε(j) := 1
3j . By Theorem 5.5.3 we obtain Φj ∈ D(U). We have to show, that

∀ϕ ∈ D(U) : 〈Φj〉(ϕ)
C
// T (ϕ) .

Therefore let ϕ ∈ D(U). There exists l ∈ N , such that suppϕ ⊂ Kl. This implies

∀j ≥ l : 〈Φj〉(ϕ) = 〈Tj(K2j) ∗ ηε(j)〉(ϕ)
5.5.6
= Tj(K2j)(η̌ε(j) ∗ ϕ)

(5.8)
= T (η̌ε(j) ∗ ϕ). (5.9)

Now

∀j ≥ l : supp(η̌ε(j)) ∗ ϕ) ⊂ supp η̌ε(j)) + suppϕ ⊂ B1/(3j)(0) +Kj ⊂ K2j ,

which is compact. By classical calculus (!ToDo ref)

∀k ∈ N : η̌ε(j) ∗ ϕ
j→∞

C k(U)
// ϕ .

This implies

η̌ε(j) ∗ ϕ
j→∞
D(U)

// ϕ

and therefore
T (η̌ε(j) ∗ ϕ)

j→∞
C
// T (ϕ) .

By (5.9) this implies the statement.
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5.5.2. Distributional Convolution

We are in a rather assymetric situation so far since we only defined the convolution of a
distribution with a function. In this subsection we will go one step further and define the
convolution of two distributions. Unfortunately this is not always possible. Before we can
start, we require the following technical lemma.

5.5.10 Lemma (Translation invariance).
(i) The convolution ∗ : D ′(R n)×D(R n)→ E (R n) commutes with all translations, i.e.

∀h ∈ R n : (T ∗ ϕ) ◦ τh = T ∗ (ϕ ◦ τh).

(ii) Conversely, let F : D(R n)→ E (R n) is a continuous linear map, that commutes with
all translations, there exists a unique distribution T ∈ D ′(R n), such that

∀ϕ ∈ D(R n) : F (ϕ) = T ∗ ϕ.

(iii) In particular: Two distributions T1, T2 ∈ D ′(R n) are equal if and only if

∀ϕ ∈ D(R n) : T1 ∗ ϕ = T2 ∗ ϕ.

Proof.
(i) Let h, x ∈ R n be arbitrary. The simple calculation

∀y ∈ R n : (τh ◦ τ̌x)(y) = τh(x− y) = x− y + h = x+ h− y = τ̌x+h(y)

directly implies

((T ∗ ϕ) ◦ τh)(x) = (T ∗ ϕ)(x+ h) = T (ϕ ◦ τ̌x+h) = T (ϕ ◦ τh ◦ τ̌x) = (T ∗ (ϕ ◦ τh))(x).

(ii) The hypothesis can be expressed more precisely by

∀h ∈ R n : ∀ϕ ∈ D(R n) : F (ϕ) ◦ τh = F (ϕ ◦ τh). (5.10)

Step 1 (Uniqueness): Assume there exists a distribution T ∈ D ′(R n), such that
F (ϕ) = T ∗ ϕ. This implies

T (ϕ) = T (ϕ ◦ τ̌0) = (T ∗ ϕ)(0) = F (ϕ)(0).

Step 2 (Existence): So we have no choice but to define T : D(R n)→ C by

ϕ 7→ F (ϕ)(0) = δ0(F (ϕ)),

which is a distribution. By hypothesis it satisfies

F (ϕ)(x) = (F (ϕ) ◦ τx)(0)
(5.10)

= F (ϕ ◦ τx)(0) = T (ϕ ◦ τx) = (T ∗ ϕ)(x).

(iii) This follows by combining (i) with (ii).
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5.5.11 Theorem and Definition. Let T1, T2 ∈ D ′(R n) and let at least one of them be
compactly supported. The map F : D(R n) → E (R n), F (ϕ) = T1 ∗ (T2 ∗ ϕ) is linear,
translation invariant and continuous. The unique distribution T , such that

∀ϕ ∈ D(R n) : T1 ∗ (T2 ∗ ϕ) = T ∗ ϕ

is the convolution of T1 and T2. We define

T1 ∗ T2 := T.

By construction the convolution between distributions is associative with the convolution
of a distribution and a function, i.e.

∀ϕ ∈ D(R n) : (T1 ∗ T2) ∗ ϕ = T1 ∗ (T2 ∗ ϕ). (5.11)

Proof. The map F is linear and continuous by Theorem 5.5.3 and translation invariant
by 5.5.10,(i). Hence by Lemma 5.5.10,(ii) there exists a unique distribution T , such that

∀ϕ ∈ D(u) : T ∗ ϕ = F (ϕ) = T1 ∗ (T2 ∗ ϕ).

Before we prove anything about this distributional convolution, we notice, that we obtain
another equality criterion for distributions.

5.5.12 Lemma. Two distributions T1, T2 ∈ D ′(R n) are equal if and only if

∀ϕ,ψ ∈ D(R n) : T1 ∗ (ϕ ∗ ψ) = T2 ∗ (ϕ ∗ ψ).

Proof. By Theorem 5.5.5 the hypothesis implies

∀ϕ,ψ ∈ D(R n) : (T1 ∗ ϕ) ∗ ψ = (T2 ∗ ϕ) ∗ ψ.

By Theorem 5.5.3,(ii) this is equivalent to

∀ϕ,ψ ∈ D(R n) : 〈T1 ∗ ϕ〉 ∗ ψ = 〈T2 ∗ ϕ〉 ∗ ψ.

By Lemma 5.5.10,(iii), this implies

∀ϕ ∈ D(R n) : 〈T1 ∗ ϕ〉 = 〈T2 ∗ ϕ〉.

Since 〈_〉 is injective by 5.1.7, this implies

∀ϕ ∈ D(R n) : T1 ∗ ϕ = T2 ∗ ϕ.

Using 5.5.10,(iii) again, this implies the statement.

5.5.13 Theorem (Properties of Convolutions). Let T, T1, T2, T3 ∈ D ′(R n), f ∈ D(R n).
(i) If one of the three distributions has compact support

(T1 ∗ T2) ∗ T3 = T1 ∗ (T2 ∗ T3).

(ii) The convolution may be explicitely computed by

(T1 ∗ T2)(ϕ) = T1(Ť2 ∗ ϕ).
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(iii) The convolution is commutative, i.e.

T1 ∗ T2 = T2 ∗ T1.

(iv) The delta distribution is a neutral element, i.e.

∀a ∈ R n : δa ∗ f = f and T ∗ δa = T.

(v) The support containment remains valid, i.e.

supp(T1 ∗ T2) ⊂ suppT1 + suppT2.

Proof.
(i)
(ii)
(iii) The idea is to use the equality criterion 5.5.12. For any ϕ,ψ ∈ D(R n) we calculate

(T1 ∗ T2) ∗ (ϕ ∗ ψ)
(5.11)

= T1 ∗ (T2 ∗ (ϕ ∗ ψ))
5.5.5
= T1 ∗ ((T2 ∗ ϕ) ∗ ψ)

4.4.2,(iv)
= T1 ∗ (ψ ∗ (T2 ∗ ϕ))

5.5.5
= (T1 ∗ ψ) ∗ (T2 ∗ ϕ)

4.4.2,(iv)
= (T2 ∗ ϕ) ∗ (T1 ∗ ψ) = (T2 ∗ T1) ∗ (ϕ ∗ ψ),

where in the last step we applied all the others before in reversed order and with the
roles of T1, T2 interchanged.

(iv)
(v) Let ηε be the standard mollifier. We obtain

supp((T1∗T2)∗ηε) = supp(T1(T2∗ηε))
5.5.3,(iii)
⊂ suppT1+supp(T2∗ηε) ⊂ suppT1+suppT2+Bε(0).

This holds for any ε > 0 and therefore the statement follows from 5.5.8.

5.5.14 Theorem (Singular Support). Let T1, T2 ∈ D ′(R n). Then

sing-supp(T1 ∗ T2) ⊂ sing-suppT1 + sing-suppT2.

Proof. Hörmi 4.2.5

5.6. Products

!ToDo Hier unbedingt nochmal in den Friedlander / Joshi schauen We already encountered
distributions over product spaces as some technical issues in proofs. In this chapter we
will systematically introduce this topic and prove Schwartz’ celebrated Kernel Theorem.
In this section let U1 ⊆̊R n1 and U2 ⊆̊R n2 .

5.6.1 Definition (Tensor product). For any two functions ϕ ∈ D(U), ψ ∈ D(V ), the
function ϕ⊗ ψ : U × V → C defined by

(x, y) 7→ ϕ(x)ψ(y),

is the tensor product of ϕ and ψ.

Tensor products behave fantastically with respect to integration.
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5.6.2 Lemma (Properties of tensor products).
(i) We obtain ϕ⊗ ψ ∈ D(U × V ),

∀K b U × V : ∀k ∈ N : ‖ϕ⊗ ψ‖C k(K) ≤ ‖ϕ‖C k(πU (K))‖ψ‖C k(πV (K))

and
suppϕ1 ⊗ ϕ2 = suppϕ1 × suppϕ2.

(ii) For any ϕ1 ∈ D(U1), ϕ2 ∈ D(U2)∫
U1×U2

(ϕ1 ⊗ ϕ2)(x, y)d(x, y) =

∫
U1

ϕ1(x)dx

∫
U2

ϕ2(y)dy.

(iii) Furthermore the generated regular distributions satisfy

〈ϕ1 ⊗ ϕ2〉(ψ1 ⊗ ψ2) = 〈ϕ1〉(ψ1) · 〈ϕ2〉(ψ2).

(iv) The tensor product defines a continuous bilinear map ⊗ : D(U)×D(V )→ D(U×V ).

Proof. (i)
(ii)
(iii)
(iv) We show, that ⊗ is continuous in both factors. Since the situation is symmetric it

suffices to check, that it is continuous in the first factor. Therefore assume there is a
sequence ϕj ∈ D(U), such that

ϕj
D(U)

// 0

and let ψ ∈ D(V ) be arbitrary. By definition there exists a compact K b U , such
that all j satisfy ϕj ⊂ K and

∀k ∈ N : ϕj
C k(K)

// 0 .

By definition there exists a compact L b V , such that suppψ ⊂ L. Therefore

∀j ∈ N : suppϕj ⊗ ψ ⊂ K × L b U × V

and
∀k ∈ N : ‖ϕj ⊗ ψ‖C k(K×L) ≤ ‖ϕj‖C k(K)‖ψ‖C k(L) → 0.

The fact that regular distributions are dense gives rise to the hope, that the distribution
space over a product behaves equally nice.

5.6.3 Theorem and Definition. Let T1 ∈ D ′(U1), T2 ∈ D ′(U2). There exists a distri-
bution T ∈ D ′(U1 × U2), such that

∀ϕ1 ∈ D(U1) : ∀ϕ2 ∈ D(U2) : T (ϕ1 ⊗ ϕ2) = T1(ϕ1)T2(ϕ2) (5.12)

and any two distributions T, T ′ ∈ D ′(U1×U2) which agree on all tensor products are equal.
This distribution satisfies

∀ψ ∈ D(U × V ) : T (ψ) = T1(x1 7→ T2(x2 7→ ψ(x1, x2))) = T2(x2 7→ T1(x1 7→ ψ(x1, x2)))
(5.13)
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and is called the tensor product of T1 and T2. We define

T1 ⊗ T2 := T.

Analogous statements hold if D ′ is replaced by E ′.

Proof.
Step 1 (Uniqueness): It suffices to check the following: Let T ∈ D ′(U1 × U2) be a distri-
bution satisfying

∀ϕ1 ∈ D(U1) : ∀ϕ2 ∈ D(U2) : T (ϕ1 ⊗ ϕ2) = 0, (5.14)

then T = 0. In 4.4.5 we constructed the function η for an arbitrary R n. Let ηj ∈ C∞(Rnj ),
j = 1, 2, be these functions and (η1)ε, (η2)ε be the associated dirac sequences as in 4.4.5.
Then ηε := (η1)ε ⊗ (η2)ε is a dirac sequence in R n1+n2 . Therefore by 5.5.8

〈T ∗ ηε〉
ε↘0

D ′()
// T .

Now for any (x1, x2) ∈ U1 × U2

(T ∗ ηε)(x1, x2) = T (ηε ◦ τ̌x1,x2) = T (((η1)ε ◦ τ̌x1)⊗ ((η2)ε ◦ τ̌x2))
(5.14)

= 0.

!ToDo: Hörmander argumentiert hier irgendwie anders. Kann sein, dass das Problem darin
besteht, dass T eigentlich keine Distribution auf R n is.
Step 2 (Existence): We wil define the distribution T : D(U1 × U2) → C as follows: Let
ϕ ∈ D(U1 × U2) and first assume there are compact subsets Kj ⊂ Uj , j = 1, 2, such that

suppϕ ⊂ K1 ×K2. (5.15)

Since Tj is a distribution

∃Cj > 0 : ∀ϕj ∈ DKj (Uj) : |T (ϕj)| ≤ Cj‖ϕj‖C kj (Kj)
. (5.16)

Define Iϕ : U1 → C by
x1 7→ T2(x2 7→ ϕ(x1, x2)).

By Lemma 5.5.2 Iϕ ∈ DK1(U1) and

∀α ∈ N n2 : ∂αx1
Iϕ(x1) = T2(x2 7→ ∂αx1

ϕ(x1, x2)).

Therefore

|T1(Iϕ)|
(5.16)
≤ C1‖Iϕ‖C k1 (K1)

(5.16)
≤ C1C2‖ϕ‖C max(k1,k2)(K1×K2).

So by defining T (ϕ) := T1(Iϕ), we obtain a continuous functional on the subspace of all
ϕ ∈ D(U1 × U2) satisfying (5.15). Clearly all tensor products belong to this space and
satisfy

∀ϕj ∈ D(Uj) : T (ϕ1 ⊗ ϕ2) = T1(Iϕ1⊗ϕ2) = T1(x1 7→ T2(x2 7→ (ϕ1 ⊗ ϕ2)(x1, x2)))

= T1(x1 7→ T2(x2 7→ ϕ1(x1)ϕ2(x2))) = T1(x1 7→ ϕ1(x1)T2(x2 7→ ϕ2(x2))) = T1(ϕ1)T2(ϕ2),

thus (5.12) is satisfied on this subspace as well as the first part of (5.13) (by construction).
Now suppose ϕ ∈ D(U1 × U2) and suppϕ b K ⊂ U1 × U2 is arbitrary. Then K admits
a finite cover {Ui}i=1,...,N of product open sets. Take a partition of unity {ψi}i=1,...,N
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subordinate to this cover. Then every ψiϕ has a support contained in a compact set that
is contained in the product of two compact set in U1 and U2. Therefore

T (ϕ) :=

N∑
i=1

ψiϕ

is defined by what we have already constructed and satisfies (5.12) and the first part of
(5.13) by what we have already proven. By uniqueness this definition does not depend on
the chosen partitions of unity. If we interchange the roles of j = 1 and j = 2 in this proof,
we obtain an operator T ′ satisfying the same properties, but the second part of (5.13)
instead of the first one. Again by uniqueness they have to agree.

The following is the most important and most famous theorem concerning distributions
over product spaces.

5.6.4 Theorem and Definition (Schwartz kernel theorem).
(i) Let K ∈ D ′(U1 × U2). Then K : D(U2)→ D ′(U1) defined by

ψ 7→ (ϕ 7→ K(ϕ⊗ ψ)) (5.17)

is a continuous linear operator.
(ii) For any continuous linear operator K : D(U2) → D ′(U1) there exists a unique

K ∈ D ′(U1 × U2), such that (5.17) holds. We call K the Schwartz kernel of K .

Proof.
(i) The linearity is obvious.

Step 1 (K (ψ) is continuous): We have to show, that for any ψ ∈ D(U2), we obtain
K (ψ) ∈ D ′(U1). To that end let ϕj ∈ D(U1), such that

ϕj
D(U1)

// 0 .

By 5.6.2 ⊗ is continuous in both factors. Therefore, this implies

ϕj ⊗ ψ
D(U1×U2)

// 0

and since K is continuous, this implies

K (ψ)(ϕj) = K(ϕj ⊗ ψ)
C
// 0 .

Step 2 (K is continuous): Now assume that

ψj
D ′(U2)

// 0 .

Now let ϕ ∈ D(U1) be arbitrary. Again since ⊗ is continuous by 5.6.2, we obtain

ψj ⊗ ϕ
D(U1×U2)

// 0

and since K is continuous, we obtain

K(ψj)(ϕ) = K(ψj ⊗ ϕ)
C
// 0 .

Since ϕ was arbitrary,
K(ψj)

D ′(U2)
// 0 .
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(ii) We split the proof into two parts.
Step 1 (Uniqueness): This is the easy part: Assume there are two distributions
K1,K2 ∈ D ′(U1 × U2), such that

∀ϕ ∈ D(U1) : ∀ϕ2 ∈ D(U2) : K1(ϕ× ψ) = K (ψ)(ϕ) = K2(ϕ⊗ ψ).

Then the uniqueness part of 5.6.3 immediately implies K1 = K2.
Step 2 (Existence): This is the hard part. Let j = 1, 2.
Step 2.1: By definition there are constants C > 0, kj , such that

∀ϕ ∈ DK1(U1) : ∀ψ ∈ DK2(U2) : |K (ϕ)(ψ)| ≤ C‖ϕ‖C k1 (K1)‖ψ‖C k2 (K2). (5.18)

Thus β : DK1(U1)×DK2(U2)→ C , (ϕ,ψ) 7→ K (ϕ)(ψ), is continuous in both factors.
Since the domains are Frechét spaces, this implies that β is continuous (c.f. 3.2.2).
Step 2.2 (Construction of Kε): Choose functions ψj ∈ D(R nj ), j = 1, 2, satisfying

ψj ≥ 0,

∫
R nj

ψj(x)dx = 1, suppψj ⊂ B1(0) ⊂ R nj ,

for example the function η from 4.4.5 (for n = n1, n2). Notice that

supp
(
yj 7→ ψ

(xj − yj
ε

))
⊂ Bε(xj). (5.19)

Assume that Kj ⊂ Uj is a compact neighbourhood of the open sets Yj ⊂ Kj ⊂ Uj
and that 0 < ε < d(Yj , Uj \Kj). Define Kε : Y1 × Y2 → C by

(x1, x2) 7→ε−n1−n2K
(
y2 7→ ψ2

(x2 − y2

ε

))(
y1 7→ ψ1

(x1 − y1

ε

))
This is well-defined by (5.19) and the choice of ε.
Step 2.3 (Wait!): Let’s make some explainatory (logically superflous) remarks here
to clarify, why we chose Kε as we have done: Assume we had already found our
desired (such that (5.17) holds) K ∈ D ′(Y1 × Y2). Then by 5.5.8 this would imply

〈K ∗Ψε〉
ε↘0

D ′(Y1×Y2)
// K .

Now the definition of Kε states precisely that

Kε(x1, x2) = K
(
y2 7→ ε−n2ψ2

(x2 − y2

ε

))(
y1 7→ ε−n1ψ1

(x1 − y1

ε

))
(5.17)

= K((ψ1)ε ◦ τ̌x1 ⊗ (ψ2)ε ◦ τ̌x2) = K((ψ1)ε ⊗ (ψ2)ε︸ ︷︷ ︸
=:Ψε

◦τ̌(x1,x2)) = (K ∗Ψε)(x1, x2).

Thus Kε = K ∗Ψε. Of course this is not a proof, since we have not yet constructed
K, but it outlines the way how to do it.
Step 2.4 (Kε has a limit): We would like to show, that 〈Kε〉 has a limit K ∈
D ′(Y1 × Y2) and that this is the K we are looking for. By (5.18) we obtain

∀(x1, x2) ∈ Y1 × Y2 : |Kε(x1, x2)| ≤ C‖ψ1 ◦ τ̌x1‖C k1 (K1)‖ψ2 ◦ τ̌x2‖C k2 (K1) ≤ C
′ε−µ,
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where µ := n1 + n2 + k1 + k2.
Now let ψ ∈ E (R n) be arbitrary and define ψj(x) := −xjψ(x). We calculate

ε∂ε(ε
−nψ(x/ε)) +

n∑
j=1

xj∂xj (ε
−nψ(x/ε))

= −nεnψ(x/ε)− ε−n+1
n∑
j=1

∂jψ(x/ε)ε−2 + ε−n−1
n∑
j=1

xj∂xjψ(x/ε)

= −nεnψ(x/ε)

n∑
j=1

∂xj (ε
−nψj(x/ε)) = −ε−n

n∑
j=1

∂xj (xjψ(x/ε)) = −ε−n
n∑
j=1

ψ(x/ε) + xj∂j(ψ)(x/ε)ε−1

= −nε−nψ(x/ε)− ε−n−1
n∑
j=1

xj(∂jψ)(x/ε)

= ε∂ε(ε
−nψ(x/ε)) +

n∑
j=1

xj∂xj (ε
−nψ(x/ε))− ε−n−1

n∑
j=1

xj(∂jψ)(x/ε)

= ε∂ε(ε
−nψ(x/ε)) + ε−n−1

n∑
j=1

xj∂xj (ψ)(x/ε))− ε−n−1
n∑
j=1

xj∂xj (ψ)(x/ε)

= ε∂ε(ε
−nψ(x/ε))

∂ε(ε
−nψ(x/ε)) = −nε−n−1ψ(x/ε)− εn−2

n∑
j=1

∂jψ(x/ε)

!ToDo

5.6.5 Theorem (Smooth Kernels). Assume K ∈ E (U1 × U2). Then K has a continuous
extension K : E ′(U2)→ E (U1). In case K : E ′(U2)→ E (U1) is linear and continuous its
Schwarz Kernel K satisfies K ∈ E (U1 × U2)

.

Proof. !ToDo
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5.6.6 Theorem. Let U1 ⊆̊Rm1 , U2 ⊆̊Rm2 and F : U1 → U2 be smooth. Then

F ∗ : D(U2) → D ′(U1)
ψ 7→ 〈F ∗(ψ)〉

is a continuous operator and its Schwarz Kernel is given by

K : D(U1 × U2) → C
Φ 7→ 7→

∫
U1

Φ(x, F (x))dx.

Proof. The result will follow from the Schwarz Kernel Theorem 5.6.4 after we have proven
the following.

Step 1: We calculate for any ϕ ∈ D(U1), ψ ∈ D(U2)

〈F ∗(ψ)〉(ϕ) =

∫
U1

F ∗(ψ)(x)ϕ(x)dx =

∫
U1

ψ(F (x))ϕ(x)dx

=

∫
U1

(ϕ⊗ ψ)(x, F (x))dx = K(ϕ⊗ ψ)

(5.20)

Step 2 (F ∗ is continuous): Clearly F ∗ is linear. Assume

ψj
D(U2)

// 0

For any ϕ ∈ D(U1)

∀x ∈ U1 : ψj(F (x))ϕ(x)
C
// ψ(F (x))ϕ(x)

and |ψj(F (x))ϕ(x)| ≤ C|ϕ(x)| ∈ L1(U1). Thus, by Lebesgue dominated convergence,∫
U1
ψj(F (x))ϕ(x)dx

C
//
∫
U1
ψ(F (x))ϕ(x)dx .

By (5.20) this proves the claim.
Step 3 (K ∈ D ′(U1 × U2)): Assume

Φj
D(U1×U2)

// 0

and suppψj ⊂ L b U1 × U2. Define L1 := π1(L) b U1 and calculate

|K(Φj)| ≤
∫
U1

|Φj(x, F (x))|dx =

∫
L1

|Φj(x, F (x))|dx ≤ |L1|‖Φj‖C 0(U1×U2) → 0.
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5.7. Fourier Transform

Nach Hörmi Definition 7.1.1 D is Dense in S 7.1.8 Fourier is Iso S’->S’ 7.1.10 Fourier is
smooth 7.1.14 Distribuational Convolution Theorem 7.1.15 Dualization of Diagonalization
Properties
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5.7.1 Theorem (positive Distributions). Let u ∈ D ′(U) be positive , i.e.

∀ϕ ∈ D(U) : ϕ ≥ 0 =⇒ u(ϕ) ≥ 0.

Then there exists a Borel-measure µ, such that

u(ϕ) =

∫
U
ϕdµ.
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6. Sobolev Spaces

”We are Grey. We stand between the darkness and the light.”
Delenn, 2259

We have gone to heaven, we have gone to hell. Now we are down to earth. Functions in
a Sobolev space are beeings in between. The first major problem one encounters when
starting Sobolev theory is the definition of the Sobolev spaces. In the literature you will
find dozens of definitions on different levels of abstraction suited for a large variety of
different purposes. Dealing with all these purposes and treating Sobolev spaces completely
is far beyond the scope of this book. In a first step we will however introduce some common
definitions and show that they agree whenever this is senseful. Then we will establish all
the theorems suited for our purpose, namely the study of pseudo-differential operators on
hermitian vector bundles.

6.1. Local Theory

6.1.1 Lemma. For any s ∈ R there exist constants c1, c2 > 0, such that

∀ξ ∈ R n : c1(1 + |ξ|)2s ≤ (1 + |ξ|2)s ≤ c2(1 + |ξ|)2s.

Proof. All expressions are positive, so taking the power to s is legitimate as well as taking
the power to 1/s. Therfore it suffices to check the statement for s =1.
By the binomic formulae

(1 + |ξ|)2 = 1 + |ξ|2 + 2|ξ|.

Therefore

(1 + |ξ|)2

1 + |ξ|2
= 1 +

2|ξ|
1 + |ξ|2

|ξ|→∞
// 1 ,

1 + |ξ|2

(1 + |ξ|)2
=

1 + |ξ|2

1 + |ξ|2 + 2|ξ|
≤ 1.

Since convergent series are bounded, the result follows.

6.1.2 Lemma. For any k ∈ N there are constants c1, c2 > 0, such that

c1(1 + |ξ|)k ≤
∑
|α|≤k

6.1.3 Definition (Sobolev Space). For any s ∈ R define the s scalar product 〈_,_〉s :
S ×S → C by

〈f, g〉s := 〈(1 + |ξ|)sF(f), (1 + |ξ|)sF(g)〉L2(R n) =

∫
R n

(1 + |ξ|)2s〈F(f),F(g)〉C rdξ

and denote by ‖_‖s the induced norm. The completion of (S , ‖_‖s) with respect to this
norm is the Sobolev space of order s. We denote this space by

Hs := S ‖_‖s

The following facts are immediate.
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6.1.4 Lemma. Let s ∈ R .
(i) The norm ‖_‖s is equivalent to

|f |2s :=

∫
R n

(1 + |ξ|2)s|F (f)(ξ)|2dξ.

(ii) The space (S , 〈_,_〉s) is a pre-Hilbert space.
(iii) Hs is a Hilbert space.
(iv) S ⊂ Hs is dense.
(v) If s′ > s, then Hs′ ⊂ Hs and the inclusion ι : Hs′ ↪→ Hs is continuous.
(vi) For any s > 0 there is an inclusion Hs ↪→ L2.

Proof.
(i) This follows directly from 6.1.1.
(ii) Since ∀ξ ∈ R n : 1 + |ξ| 6= 0, this is clear.
(iii) By definition.
(iv) By definition.
(v) ...
(vi) This follows from the fact, that H0 ∼= L2.

6.1.5 Definition. Let U ⊂ R n be any open. For any s ∈ R , we define

Hs(U) := C∞c (U)
‖_‖s

i.e.

Hs(U) is the closure of C∞c (U) with respect to the ‖_‖s-norm.

6.1.6 Lemma. Hs(R n) = Hs.

Proof. It suffices to check that C∞c (R n) ⊂ S is dense with respect to the ‖_‖s-norm.
Therefore let f ∈ S , let R n = ∪k∈NBk(0) be an open cover, let {ψk}k∈N be a partition
of unity subordinate to this cover and fk := ψkf ∈ C∞c (R n). Clearly

fk p.w.
// f , |fk| ≤ |f |.

Thus by Lebesgue dominated convergence, we obtain

fk
L2(R n)

// f .

Since the Fourier transform is continuous in this topology by Plancharel’s Theorem (c.f.
??), we obtain

F(fk)
L2(R n)

// F(f) .

This implies
fk ‖_‖s

// f .
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6.1.7 Theorem (positive integer case). Let k ∈ N>0. The norms ‖_‖k and

‖f‖2Wk,2 =
∑
|α|≤k

∫
R n

|∂αf(x)|2dx

are equivalent on S .

Proof. By 6.1.4,(i) the norm ‖_‖k is equivalent to |_|k. It therefore suffices to check that
|_|k is equivalent to ‖_‖Wk,2 .
Step 1: We claim that there are constants C1, C2 > 0, such that

∀ξ ∈ R n : C1(1 + |ξ|2)k ≤
∑
|α|≤k

|ξα|2 ≤ C2(1 + |ξ|2)k. (6.1)

To see the left inequality let k′ be Hölder conjugate to k. By the Hölder inequality on
R n+1

1 + |ξ|2 = |〈(1, . . . , 1)(1, ξ2
1 , . . . , ξ

2
n)〉R n+1 | ≤ ‖(1, . . . , 1)‖k′‖1, ξ2

1 , . . . , ξ
2
n)‖k,

which implies

(1 + |ξ|2)k ≤ ‖(1, . . . , 1)‖kk′︸ ︷︷ ︸
=:C−1

1

(
1 +

n∑
j=1

ξ2k
j

)
≤ C−1

1

∑
|α|≤k

|ξα|2,

where the last inequality holds since on the right and side we are summing positive numbers
over a larger index set: In particular we sum over α = 0, which corresponds to the summand
|ξ0|2 = 1 on the left and side. And among all the |α| = k there are in particular all the
kej , 1 ≤ j ≤ n, which corresponds to the summands |ξkej |2 = ξ2k

j on the left hand side.
On the other hand since |ξα| ≤ |ξ||α| by A.2.1, we obtain∑
|α|≤k

|ξα|2 ≤
∑
|α|≤k

(|ξ|2)|α| ≤
∑
|α|≤k

(1 + |ξ|2)|α| ≤
∑
|α|≤k

(1 + |ξ|2)k ≤ (1 + |ξ|2)k
∑
|α|≤k

1

︸ ︷︷ ︸
=:C2

.

Step 2: We calculate

|f |2k =

∫
R n

|(1 + |ξ|2)k|F (f)(ξ)|2dξ
(6.1)
≤ C−1

1

∑
|α|≤k

∫
R n

|ξαF(f)(ξ)|2dξ 4.4.22
=

∑
|α|≤k

∫
R n

|F(∂αf)(ξ)|2dξ

??
=
∑
|α|≤k

∫
R n

|∂α(f)(ξ)|2dξ = ‖f‖2Wk,2

and similar

‖f‖2Wk,2 =
∑
|α|≤k

∫
R n

|∂αf(ξ)|2dξ ??
=
∑
|α|≤k

∫
R n

|F(∂αf)(ξ)|2dξ 4.4.22
=

∑
|α|≤k

∫
R n

|ξαF(f)(ξ)|2dξ

(6.1)
≤ C2

∫
R n

(1 + |ξ|2)k|F(f)(ξ)|2dξ = C2|f |2k.
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6.1.8 Lemma. For any α ∈ C , the map Λα : S → S , f 7→ Λα(f), where Λα(f)(ξ) :=
F−1((1 + |ξ|)2α(F(f)(ξ))), exstends to an isometry Hs → Hs−Reα whith inverse Λ−α. For
any β ∈ C , Λα+β = Λα + Λβ .

Proof. We calculate

‖Λα(f)‖2s−Reα =

∫
R n

(1 + |ξ|)2s−2 Reα|(1 + |ξ|)2α(F(f)(ξ))|

=

∫
R n

(1 + |ξ|)2s−2 Reα(1 + |ξ|)2 Reα|(F(f)(ξ))| = ‖f‖2s.

For any β ∈ C

Λα+β(f) = F−1((1+|ξ)α+β(F(f)(ξ)) = F−1((1+|ξ)αF(F−1((1+|ξ)β(F(f)(ξ)))) = (Λα◦Λβ)(f).

and clearly Λ0(f) = f . This implies the statement.

6.1.9 Theorem (Sobolev Interpolation). Let s, s′, t, t′ ∈ R , such that s < t and s′ < t′.
Assume T ∈ L (Hs, Hs′) and T (Ht) ⊂ Ht′ . Then for any θ ∈ [0, 1]

T ∈ L (Hθt+(1−θ)s, Hθt′+(1−θ)s′).

Proof. The case θ = 0 holds by hypothesis. We will prove the continuity by the closed
graph theorem.
Step 1 (Case θ = 1): We have to show that T ∈ L (Ht, Ht′). To that end assume

xn
Ht
// x , Txn

Ht′
// y .

By 6.1.4, the inclusions Ht ↪→ Hs and Ht′ ↪→ Hs′ are continuous. Thus

xn
Hs
// x , Txn

Hs′
// y .

By hypothesis T : Hs → Hs′ is continuous. Therefore T (x) = y in Hs′ and thus in Ht′ .
Step 2 (Case 0 < θ < 1): Let f, g ∈ S and define u : Ω̄ :→ C , z 7→ 〈f, (Λ(1−z)s′+zt′ ◦
T ◦ Λ(z−1)s−zt)(g)〉. Here we use the notation of Lemma 6.1.8 above. The function u is
holomorphic on Ω. Let z ∈ Ω̄ and calculate

|u(z)| = |〈f, (Λ(1−z)s′+zt′(T (Λ(z−1)s−zt)(g)))〉L2 | = |〈Λz̄(t′−s′)(f),Λs
′
(T (Λ−s(Λz(s−t))(g)〉L2 |

≤ ‖Λz̄(t′−s′)(f)‖L2‖Λs′(T (Λ−s(Λz(s−t))(g)‖L2 ≤ ‖Λt′−s′(f)‖L2‖T‖s−>s′‖Λs−t(g)‖L2 ,
(6.2)

where the last inequality can be seen as follows: Since z ∈ Ω̄, we obtain Re z ∈ [0, 1]. Since
t′ − s′ > 0 by hypothesis, this implies

|(1 + |ξ|)2(t′−s′)z̄| = |(1 + |ξ|)2(t′−s′) Re z| ≤ |(1 + |ξ|)2(t′−s′)|.

Thus Plancharel’s Theorem implies

‖Λz̄(t′−s′)(f)‖2L2 = ‖F−1((1 + |ξ|)2z̄(t′−s′)(F((f))))‖2L2

≤ ‖(1 + |ξ|)Re z(t′−s′)(F((f)))‖2L2 = ‖Λt′−s′(f)‖2L2 .
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Similar, since s− t < 0 by hypothesis

|(1 + |ξ|)2(s−t)z| = |(1 + |ξ|)2(s−t) Re z| ≤ 1.

Again by Plancharel’s Theorem ‖Λ(s−t)z(g)‖L2 ≤ Λs−t(g)‖L2 .
Furthermore,

‖Λs′ ◦ T ◦ Λ−s‖L (L2,L2) = ‖T‖L (Hs,Hs′ ) = ‖T‖s−>s′ .

by 6.1.8. The outcome of this is, that u is bounded on Ω̄ and holomorphic on Ω anyway.
Now we want to apply 3.3.1 and calculate for any y ∈ R

|u(iy)|
(6.2)
≤ ‖Λ−iy((t′−s′))(f)‖L2‖T‖s−>s′‖Λiy(s−t) ≤ ‖f‖L2‖g‖L2 | ‖T‖s−>s′︸ ︷︷ ︸

=:M0

|u(1 + iy)| = |〈f,Λ(1−(1+iy))s′+(1+iy)s′(T (Λ(1+iy−1)s−(1+iy)t(g)))〉|

= |〈f, (Λt′ ◦ T ◦ Λ−t)(g)〉| ≤ ‖f‖L2 ‖T‖t−>t′︸ ︷︷ ︸
=:M1

‖g‖

Thus by 3.3.1
∀θ ∈ [0, 1] : |u(θ + iy)| ≤M1−θ

0 M θ
1 ‖f‖L2‖g‖L2 .

In particular
|〈f,Λ(1−θ)s′+θt′TΛ(θ−1)s−θt︸ ︷︷ ︸

=:Tθ

g〉| ≤M1−θ
0 M θ

1 ‖f‖L2‖g‖L2 .

In particular Tθ ∈ L (L2, L2), thus T ∈ L (Hθt+(1−θ)s, Hθt′+(1−θ)s′).

6.1.10 Corollary. If T ∈ L (Hs1 , Hs1) and T : Hs2 → Hs2 , then

∀s ∈ [s1, s2] : T ∈ L (Hs, Hs).

6.1.11 Theorem (Sobolev Embedding Theorem). Let s ∈ R , k ∈ N , such that

s >
n

2
+ k.

Then there exists a constant Ks > 0, such that

∀f ∈ S : ‖f‖C k ≤ Ks‖f‖s.

Thus there exists a constinuous embedding Hs ↪→ C k. (Here C k = C k(R n)).

Proof.
Step 1: The hypothesis implies that

s >
n

2
+ k ⇒ s− k > n

2
⇒ −(k − s) > n

2
.

Therefore Lemma A.2.4 implies

(1 + |ξ|2)−
s−k

2 = (1 + |ξ|2)
k−s

2 ∈ L2(R n). (6.3)
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Step 2: Let f ∈ S and α ∈ N n, |α| ≤ k. Using the Fourier Inversion Theorem 4.4.26
and the Cauchy/Schwarz inequality, we obtain for any x ∈ R n

|∂αf(x)| ≤
∫
R n

|ei〈x,ξ〉F(∂αf)(ξ)|dξ 4.4.22
=

∫
R n

|ξαF(f)(ξ)|dξ

≤
∫
R n

(1 + |ξ|2)−
s−k

2 (1 + |ξ|2)
s−k

2 |ξ||α||F(f)(ξ)|dξ ≤ |〈(1 + |ξ|2)−
s−k

2 , (1 + |ξ|2)
s
2 |F(f)(ξ)|〉L2 |

≤ ‖(1 + |ξ|2)−
s−k

2 ‖L2︸ ︷︷ ︸
=:C

‖(1 + |ξ|2)
s
2 |F(f)(ξ)|‖L2 = C

(∫
R n

(1 + |ξ|2)s
)
|F(f)(ξ)|2dξ

) 1
2

= C|f |s.

Using 6.1.4,(i) and summing over all such α yields the result.

6.1.12 Theorem (Rellich Lemma). Let t < s, K b R n and (fj) ∈ Hs be a bounded
sequence of functions such that supp fj ⊂ K. Then there exists a subsequence (fjν ) which
converges in any Ht.

Proof. Assume that
∀j ∈ N : ‖fj‖s ≤ C.

Step 1: In a first step, we will show, that the hypothesis implies, that (f̂j) has a compactly
convergent subsequence (i.e. a subsequence that converges on any compact subsetK ′ b R n

with respect to ‖_‖C0(K′).)
Let ϕ ∈ C∞c (R n,C ), such that ϕ|K ≡ 1. For any j ∈ N , we obtain fj = ϕfj and therefore
by Theorem 4.4.19

f̂j = ϕ̂ ∗ f̂j
and by Theorem 4.4.3

∂α(f̂j) = ∂α(ϕ̂) ∗ f̂j .

By the Cauchy/Schwarz inequality, this implies for any ξ ∈ R n

|∂α(f̂j)(ξ)| ≤
∫
R n

|∂αξ (ϕ̂)(ξ − η)f̂j(η)|dη =

∫
R n

|∂αξ (ϕ̂)(ξ − η)(1 + |η|2)−
s
2 (1 + |η|2)

s
2 f̂j(η)|dη

= |〈|∂αξ (ϕ̂)(ξ − η)(1 + |η|2)−
s
2 |, (1 + |η|2)

s
2 |f̂j |(η)〉L2 |

≤ ‖∂αξ (ϕ̂)(ξ − η)(1 + |η|2)−
s
2 ‖L2︸ ︷︷ ︸

=:Kα(ξ)

‖(1 + |η|2)
s
2 f̂j(η)‖L2 = Kα(ξ)‖fj‖s ≤ Kα(ξ)C

!ToDo Warum liegt die Funktion in Kα(ξ) überhaupt in L2?
Since Kα is continuous, this implies that the sequence (∂α(f̂j)) is uniformly bounded on
any compact subset. By the mean value theorem, this implies that on any compact subset
K ′ all the f̂j are Lipschitz continuous with the same Lipschitz constant. In particular
they are equicontinuous on K ′. By the Arzelá-Ascoli Theorem (!ToDoRef) there exists a
‖_‖C0(K′)-convergent subsequence. By taking a compact exhaustion of R n and a diagonal
sequence argument, we may inductively construct a sequence that is compactly convergent
on all of R n.
Step 2: Now we prove the following claim: If (fj) ∈ Hs is bounded and f̂j is compactly
convergent, then for any t < s, (fj) converges in Ht.
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Since Ht is complete, it satisfies to check, that (fj) is a Ht-Cauchy-sequence. So assume
that ε > 0, t < s, fix any r > 0 and calculate

‖fj − fk‖2t =

∫
R n

(1 + |ξ|2)t|f̂j(ξ)− f̂k(ξ)|dξ

=

∫
Br(0)

(1 + |ξ|2)t|f̂j(ξ)− f̂k(ξ)|dξ︸ ︷︷ ︸
=:I1(r)

+

∫
R n\Br(0)

(1 + |ξ|2)t|f̂j(ξ)− f̂k(ξ)|dξ︸ ︷︷ ︸
=:I2(r)

Step 2.1: Now if |ξ| > r, we may estimate

(1 + |ξ|2)t = (1 + |ξ|2)t−s(1 + |ξ|2)s ≤ (1 + r2)t−s(1 + |ξ|2)s,

since t− s < 0. Therefore we may bound I2(r) by

I2(r) ≤ (1 + r2)t−s‖fj − fk‖2s.

Since (fj) is bounded in Hs, there exists a constant, such that ‖fj − fk‖2s ≤ C. Therefore
we have archieved:

∃r > 0 : ∀j, k ∈ N : I2(r) ≤ ε/2.

(Notice, that this would not have been possible if t = r.)
Step 2.2: Take such an r. Regardless how large it might be, B̄r(0) b R n is compact.
Define the constant

C ′ := (1 + |r|2)t) vol(Br(0)).

By hypothesis (f̂j) is compactly convergent and therefore in particular compactly Cauchy.
Consequently

∃N ∈ N : ∀j, k ≥ N : ‖f̂j − f̂k‖C0(B̄r(0)) ≤
ε

2C ′
.

Therefore

∀j, k ≥ N : I1(r) ≤ (1 + |r|2)t) vol(Br(0))‖f̂j − ĵk‖C0(B̄r(0)) <
ε

2
.

6.1.13 Theorem (Sobolev Representation Theorem). For any s ∈ R the L2 scalar product
S ×S → C

(f, g) 7→
∫
R n

〈f, g〉C r

has a continuous extension to Hs ×H−s → C that is non-degenerate.
The map B : H−s → (Hs)′, f 7→ (g 7→ 〈g, f̄〉L2) is an isometry (notice that (Hs)′ is a
Hilbert space as well.)

Proof.
Step 1 (Continuity & Extension): For any f, g ∈ S , we calculate

|〈f, g〉L2 | ??= |〈F(f),F(g)〉L2 | = |〈(1 + |ξ|)sF(f), (1 + |ξ|)−sF(g)〉L2 |
≤ ‖(1 + |ξ|)sF(f)‖L2‖(1 + |ξ|)−sF(g)‖L2 = ‖f‖s‖g‖−s. (6.4)

Thus there exists a continuous extension 〈_,_〉 : Hs ×H−s → C .
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Step 2 (Isometry): We now show that B is isometric. Of course we endow (Hs)′ with the
operator norm. For any f ∈ Hs, we obtain

‖B(f)‖(Hs)′ = sup
‖g‖s=1

|〈g, f̄〉|
(6.4)
≤ ‖f̄‖−s

4.4.21
= ‖f‖−s.

To see that this is actually an equality, define g0 := F−1(F(f̄)(1 + |ξ|)−2s). This implies

|B(f)(g0)| = |〈g0, f̄〉L2 | = |〈F(g0),F(f̄)〉L2 | = |〈F(f̄)(1 + |ξ|)−2s,F(f̄)〉L2 | = ‖f‖2−s.

On the other hand

‖g0‖2s =

∫
R n

(1 + |ξ|)2s|F(g0)(ξ)|2dξ =

∫
R n

(1 + |ξ|)2s|F(f̄)(ξ)(1 + |ξ|)−2s|2dξ

4.4.21
=

∫
R n

(1 + | − ξ|)−2s|F(f)(−ξ)|2dξ = ‖f‖2−s.

Combining this, we obtain

‖B(f)‖(Hs)′ ≥
∣∣∣B(f)

( g0

‖g0‖s

)∣∣∣ = ‖f‖−s.

This also proves, that 〈_,_〉L2 is not degenerate on Hs.
Step 3 (Surjectivity): By 3.2.3, B has closed image. Denote by Φ : Hs → (Hs)′, f 7→
〈_, f̄〉, the linear isometry from the Frechét-Riesz Representation theorem. Since S ⊂ Hs

is dense, Φ(S ) ⊂ (Hs)′ is dense as well by 3.2.4. Let l = Φ(f) ∈ Φ(S ). Define h :=

Λs(f̄) ∈ S ⊂ H−s. We calculate for any g ∈ Hs:

B(h)(g) = 〈g, h̄〉L2 = 〈g,Λs(f̄)〉L2 = 〈F(g),F(Λs(f̄)〉L2

=

∫
R n

F(g)(ξ)(1 + |ξ|)2sF(f̄)(ξ)dξ = 〈g, f̄〉s = Φ(f)(g) = l(g).

This implies Φ(S ) ⊂ imB and therefore

(Hs)′
3.2.4
= Φ(S ) ⊂ im(B) = imB.

Thus imB = (Hs)′.

6.1.14 Corollary. Let T, T ∗ : S → S be linear maps, such that

∀f, g ∈ S : 〈Tf, g〉 = 〈f, T ∗g〉.

Let s ∈ R and assume there exists c > 0, such that

∀f ∈ S : ‖Tf‖s ≤ c‖f‖s (6.5)

then T ∗ satisfies
∀g ∈ S : ‖T ∗g‖−s ≤ c‖g‖−s.

If (6.5) holds for any k ∈ N , then T extends to a bounded linear map T : Hk → Hk and
T ∗ extends to a bounded linear map T ∗ : H−k → H−k.
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Proof. Using 6.1.13, we calculate for any f, g ∈ S

|〈f, T ∗g〉L2 | = |〈Tf, g〉L2 | ≤ ‖Tf‖s‖g‖−s ≤ c‖f‖s‖g‖−s.

Consequently using 6.1.13 again, we obtain

‖T ∗g‖−s = ‖T ∗g‖−s = ‖B(T ∗g)‖(Hs)′ = sup
‖f‖s=1

|B(T ∗g)(f)|

= sup
‖f‖s=1

|〈B(T ∗g)(f)〉| = sup
‖f‖s=1

|〈f, T ∗g, 〉| ≤ c‖g‖−s.

Proof. Using 6.1.13, we calculate for any f, g ∈ S

|〈T ∗g, f〉| = |〈g, Tf〉| ≤ ‖g‖−s‖Tf‖s ≤ c‖f‖s‖g‖−s

Consequently using 6.1.13 again, we obtain

‖T ∗g‖−s = ‖B(T ∗g)‖s = ‖B(T ∗g)‖s = ‖ sup
‖f‖s=1

|〈T ∗g, f〉| ≤ c‖g‖s

6.1.15 Theorem. Let A ∈ C∞(R n,R n×n) be a smooth matrix-valued function, such that
for all α ∈ N , |DαA| is bounded (here | _ | denotes the operator norm). Then for any
s ∈ R , the map T : S → S , f 7→ Af , extends to a bounded linear map T : Hs → Hs.

Proof. The calculation

〈f, Ātg〉L2 =

∫
R n

〈f, Ātg〉C r =

∫
R n

〈Af, g〉C r = 〈Tf, g〉

proves that T ∗f = Ātf . For any s ∈ N 0

‖Tf‖2W s,2 =
∑
|α|≤s

∫
R n

|Dα(Af)| A.1.3
=

∑
|α|≤s

∑
β≤α

(
α

β

)∫
R n

|Dα−β(A)Dβf)| ≤ C‖f‖2W s,2 ,

thus T is bounded with respect to theW s,2-norm. This norm is equivalent to ‖_‖s by 6.1.7.
Therefore T is a bounded linear map Hs → Hs for all positive integers s. By 6.1.14 T is
bounded for all negative integers as well. Consequently 6.1.10 implies the statement.

6.1.16 Theorem (Diffeomorphism Invariance). Let U, V ⊂ R n be open sets with smooth
boundary and let Φ : Ū → V̄ be a diffeomorphism. For any s ∈ R , the map T : C∞c (V )→
C∞c (U), f 7→ f ◦ Φ, extends to a bounded linear map T : Hs(V )→ Hs(U).
Let Φ : S → S be a diffeomorphism which is linear outside a compact subset. For any
s ∈ R , the map T : S → S , f 7→ f ◦ Φ, extends to a bounded linear map T : Hs → Hs.

Proof.
Step 1:
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Step 2: Define T ∗ : S → S , g 7→ det(∇Φ)g ◦ Φ−1 and verify for all f, g ∈ S

〈Tf, g〉L2 =

∫
R n

〈Tf, g〉dx =

∫
R n

〈f ◦ Φ, g〉dx =

∫
R n

〈f ◦ Φ, g ◦ Φ−1 ◦ Φ〉 det(∇Φ−1) det(∇Φ)dx

=

∫
R n

〈f, g ◦ Φ−1〉 det(∇Φ−1)dy = 〈f, T ∗g〉L2 .

Now we check for any s ∈ N

‖Tf‖2W s =
∑
|α|≤s

∫
R n

|Dα(f ◦ Φ)|2dx
A.2.6
≤ C‖f‖2W s .

By 6.1.14 T ∗ is bounded as well, thus both maps extend to T : Hs → Hs, T ∗ : H−s → H−s

for any s ∈ N . Consequently, the result follows from 6.1.10.

6.1.17 Theorem (PDOs on Sobolev spaces). For any s ∈ R , Dα : S → S has a
continuous extension to Dα : Hs → Hs−|α|. For any s ∈ N and any PDO P =∑
|α|≤k PαD

α ∈ Diffk(R n,C r,C s), such that Pα ∈ C k
b (R n), there is a continuous ex-

tension P : Hs → Hs−k.

Proof.
Step 1: Let f ∈ S . We calculate

‖Dαf‖2s−|α| =
∫
R n

(1 + |ξ|)2(s−|α|)|F(Dαf)(ξ)|2dξ =

∫
R n

(1 + |ξ|)2s−2|α||ξαF(f)(ξ)|2dξ

≤
∫
R n

(1 + |ξ|)2s−2|α||ξ|2α|F(f)(ξ)|2dξ = ‖f‖2s.

Therefore Dα : (S , ‖_‖s) → (S , ‖_‖s−|α|) is continuous and has a continuous extension
Dα : Hs → Hs−|α|.
Step 2: Now consider PαDα. We calculate

‖PαDαf‖2s−|α|
6.1.7
≤ C‖PαDαf‖2

W s−|α|,2 = C
∑

|β|≤s−|α|

∫
R n

|∂βPαDαf |2dx

A.1.3
= C

∑
|β|≤s−|α|

∑
γ≤β

(
β

γ

)∫
R n

|∂β−γ(Pα)Dα+γ(f)|2dx

≤ C‖Pα‖2C k(R n)

∑
|β|≤s−|α|

∑
γ≤β

(
β

γ

)∫
R n

|Dα+γ(f)|2dx

≤ C ′‖Pα‖2C k(R n)

∑
|δ|≤s

∫
R n

|Dα+γ(f)|2dx
6.1.7
≤ C ′′‖Pα‖2C k(R n)‖f‖

2
s.

6.2. Globalization: Elementary approach

Let E →M be a hermitian vector bundle of rank r over a compact manifold M .

6.2.1 Definition (Good presentation). A good presentation of E is given by the following
data
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(i) A finite system of maps {ϕ̃j : Ūj → B̄
m}j=1,...,N , where Uj is open, such that ϕ̃j is

a chart for M . We also require that the balls Bj := {p ∈ Uj | |ϕ̃j(p)|2 ≤ 1/2} still
cover M .

(ii) A finite system of maps

ϕj :=
1√

1− |ϕ̃j |2
ϕ̃j .

(iii) A finite system of local trivializations Φj : E|Ūj → Ūj × C r.
(iv) A partition of unity {ψj}j=1,...,N subordinate to the cover {Bj}j=1,...,N .

6.2.2 Lemma (Properties of good presentations). Any such vector bundle E →M admits
a good presentation. Good presentations have the following additional properties:
(i) ϕj : Uj → Rm is a diffeomorphism, ϕj(Bj) = Bm.
(ii) For any u ∈ Γ(E), let ũj : R n → C r be the push-forward associated to ϕj and Φj

(c.f. 2.2.9). Then ũj is bounded, in fact ũj ∈ S .
(iii) Let uj := ψju, the section u may be decomposed into

u =

N∑
j=1

uj ,

where uj ∈ Γc(Bj). The map (ϕj∗ ◦ Φj∗)(uj) has compact support in Bm.

Proof. Existence is clear.
(i) Follows from the definition.
(ii) By definition f := ũj = pr2 ◦Φj ◦ u ◦ ϕ−1

j : Rm → C r.

6.2.3 Definition. Let (ϕj ,Φj , ψj)j=1,...,N be good presentation for E, let u ∈ Γ(E) and
s ∈ R . Then

‖u‖s :=
N∑
j=1

‖(ϕj∗ ◦ Φj∗)(uj)‖Hs(Bm,C r)

is the Sobolev s-norm. The completion of Γ(E) with respect to this norm is the Sobolev
space of order s on E, which we denote by

Hs(E) := Γ(E)
‖_‖s

.

6.2.4 Lemma. The space Hs(E) is well-defined, i.e. the equivalence class of the Sobolev
s-norm is indepent of the good presentation of E that was used to define it.

Proof. Let (ϕ̃j , Φ̃j , ψ̃j) be another good presentation. We say two presentations are equiv-
alent if their induced Sobolev s-norms are equivalent. Since this is transitive, it is sufficient
to seperately check independence of the charts, the trivializations and the partition of unity.
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Step 1 ((ϕ̃j ,Φj , ψj) ∼ (ϕj ,Φj , ψj)): By Theorem 6.1.16 the operator Tj := (ϕ̃j ◦ ϕ−1
j )∗ :

Hs(Bm,C r)→ Hs(Bm,C r) is continous. Define C := max1≤j≤N ‖Tj‖ and calculate:

‖u‖s,(ϕ̃j ,Φj ,ψj) =
N∑
j=1

‖(ϕ̃j∗ ◦ Φj∗)(uj)‖Hs(Bm,C r) =
N∑
j=1

‖(ϕ̃j∗ ◦ ϕj
−1
∗ ◦ ϕj∗ ◦ Φj∗)(uj)

=
N∑
j=1

‖(ϕ̃j ◦ ϕ−1
j )∗(ϕj∗ ◦ Φj∗)(uj))‖Hs(Bm,C r) ≤ C

N∑
j=1

‖(ϕj∗ ◦ Φj∗)(uj))‖Hs(Bm,C r)

= ‖u‖s,(ϕj ,Φj ,ψj).

Step 2 ((ϕj , Φ̃j , ψj) ∼ (ϕj ,Φj , ψj)): Since Φj , Φ̃j are both trivializations of the bundle
E, there exists a function Aj ∈ C∞(Uj , Gl(r)), such that Φ̃j ◦ Φ−1 = id×A. Notice that
for any f ∈ C∞(U,C r)

(Φ̃j∗ ◦ Φj
−1
∗ )(f) = Φ̃j∗(Φ

−1
j ◦ id×f) = pr2 ◦ id×Aj ◦ id×f = Ajf.

The operator Tj : Hs(Bm,C r) → Hs(Bm,C r), f 7→ Ajϕj∗(f) is continuous by Theorem
6.1.15. Define C := max1≤j≤N ‖Tj‖ and calculate

‖u‖s,(ϕj ,Φ̃j ,ψj) =
N∑
j=1

‖(ϕj∗ ◦ Φ̃j∗)(uj)‖Hs(Bm,C r) =
N∑
j=1

‖(ϕj∗ ◦ Φ̃j∗) ◦ (Φ−1
j )∗ ◦ Φj∗(uj)‖Hs(Bm,C r)

=

N∑
j=1

‖(ϕj∗ ◦AjΦj∗(uj)‖Hs(Bm,C r) =

N∑
j=1

‖(ϕj∗(Aj)(ϕj∗ ◦ Φj∗)(uj)‖Hs(Bm,C r)

≤ C
N∑
j=1

‖(ϕj∗ ◦ Φj∗)(uj)‖Hs(Bm,C r) = C‖u‖s,(ϕj ,Φj ,ψj).

Step 3 ((ϕj ,Φj , ψ̃j) ∼ (ϕj ,Φj , ψj)): (!ToDo so noch nicht ganz Cauchy)

‖u‖s,(ϕ,Φ,ψ̃) =

N∑
j=1

‖(ϕj∗ ◦ Φj∗)(ψ̃ju)‖s =

N∑
j=1

‖(ϕj∗ ◦ Φj∗)(ψ̃j

N∑
i=1

ψiu)‖s

≤
N∑
j=1

N∑
i=1

‖(ϕj∗ ◦ Φj∗)(ψ̃jψiu)‖s

=
N∑
j=1

N∑
i=1

‖ϕj∗(ψ̃j)(ϕj∗ ◦ Φj∗)(ψiu)‖s

≤
∑

1≤i,j≤N,i6=j
‖(ϕj∗ ◦ Φj∗)(ψiu)‖s +

∑
1≤j≤N

‖(ϕj∗ ◦ Φj∗)(ψju)‖s

≤ C
∑

1≤i,j≤N,i6=j
‖ϕj∗(ψj)(ϕj∗ ◦ Φj∗)(ψiu)‖s + ‖u‖s,(ϕ,Φ,ψ)

= C
∑

1≤i,j≤N,i6=j
‖ϕi∗(ψi)(ϕj∗ ◦ Φj∗)(ψju)‖s + ‖u‖s,(ϕ,Φ,ψ)

= C ′
∑

1≤i,j≤N,i6=j
‖(ϕj∗ ◦ Φj∗)(ψju)‖s + ‖u‖s,(ϕ,Φ,ψ) ≤ C ′N‖u‖s,(ϕ,Φ,ψ)
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6.3. Globalization: Geometric approach

Instead of defining the Sobolev spaces locally, one can use methods from differential ge-
ometry defining them globally. We assume the reader to be familiar with connections on
vector bundles.

6.3.1 Definition (Basic Sobolev norm). Let E →M be a hermitian vector bundle, M be
a compact manifold, and let ∇ be a connection. For any section u ∈ Γ(E) let ∇u be the
covariant derivative of u and

∇ju := ∇ . . .∇︸ ︷︷ ︸
j times

u

be the j-fold covariant derivative of u. We assume that the connection is extended to all
the tensor bundles T kE. For any k ∈ N define

‖u‖2k :=

k∑
j=0

∫
M
|∇ju|2,

where |_| is the extension of the fibre metric in E. We say ‖_‖k is the basic Sobolev
k-norm.

6.3.2 Lemma. The basic Sobolev k-norm is independent of the choice of metrics and
connection.

Proof. If ∇, ∇̃ are two connections, their difference ∇̃ − ∇ =: A is a tensor field A ∈
Γ(T ∗M ⊗ E), i.e.

∀X ∈ T (M) : ∀u ∈ Γ(E) : ∇̃Xu−∇Xu = A(X,u).

Now by definition ∇u ∈ Γ(T ∗M ⊗ E), ∇u(X) = ∇Xu. Therefore

|∇̃u| = |∇s−A(_, u)| ≤ |∇u|+ |A(_, u)| ≤ |∇u|+ |A||u|.

6.4. Globalization of the results

Regardless how we define the Sobolev spaces on bundles, the key results from the local
theory globalize as well.

6.4.1 Theorem (Globalized Sobolev Spaces). Let E,F → M be a hermitian bundles of
rank rE and rF over a compact m-manifold and s ∈ R .
(i) Embedding: For any integer k ∈ N and, such that s > m/2+k, there is a continuous

inclusion Hs(E)→ C k(E).
(ii) Rellich: Any sequence (uj), which is bounded in Hs(E) has a subsequence, that

converges in C k(E).
(iii) For any Riemannian volume form dV on M , the bilinear pairing 〈_,_〉 : Γ(E) →

Γ(E∗)→ C

(u, u′) 7→
∫
M
u′(u)dV

extends to a perfect pairing Hs(E)×H−s(E).
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(iv) For any A ∈ Hom(E,F ;M), the map TA : Γ(E) → Γ(F ), u 7→ Au, extends to a
bounded linear map TA : Hs(E)→ Hs(F ).

(v) Any differential operator P : Γ(E) → Γ(F ) of order k extends to a bounded linear
map P : Hs(E)→ Hs(F ).

Proof.
(i) !ToDo
(ii) !ToDo
(iii) !ToDo
(iv) !ToDo
(v) Take a good presentation ofE and F simultanously, i.e. assume that (ϕj ,Φj , ψj)j=1,...,N

is a good presentation of E, such that (ϕj ,Ψj , ψj)j=1,...,N is a good presentation of
F . Assume Pj := (ϕj∗ ◦Ψj∗) ◦P ◦ (ϕj∗ ◦Φj∗)

−1 : C∞(Bm,C rE )→ C∞(Bm,C rF ) is
a local representation of P . By Theorem 6.1.17, Pj extends to a continuous operator
Hs(Bm,C rE )→ Hs−k(Bm,C rF ). Define C := max1≤j≤N ‖Pj‖ and calculate for any
u ∈ Γ(E)

‖Pu‖s =
N∑
j=1

‖(ϕj∗ ◦Ψj∗)(ψjP (u))‖Hs(Bm,C rF ) =
N∑
j=1

‖(ϕj∗(ψj)(ϕj∗ ◦Ψj∗)(P (u)))‖Hs(Bm,C rF )

=

N∑
j=1

‖(ϕj∗(ψj)(ϕj∗ ◦Ψj∗ ◦ (ϕj∗ ◦Ψj∗)
−1 ◦ Pj ◦ ϕj∗ ◦ Φj∗)(u)‖Hs(Bm,C rF )

=
N∑
j=1

‖(ϕj∗(ψj)(Pj ◦ ϕj∗ ◦ Φj∗)(u)‖Hs(Bm,C rF ) =
N∑
j=1

‖(Pj ◦ ϕj∗ ◦ Φj∗)(ψju)‖Hs(Bm,C rF )

≤ C
N∑
j=1

‖(ϕj∗ ◦ Φj∗)(ψju)‖Hs−k(Bm,C rF ) = ‖u‖s−k.

Dualitätssatz, Lesch Übungszettel 3, Afg 1 Methode der komplexen Interpolation, Taylor
PDE I S.275, Lesch Übungszettel 2 Globalisieren Definition über schwache Ableitungen
und Äquivalenz zur gegebenen Definition
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7. FIO: Fourier Integral Operators

”Up and down, up and down, I will lead them up and down.
I am fear’d in field and town, Goblin, lead them up and down. ”

Puck,

7.1. Motivation

Oscillatory integrals are motivated by the following observation.

7.1.1 Theorem. Let

P =
∑
|α|≤k

PαD
α ∈ Diffk(R n,C r,C r′), ∀|α| ≤ k : Pα ∈ C∞b (R n,C r′×r)

be a differential operator with full symbol σ. Then for any u ∈ S (C r)

Pu(x) =

∫
R n
ξ

ei〈x,ξ〉σ(x, ξ)F(u)(ξ)đξ =

∫
R n
ξ

∫
R n
y

ei〈x−y,ξ〉σ(x, ξ)u(y)đyđξ.

Proof. Let x ∈ R n be arbitrary. By the Fourier Inversion formula (c.f. 4.4.26), we have

u(x) =

∫
R n

ei〈x,ξ〉F(u)(ξ)đξ

Since u ∈ S , we may interchange differentiation and integration in order to obtain

P (u)(x) =

∫
R n

∑
|α|≤k

Pα(x)Dα
x

(
ei〈x,ξ〉

)
F(u)(ξ)đξ =

∫
R n

∑
|α|≤k

Pα(x)ξαei〈x,ξ〉F(u)(ξ)đξ

=

∫
R n

ei〈x,ξ〉σ(x, ξ)F(u)(ξ)đξ.

Inserting the definition of the Fourier transform implies the statement.

7.1.2 Remark. The integral on the right hand side will be of our interest. We would like
to write this integral as

x

R n
ξ×R n

y

ei〈x−y,ξ〉σ(x, ξ)u(y)d(y, ξ), (7.1)

but we can’t! Why? Because if this integral existed over the product space, the iterated
integrals ∫

R n
y

∫
R n
ξ

ei〈x−y,ξ〉σ(x, ξ)u(y)dξdy =

∫
R n
y

∫
R n
ξ

ei〈x−y,ξ〉σ(x, ξ)dξu(y)dy

existed as well by Tonellis theorem. Notice that in almost every senseful case, this makes
absolutely no sense: A function is Lebesgue integrable if and only if its absolute value is.
But look at the inner integral: If we try to integrate its absolute value, we obtain∫

R n
ξ

|ei〈x−y,ξ〉σ(x, ξ)|dξ =

∫
R n
ξ

|σ(x, ξ)|dξ = ‖σ(x, ξ)‖L1(R n
ξ ).
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But σ is a polynomial in ξ. In
∫
R n
ξ

∫
R n
y
. . . the polynomial growth of σ was compensated by

the decay of F(u), which is a Schwartz function. If we interchange the order of integration,
the inner integral does not have anything to do with u. Only the polynomial growth of
σ remains, there is no decay to compensate, and the integral explodes. This also implies
that the Lebesgue integral (7.1) over the product space does not exist. There is no solu-
tion to this problem in general: There are iterated integrals, for which the corresponding
integral over the product space does not exist and which massively depend on the order
of integration. Nevertheless we may restrict our attention to a special class of functions
and we can modify the notion of an integral itself, such that (7.1) exists as a well-defined
oscillatory integral.

7.2. Phase functions

7.2.1 Definition (Phase function). Define Ṙ n
:= R n \ {0} and remember that U ⊂ Rm

is open. A function Φ : U × R n → R is a phase function, if it satisfies the following
properties:
(i) Φ ∈ C∞(U × Ṙ n

,R )

(ii) Φ is positive homogenous of degree 1 on Ṙ n
, i.e.

∀x ∈ U : ∀θ ∈ Ṙ n
: ∀t > 0 : Φ(x, tθ) = tΦ(x, θ).

(iii) Φ has no critical points, i.e.

∀x ∈ U : ∀θ ∈ Ṙ n
: ∇(x,θ)Φ(x, θ) 6= 0.

We explicitely allow the case m = 0, in which case the domain of definition becomes
{0} × R n ∼= R n.

7.2.2 Definition (conical). A subset C ⊂ U × Ṙ n
is concial, if

∀t > 0 : (x, θ) ∈ C ⇒ (x, tθ) ∈ C.

If C is a conical set, a set D is a conical neighbourhood of C, if D is a conical set and
C̄ ⊂ D◦ (where the closure C̄ is taken in the subspace U × Ṙ n

).

7.2.3 Definition. Let Φ be a phase function on U × R n. Define π : U × R n → U and

CΦ := {(x, θ) ∈ U × Ṙ n
: ∇θ(Φ)(x, θ) = 0}

SΦ := π(CΦ), RΦ := U \ CΦ.

7.2.4 Lemma. Let Φ be a phase function.
(i) CΦ is conical and closed in U × Ṙ n

.
(ii) SΦ is closed and RΦ is open in U .
(iii) For any x ∈ RΦ, the function

Φx : R n → R
θ 7→ Φ(x, θ)

is a phase function on R n.
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Proof.
(i) Since Φ is positively homogenous of order 1, this follows from 4.5.4. By continuity

it is closed.
(ii) Therefore SΦ is closed and RΦ is open in U .
(iii) It is clear that Φx satisfies properties (i) and (ii) of the Definition 7.2.1 (even for any

x ∈ U). Condition (iii) however is only satisfied if x ∈ RΦ.

7.3. Oscillatory Integrals

7.3.1 Theorem. Let Φ be a phase function on U × R n. There exists

L = LΦ(U × R n) ∈ Diff1(U × R n,C )

such that
(i)

L =

n∑
ν=1

aν(x, ξ)∂θν +

m∑
µ=1

bµ(x, θ)∂xµ + c(x, θ), (7.2)

(ii) whith coefficients

∀1 ≤ ν ≤ n : aν ∈ S0(U × R n,C ),

∀1 ≤ µ ≤ m : bµ ∈ S−1(U × R n,C ),

c ∈ S−1(U × R n,C ),

∀x ∈ U :∀|ξ| ≤ 1 : ∀1 ≤ ν ≤ n : ∀1 ≤ µ ≤ m : aν(x, θ) = bµ(x, θ) = 0,

(7.3)

(iii) satisfying

L∗eiΦ = eiΦ. (7.4)

(iv) In fact there are infinitely many such operators.
(v) We explicitely allow the case m = 0 here, i.e. U × R n ∼= R n. In that case L does

not have any derivatives in any xµ-direction.
(vi) In case U = Ux × Uy ⊂ Rmx × Rmy is a subset of a product and if for any y ∈ Uy,

∇(x,θ)Φ 6= 0, the operator L has an expression

L =
n∑
ν=1

aν(x, y, ξ)∂θν +

mx∑
µ=1

bµ(x, y, θ)∂xµ +

my∑
λ=1

bλ(x, y, θ)∂yλ + c(x, θ),

∀1 ≤ λ ≤ my : bλ ≡ 0.

(vii) The map
L : Sk(U × R n,C )→ Sk−1(U × R n,C )

is continuous. The map

Sk(U × R n)×D(U,C ) → Sk−l(U × R n,C )
(a, u) 7→ (x, θ) 7→ Ll(a(x, θ)u(x))

is continuous as well.
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Proof.
Step 1 (Construction of L∗): Define

P :=
m∑
ν=1

∂θν (Φ)|θ|2∂θµ +
n∑
µ=1

∂xµ(Φ)∂xµ ∈ Diff1(U × R n,C )

We calculate for any (x, θ) ∈ U × Ṙ n
:

∂θν (eiΦ) = i∂θν (Φ)eiΦ, ∂xµe
iΦ = i∂xµ(Φ)eiΦ,

which implies

−iPeiΦ =
(
− i

m∑
ν=1

∂θν (Φ)|θ|2∂θµ − i
n∑
µ

∂xµ(Φ)∂xµ

)
eiΦ

=
( m∑
ν=1

|θ|2∂θν (Φ)2 +

n∑
µ=1

∂xµ(Φ)2
)
eiΦ.

(7.5)

Define
ψ : U × Ṙ n → C

(x, θ) 7→
(∑m

ν=1 |θ|2∂θν (Φ)2 +
∑n

µ=1 ∂xµ(Φ)2
)−1

.

By the properties of a phase function, the term in brackets is never zero. Therefore this is
well-defined.
In case we are in situation (vi), the hypothesis ensures that if we leave out differentiation
with respect to the yλ directions, this term still is nonzero.
We obtain ψ ∈ C∞(U × Ṙ n

). By Lemma 4.5.4, we obtain that ψ is positively homogenous
of degree −2 in θ. By construction and (7.5)

−iψPeiΦ = eiΦ. (7.6)

The problem is that ψ might blow up at θ = 0 and thus does not admit a smooth extension
to U × R n. Therefore we must cut off this singularity: Let χ ∈ C∞c (R n,R ) such that

∀|θ| ≤ 1 : χ(θ) = 1, ∀|θ| ≥ 2 : χ(θ) = 0. (7.7)

Define
M := −iψ(1− χ)P + χ ∈ Diff1(U × R n,C ).

Of course for θ = 0, we interpret (1 − χ(θ))ψ(x, θ) = 0. Define L := M∗. This is a
differential operator, which by construction satisfies

L∗eiΦ = MeiΦ = −iψ(1− χ)PeiΦ + χeiΦ
(7.6)
= (1− χ)eiΦ + χeiΦ = eiΦ.

Since there are infinitely many such cut off functions χ, there are infinitely many such
operators.
Step 2 (symbols estimates): It remains to show (ii). By construction, the coefficients of
M are given by

∀1 ≤ ν ≤ m : ãν(x, θ) = −i|θ|2ψ(x, θ)(1− χ(θ))∂θν (Φ)(x, θ),

∀1 ≤ µ ≤ n : b̃ν(x, θ) = −iψ(x, θ)(1− χ(θ))∂xµ(Φ)(x, θ),

c̃(x, θ) = χ(θ).

In the following, we will use 4.5.4 and 4.5.5 several times.
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Step 2.1 (ãν): By hypothesis Φ is positively homogenous of order 1 in θ. Therefore ∂θν (Φ)
is pos. hom. of order 0. The function ψ is pos. hom. of order −2 and clearly θ 7→ |θ|2 is
pos. hom. of order 2. Therefore |θ|2ψ∂θν (Φ) is pos. hom. of order 0 and hence a symbol
of order 0. Since 1− χ = 1 outside B̄2(0) this is unchanged, if we multiply with 1− χ.
Step 2.2 (b̃µ): By the same token, we observe that ψ∂xµ(Φ) is pos. hom. of order −2+1 =
−1. Therefore the product is a symbol of order −1 + 0 = −1.
Step 2.3 (c̃): Since χ has compact support, it is a symbol of any order. By 7.7, we obtain

∀|θ| ≤ 1 : aν(x, θ) = 0 = bν(x, θ).

Step 2.4 (representation for L): We have shown that M has a representation (7.2) with
coefficients satisfying (7.3). By 2.3.16 L = M∗∗ and therefore it suffices to show that the
coefficients of M∗ satisfy (7.3) as well. By (2.21), we obtain for any f ∈ C∞(U × R n,C )

M∗(f) =
n∑
ν=1

∂θν (ã∗νf) +
m∑
µ=1

∂xν (b̃∗νf) + c∗f

=
n∑
ν=1

∂θν (ã∗ν)f + ã∗ν∂θν (f) +
m∑
µ=1

∂xν (b̃∗ν)f + b̃∗ν∂xν (f) + c∗f

=
n∑
ν=1

ã∗ν∂θν (f) +
m∑
µ=1

b̃∗ν∂xν (f) +
( n∑
ν=1

∂θν (ã∗ν) +
m∑
µ=1

∂xν (b̃∗ν) + c∗
)

︸ ︷︷ ︸
=:c∈S0

f.

Clearly aν := ã∗ν ∈ S0, b̃∗ν ∈ S−1 as claimed. We have proven (7.3). This also implies (vi).
Step 3 (continuity): By 4.5.2(i) the symbols are a complex vector space, so it suffices to
check that the various summands have the desired mapping properties. By 4.5.2(iv) mul-
tiplication of symbols is continuous. By 4.5.2(v) differentiation of symbols is continuous.
Putting this together implies that L is continuous. Since D(U) ⊂ S0(U × R n,C ), we
obtain the second statement by an analogous reasoning.

7.3.2 Corollary. Let a ∈ Sk(U × R n,C ), let Φ be a phase function and let L be the
operator form Theroem 7.3.1 above. Then for any l ∈ N such that k − l < −n, and any
u ∈ D(U,C ), the Lebesgue integral

IΦ(a, u, l) :=
x

U×R n

eiΦ(x,θ)Ll(a(x, θ)u(x))d(x, θ)

exists.

Proof. Since (a, u) ∈ Sk × D , we obtain Ll(au) ∈ Sk−l by 7.3.1(vii). By definition this
implies

∀x ∈ K : ∀ξ ∈ R n : |Ll(au)(x, ξ)| ≤ C(1 + |ξ|)k−l,

where K := suppu. By hypothesis k − l < −n. Therefore Lemma A.2.4 implies that
IΦ(a, u, l) exists.
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7.3.3 Remark. Since eiΦ = (L∗)eiΦ one might be tempted to employ this corollary to
define

x

U×R n

eiΦ(x,θ)a(x, θ)u(x)d(x, θ) :=
x

U×R n

(L∗)leiΦ(x,θ)a(x, θ)u(x)d(x, θ)

:=
x

U×R n

eiΦ(x,θ)Ll(au)(x, θ)d(x, θ).

In fact this is what we are going to do in 7.3.5. The only problem is that we do not yet
know, if the right hand side depends on l. This problem will be solved by considering an
alternative approach to this definition: The problem, we want to solve at the moment is
that the integral on the left hand side does not exist as a Lebesgue integral, because of the
growth of the integrand in θ. So let’s cut off the integrand in θ!

7.3.4 Lemma. Let a ∈ Sk(U × R n), Φ be a phase function and u ∈ D(U,C ). Let
χ ∈ D(R n,R ) be any function, which equals 1 in a neighbourhood of 0. Define

IΦ,ε(a, u) :=
x

U×R n

eiΦ(x,θ)χ(εθ)a(x, θ)u(x)d(x, θ).

Then for any l such that k − l < −n

lim
ε↘0

IΦ,ε(a, u) = IΦ(a, u, l),

using the notation from 7.3.2. Consequently, the limit does not depend on the cut off
function χ. In turn the expression IΦ(a, u, l) does not depend on l (as long as k− l < −n)
and L (as long as L is an operator satisfying the conditions from 7.3.1).

Proof. First of all notice that for any ε, IΦ,ε(a, u) exists, since the integrand now has
compact θ-support. It even has compact support in U × R n. Clearly, we obtain the
pointwise convergence

∀(x, θ) ∈ U × R n : eiΦ(x,θ)χ(εθ)a(x, θ)u(x)
ε↘0

C
// eiΦ(x,θ)a(x, θ)u(x) . (7.8)

Since χ has compact support, χ ∈ S0(U × R n). Consequently

∀α, β ∈ N n : ∃Cβ > 0 : |∂αx ∂
β
θ χ(θ)| ≤ Cβ(1 + |θ|)−|β|.

Now for any 0 < ε ≤ 1

|∂βθ (χ(εθ))| ≤ |∂βθ (χ)(θ)ε|β|| ≤ Cβ|ε||β|(1 + |θ|)−|β| ≤ Cβ(1 + |θ|)−|β|. (7.9)

Thus for any l ∈ N , k − l < −n, we obtain

lim
ε↘0

IΦ,ε(a, u) = lim
ε↘0

x

U×R n

eiΦ(x,θ)χ(εθ)a(x, θ)u(x)d(x, θ)

= lim
ε↘0

x

U×R n

(L∗)l(eiΦ(x,θ))χ(εθ)a(x, θ)u(x)d(x, θ)

2.3.16
= lim

ε↘0

x

U×R n

eiΦ(x,θ)Ll(χ(εθ)a(x, θ)u(x))d(x, θ)

=
x

U×R n

eiΦ(x,θ)Ll(a(x, θ)u(x))d(x, θ),

by the Lebesgue dominated convergence theorem and (7.8), (7.9).
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7.3.5 Definition (Oscillatory integral). For any a ∈ Sk(U × R n,C ), any phase function
Φ and any u ∈ D(U,C ), the expression (using notation from 7.3.2 and 7.3.4)

IΦ(a, u) := IΦ(a, u, l) := lim
ε↘0

IΦ,ε(a, u),

where l and χ are chosen as in 7.3.4 above, is called an oscillatory integral. Somewhat
more explicitely

IΦ(a, u) :=
Osx

U×R n

eiΦ(x,θ)a(x, θ)u(x)d(x, θ)

:=
x

U×R n

(L∗)leiΦ(x,θ)a(x, θ)u(x)d(x, θ)

= lim
ε↘0

x

U×R n

eiΦ(x,θ)χ(εθ)a(x, θ)u(x)d(x, θ).

We just ensured in 7.3.4 that this is well-defined. For reasons of convenience, we will
introduce the following notations as well: In case m = 0, we will denote the oscillatory
integral by

Os∫
R n

eiΦ(θ)a(θ)dθ.

If Ux ⊂ Rm1 , Uy ⊂ Rm2 are two open sets, we consider Uz := Ux × Uy and for a ∈
Sk(Uz×R n,C ) and a phase function Φ on Uz×R n, we will denote the oscillatory integral
by

Osy

Uz×R n

eiΦ(x,y,θ)a(x, y, θ)u(x, y)d(x, y, θ).

The following Lemmata will be needed to calculate certain oscillatory integrals.

7.3.6 Lemma. Let Φ be a phase function on U × R n. For any a ∈ Skρ,δ(U × R n,C r′×r

and any x ∈ U , denote by ax : R n → C r′×r, θ 7→ a(x, θ).

∀x ∈ RΦ :
Os∫

R n

eiΦx(θ)ax(θ)dθ =

∫
R n

eiΦ(x,θ)LlΦ(ax)(θ)dθ,

l − kmin(ρ, 1− δ) < −n.

Proof. First we verify that

∀x ∈ RΦ : ∀θ ∈ R n : LΦx(ax)(θ) = LΦ(ax)(θ).

This follows from the simple fact that

LΦ(ax)(θ) =
m∑
ν=1

aν(x, θ)∂θν (ax)(θ) +
n∑
µ=1

bν(x, θ) ∂xµ(ax)︸ ︷︷ ︸
=0

(θ) + c =
m∑
ν=1

aν(x, θ)∂θν (ax)(θ) + c

LΦx(ax)(θ).

Therefore we may calculate for any x ∈ RΦ

Os∫
R n

eiΦx(θ)ax(θ)dθ =

∫
R n

eiΦx(θ)LlΦx(ax)(θ)dθ =

∫
R n

eiΦ(x,θ)LlΦ(ax)(θ)dθ.
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7.3.7 Lemma. Let Φ be a phase funcion, a ∈ Skρ,δ(U × R n,C r′×r), u ∈ C∞c (U). Let
L = L(U × R n) be a PDO satisfying (??). Additionally suppose that there exists l ∈ N ,
l − kmin(ρ, 1 − δ) < −n, such that for any (x, θ) ∈ U × Ṙ n

at least one of the following
two conditions is satisfied:
(i) ((L∗)leiΦ(x, θ) = eiΦ(x,θ),
(ii) a(x, θ)u(x) = 0.

Proof. The hypothesis implies that for any (x, θ) ∈ U × Ṙ n

eiΦ(x,θ)a(x, θ)u(x) = (L∗)l(eiΦ(x,θ))a(x, θ)u(x), (7.10)

regardless which of the two conditions is satisfies for (x, θ). Again choose χ as defined in
(7.7). We calculate

Osx

U×R n

eiΦ(x,θ)a(x, θ)u(x)d(x, θ)
7.3.5
= lim

ε↘0

x

U×R n

eiΦ(x,θ)a(x, θ)u(x)χ(εθ)d(x, θ)

(7.10)
= lim

ε↘0

x

U×R n

(L∗)l(eiΦ(x,θ))a(x, θ)u(x)χ(εθ)d(x, θ)

= lim
ε↘0

x

U×R n

(eiΦ(x,θ))Ll(a(x, θ)u(x)χ(εθ))d(x, θ)

=
x

U×R n

(eiΦ(x,θ))Ll(a(x, θ)u(x))d(x, θ),

where the last equation follows from DCT (!ToDo).

7.4. Regularity of associated Distributions

We just defined an object IΦ(a,_) that sends a function u ∈ D(U) to a complex number.
Sound familiar?

7.4.1 Definition. For any fixed phase function Φ and any symbol a ∈ Skρ,δ, the map
A := AΦ(a) : D(U)→ C ,

u 7→ IΦ(a, u)

is the distribution associated to a and Φ.

7.4.2 Lemma. An associated distribution is in fact a distribution, i.e. A ∈ D ′(U).

Proof. Linearity in u is obvious. To see continuity, assume K b U is compact and x ∈ K.
By the Leibniz rule, the fact that a ∈ Skρ,δ and the choice of l

|A(a)(u)(x)| ≤
x

U×R n

|eiΦ(x,θ)Ll(a(x, θ)u(x))|d(x, θ)

≤
x

U×R n

C(1 + |ξ|)−n‖u‖C l(K)|d(x, θ)

≤ C ′‖u‖C l(K)|K|
x

R n

(1 + |θ|)−n|dθ.
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7.4.3 Theorem (Singular Support of associated distributions). With the notation from
7.4.1 and 7.2.3:

sing-suppAΦ ⊂ SΦ.

If there exists a conical neighbourhoodD ⊃ CΦ, such that a|D ≡ 0. Then sing-suppAΦ = ∅

Proof. Let u ∈ D(RΦ).
Step 1: It is sufficient to define a function A ∈ C∞(RΦ), such that A|RΦ

= 〈A〉. Define
A : RΦ → C by

A(x) :=
Os∫

R n

eiΦx(θ)ax(θ)dθ

(!ToDo ist smooth wegen parameter dependence) Now let L = LΦ(U × R n),

L =

m∑
ν=1

aν(x, θ)∂θν +

m∑
µ=1

bµ(x, θ)∂xµ + c(θ), L̃ :=

m∑
ν=1

aν(x, θ)∂θν + c(θ).

In case m = 0 the operator constructed in 7.3.1 does not have any x-derivatives. Therefore
for any x ∈ RΦ, we may chose LΦx = L̃ and calculate

A(x) =
Os∫

R n

eiΦx(θ)ax(θ)dθ =

∫
R n

eiΦx(θ)LlΦx(ax)(θ)dθ =

∫
R n

eiΦ(x,θ)L̃l(ax)(θ)dθ (7.11)

Step 2: We claim that the operator L̃ satisfies the hypothesis of Lemma 7.3.7: Let (x, θ) ∈
U × R n. Then there are two possible cases: If x ∈ SΦ, then a(x, θ)u(x) = 0, because
u ∈ C∞c (RΦ) by hypothesis. In case x ∈ RΦ, we obtain

L̃∗(eiΦ)(x, θ) = LtΦx(eiΦx)(θ) = eiΦx(θ) = eiΦ(x,θ). (7.12)

Step 3: Since L̃ does not have any xµ-derivarives, we may calculate

〈A〉(u) =

∫
U
A(x)u(x)dx =

∫
U

Os∫
R n

eiΦx(θ)a(x, θ)dθ u(x)dx
(7.11)

=

∫
U

∫
R n

eiΦ(x,θ)L̃l(ax)(θ)dθ u(x)dx

=

∫
U×R n

eiΦ(x,θ)L̃l(au)(x, θ)d(x, θ)
7.3.7
=

Osx

U×R n

eiΦ(x,θ)a(x, θ)u(x)d(x, θ) = A(u).

(7.13)

Step 4: The second statement is proven in exactly the same fashion: We define A : U → C
by the right hand side of (7.11). Now we take any u ∈ C∞c (U). For any x ∈ U there are
only two possibilities: Either (x, θ) ∈ D, then a(x, θ)u(x) = 0. Or x ∈ U \ π(D) ⊂ RΦ,
then L̃ = LΦx and we again obtain (7.12). Calculation (7.13) proves the statement.

7.5. Fourier Integral Operators ”FIO”

7.5.1 Definition (Fourier Integral Operator). Assume Ux ⊂ Rmx , Uy ⊂ Rmy , my,mx ∈
N , Uz := Ux × Uy. Let Φ : Uz × R n → C be a phase function, a ∈ Skρ,δ(Uz × R n,C r′×r).
By 7.4.2, the map A : Uz → C ,

A(w) := IΦ(a,w)
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defines a distribution A ∈ D ′(Uz). By (the easy part of) the Schwartz Kernel Theorem
5.6.4, the map A : D(Uy)→ D ′(Ux), defined by

A (u)(v) := A(v ⊗ u) =
Osy

Ux×Uy×R n

eiΦ(x,y,z)a(x, y, θ)u(y)v(x)d(x, y, θ), (7.14)

is linear and continuous. We call such a map a Fourier Integral Operator (or just a ”FIO”)
with amplitude a.

7.5.2 Definition (Operator phase function). Let Φ be a phase function on Ux×Uy×R n.
Then Φ is an operator phase function, if both of the following conditions are satisfied:
(i) ∀x ∈ Ux : ∀y ∈ Uy : ∀θ 6= 0 : ∇(y,θ)Φ(x, y, θ) 6= 0,
(ii) ∀x ∈ Ux : ∀y ∈ Uy : ∀θ 6= 0 : ∇(x,θ)Φ(x, y, θ) 6= 0.

In that case, for any y ∈ Uy, the function (x, θ) 7→ Φ(x, y, θ) is a phase function on Ux×R n

and for any x ∈ Ux, the function (y, θ) 7→ Φ(x, y, θ) is a phase function on Uy × R n.

7.5.3 Theorem (FIO Regularity and Extension). Let A be a FIO as in 7.5.1 and let Φ
be a phase function.
(i) If Φ satisfies condition 7.5.2,(i), then A is a map D(Uy)→ 〈E (Ux)〉. The composition
〉_〈◦A : D(Uy) → E (Ux) is continuous and sometimes also just denoted as A :
D(Uy)→ E (Ux).

(ii) If Φ satisfies condition 7.5.2,(ii), then A has a continuous extension A : E ′(Uy) →
D ′(Ux).

Proof.
(i) We have to show that for all u ∈ D(Ux) there exists Au ∈ E (Ux), such that A (u) =
〈Au〉. Define

Au(x) :=
Osx

Y×R n

eiΦx(y,θ)a(x, y, θ)u(y)d(y, θ). (7.15)

By hypothesis, this is an oscillatory integral. (!ToDo smooth parameter dependence).
The hypothesis ensures that the operator LΦ for the oscillatory integral A (u)(v) does
not contain any derivatives in x-directions (c.f. 7.3.1). Therefore, we may calculate
for any v ∈ D(Ux)

A (u)(v) =
Osy

Ux×Uy×R n

eiΦ(x,y,θ)(a(x, y, θ)u(y)v(x))d(x, y, θ)

=
y

Ux×Uy×R n

eiΦ(x,y,θ)Ll(a(x, y, θ)u(y)v(x))d(x, y, θ)

=
y

Ux×Uy×R n

eiΦ(x,y,θ)Ll(a(x, y, θ)u(y))v(x)d(x, y, θ)

=

∫
Ux

x

Uy×R n

eiΦx(y,θ)Ll(a(x, y, θ)u(y))d(y, θ)v(x)dx

=

∫
Ux

Osx

Uy×R n

eiΦx(y,θ)a(x, y, θ)u(y)d(y, θ)v(x)dx = 〈Au〉(v).

By 5.4.8 the map A : D(Uy)→ E (Ux) is a composition of continuous maps.
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(ii) Let u ∈ D(Uy), v ∈ D(Ux). By hypothesis, for any y ∈ Uy, Φy is a Phase function
on Ux × Rn. Define

∀y ∈ Uy : At(v)(y) := IΦx(ay, v) =
Osx

Ux×R n

eiΦy(x,θ)ay(x, θ)v(x)d(x, θ).

Notice that this is exactly (7.15) with the roles of x and y interchanged. Consequently
At(v) is a smooth function as well.
Now define the extension A : E ′(Uy)→ D ′(Ux) by

∀u ∈ E ′(Uy) : ∀v ∈ D(Ux) : A (u)(v) := u(Atv).

In terms of pairings this reads as

〈A u, v〉D ′(Ux)×D(Ux) = 〈u,Atv〉E ′(Uy)×E (Uy),

which explains why we think of At as a transpose.
This is an extension, because for any u ∈ D(U)

A (u)(v) =
Osy

Ux×Uy×R n
θ

eiΦ(x,y,θ)a(x, y, θ)u(y)v(x)d(x, y, θ)

= lim
ε↘0

y

Ux×Uy×R n
θ

eiΦ(x,y,θ)χ(εθ)a(x, y, θ)u(y)v(x)d(x, y, θ)

= lim
ε↘0

∫
Uy

x

×Ux×R n
θ

eiΦ(x,y,θ)χ(εθ)a(x, y, θ)v(x)d(x, θ)u(y)dy

=

∫
Uy

lim
ε↘0

x

×Ux×R n
θ

eiΦ(x,y,θ)χ(εθ)a(x, y, θ)v(x)d(x, θ)u(y)dy = 〈u〉(Atv).

(!ToDo Vertauschung von Limesbildung und Integration) To see that A is continuous
assume

uj
E ′(Uy)

// 0 .

This implies for any v ∈ D(Ux)

lim
j→∞

A (uj) = lim
j→∞

uj(A
tv) = 0,

by definition of convergence in E ′(Uy). This implies

A (uj)
E ′(Ux)

// 0 .

7.5.4 Definition (composition of sets). Let X, Y be sets, S ⊂ X×Y and K ⊂ Y . Define

S ◦K := {x ∈ X | ∃y ∈ K : (x, y) ∈ S}.

7.5.5 Theorem. Let Φ be an operator phase function. For any u ∈ E ′(Uy)

sing-supp(A u) ⊂ SΦ ◦ sing-suppu.
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Proof.
Step 1: In a first step we prove that for any K b Uy:

∀u ∈ E ′(Uy) : suppu b K ⇒ sing-supp(A u) ⊂ SΦ ◦K.

To that end it suffices to check that for any Ũx ⊆̊X \ S ◦ K, A u is smooth. Choose
uj ∈ DX(Uy), such that

〈uj〉
E ′(Uy)

// u .

Now we calculate for any v ∈ D(Ũx)

A (u)(v) = lim
j→∞

〈A uj , v〉D ′(Ux)×D(Ux) = lim
j→∞

〈A uj , v〉D ′(Ũx)×D(Ũx)

= lim
j→∞

〈A, v ⊗ uj〉D ′(Ũx×intK)×D(Ũx×intK)

By Theorem 7.4.3, sing-suppA ⊂ SΦ. We will now show that the distribution A|Ũx×intK
is regular by showing that

SΦ ∩ (Ũx × intK) = ∅.

This we do by contradiction: Assume there exists (x, y) ∈ SΦ∩ (Ũx× intK). By definition
x ∈ Ũx, y ∈ intK. Since (x, y) ∈ SΦ, this implies x ∈ SΦ ◦K by definition of ◦. Therefore
x ∈ Ũx ∩ SΦ ◦K. This contradicts the choice of Ũx.
Consequently, there exists A ∈ E (Ũx × intK), such that A|K×intK = 〈A〉. This in turn
defines a continuous operator Ã : E ′(intK)→ E (Ũx) by 5.6.5, which is just the restriction
of A . Thus

Ã uj
E (Ũx)

// Ã u ,

thus A u = Ã ∈ E (Ũx).
Step 2: Since sing-supp A u ⊂ Uy is closed, there are ε-neighbourhoods Kε, such that
sing-supp A u ⊂ Kε ⊂ K̄ε ⊂ Uy. Choose χε ∈ D(Uy), such that χ|K̄ε ≡ 1. We may
decompose

u = χεu︸︷︷︸
=:u1

+ (1− χε)u︸ ︷︷ ︸
=:u2

.

Now by construction u2 is regular. By choosing ε small enogh, we see that suppu1 \
sing-suppu1 is arbitrarily small (!ToDo naja, n bisschen handwaving..)
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8. YDO: Pseudodifferential Operators

”The corps is mother, the corps is father.”
Bester, Ψ-Cop, 2259

8.0.6 Definition (Pseudodifferential Operator). Let k ∈ R , σ ∈ Sk(R n×R n;C r′×r). An
operator Tσ : S (C r)→ S (C r′), defined by

(Tσu)(x) := (2π)−
n
2

∫
R n

ei〈x,ξ〉σ(x, ξ)F(u)(ξ)dξ (8.1)

= (2π)−n
∫
R n

∫
R n

ei〈x−y,ξ〉σ(x, ξ)u(y)dydξ (8.2)

is a pseudodifferential operator of order k (or just ”is a ΨDO”. We denote by Ψk :=
Ψk(R n;C r′×r) the space of all these operators. Analogously denote

Ψ(R n,C r′×r) :=
⋃
k∈R

Ψk(R n;C r′×r), Ψ−∞(R n,C r′×r) :=
⋂
k∈R

Ψk(R n;C r′×r),

If σ ∈ S−k, k > 0, then Tσ is smoothing of order k. A linear map τ : S → S , which
extends to a bounded linear operator τ : Hs → Hs+k for all s, k ∈ R is an infinitely
smoothing operator. (!ToDo YDOs mit symbolen in -infty sind also infinitely smoothing)
Two pseudodifferential operators P and P ′ are equivalent, if P−P ′ is an infinitely smoothing
operator. We denote the equivalence class of P by [P ].

P is in-
finitely
smooth
if and
only if the
symbol is
in S−∞

8.0.7 Theorem. Let k ∈ R , p ∈ Sk(R n,C r′×r) and u ∈ S (C r). Then the function Pu
defined by (8.1) automatically satisfies Pu ∈ S (C r′). If p has compact x-support, for any
s ∈ R , this operator has a continuous extension P : Hs → Hs−k.

Proof.
Step 1 (Pu ∈ S ):
Step 2 (Extension):

8.0.8 Theorem. Any bounded PDO is a ΨDO. More precisely: Let

P =
∑
|α|≤k

PαD
α ∈ Diffk(R n,C r,C r′), ∀|α| ≤ k : Pα ∈ C∞b (R n,C r′×r)

be a differential operator with full symbol p. Then p ∈ Sk(C r′×r) and for any u ∈ S (C r)

Pu(x) = (2π)−
n
2

∫
R n

ei〈x,ξ〉p(x, ξ)F(u)(ξ)dξ.

Proof.
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Step 1 (p ∈ Sk): Since p is a polynomial of degree k, ∂βξ p = 0, if |β| > k (see Lemma
A.1.6). For any |β| ≤ k and any α ∈ N n we calculate

|Dα
xD

β
ξ p(x, ξ)| ≤

∑
|γ|≤k

|∂αx (Pγ)(x)||∂βξ ξ
γ |

A.1.6
≤

∑
|γ|≤k

|∂αx (Pγ)(x)||β!

(
γ

β

)
ξγ−β|

A.2.1
≤

∑
|γ|≤k

β!

(
γ

β

)
‖Pγ‖C |α| |ξ|

|γ|−|β|

≤ max
|γ|≤k
‖Pγ‖C |α|

∑
|γ|≤k

β!

(
γ

β

)
(1 + |ξ|)k−|β| ≤ Cα,β(1 + |ξ|)k−|β|

Step 2 (integral representation): By the Fourier Inversion formula (c.f. 4.4.26), we have

u(x) = (2π)−
n
2

∫
R n

ei〈x,ξ〉F(u)(ξ)dξ

Since u is compactly supported, we may interchange differentiation and integration in order
to obtain

Pu(x) = (2π)−
n
2

∫
R n

∑
|α|≤k

Pα(x)Dα
xe

i〈x,ξ〉F(u)(ξ)dξ = (2π)−
n
2

∫
R n

∑
|α|≤k

Pα(x)ξαei〈x,ξ〉F(u)(ξ)dξ

= (2π)−
n
2

∫
R n

ei〈x,ξ〉p(x, ξ)F(u)(ξ)dξ.

8.1. The Symbol Calculus

8.1.1 Definition. For any symbol σ ∈ Sk(U × R n,C r′×r), σα ∈ S|α|(U × R n,C r′×r),
α ∈ N n, we say

σ ∼
∑
α∈N n

σα :⇐⇒ σ ∼
∞∑
j=0

∑
|α|=j

σα.

8.1.2 Theorem (Workhorse Theorem). Let k ∈ R

a = a(x, y, ξ) ∈ Sk((R n × R n)× R n,C r′×r)

be a symbol with compact support in x and y. By definition

∀α, β, γ ∈ N n : ∃Cα,β,γ > 0 : |Dα
xD

β
yD

γ
ξ (a)(x, y, ξ)| ≤ Cα,β,γ(1 + |ξ|)k−|γ|.

Then the operator K : S (C r)→ S (C r′), defined by

K(u)(x) := (2π)−n
∫
R n

∫
R n

ei〈x−y,ξ〉a(x, y, ξ)u(y)dydξ

is a ΨDO, i.e. K ∈ Ψk(R n,C r′×r) and its symbol σK has an asymptotic expansion

σK(x, ξ) ∼
∑
α∈N n

i|α|

α!
(Dα

ξD
α
y a)(x, x, ξ)
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8.1.3 Remark. In case a does not depend on y, the operator K is just given as

Ku(x) = (2π)−n
∫
R n

ei〈x,ξ〉a(x, ξ)

∫
R n

e−i〈x,ξ〉u(y)dydξ

= (2π)−
n
2

∫
R n

ei〈x,ξ〉a(x, ξ)F(u)(ξ)dξ

8.1.4 Corollary. In the situation of 8.1.2 assume in addition that there exists an open
neighbourhood U∆ ⊆̊R n × R n of the diagonal ∆ := {(x, x) ∈ R n × R n}, then K ∈ Ψ−∞.

Proof. By 8.1.2, σK ∼ 0. And L/M 3.4 and Def of equivalence

8.1.5 Definition (formally adjoint). Let P ∈ Ψk(R n × R n,C r′×r). An operator P ∗ :
S (C r′)→ S (C r) is formally adjoint to P , if

∀s ∈ C∞c (R n,C r) : ∀t ∈ C∞c (R n,C r′) : 〈P (s), t〉L2 = 〈s, P ∗(t)〉L2

8.1.6 Theorem (adjoints). For any P ∈ Ψk
K − (R n × R n,C r′×r) there exists a unique

formal adjoint
P ∗ ∈ Ψk(R n × R n,C r×r′)

and its symbol has a asymptotic expansion

σP ∗ ∼
∑
α∈N n

i|α|

α!
Dα
ξD

α
xσ
∗
P

Proof. Let s ∈ DK(R n,C r), t ∈ DK(R n,C r′), let ψ ∈ C∞c (R n,R ) such that

ψ|K ≡ 1.

We calculate

〈P (s), t〉L2 =

∫
R n

〈P (s)(x), t(x)〉C r′dx

= (2π)−
n
2

∫
R n

∫
R n

ei〈x,ξ〉〈σP (x, ξ)F(s)(ξ), t(x)〉C r′dξdx

= (2π)−n
∫
R n

∫
R n

∫
R n

ei〈x−y,ξ〉〈σP (x, ξ)s(y), t(x)〉C r′dydξdx

= (2π)−n
∫
R n

∫
R n

∫
R n

ei〈x−y,ξ〉〈s(y), σP (x, ξ)∗t(x)〉C r′dydξdx

= (2π)−n
∫
R n

∫
R n

∫
R n

ei〈x−y,ξ〉〈ψ(y)s(y), σP (x, ξ)∗t(x)〉C r′dxdξdy

=

∫
R n

(2π)−n
∫
R n

∫
R n

〈s(y), e−i〈x−y,ξ〉ψ(y)σP (x, ξ)∗t(x)〉C r′dxdξdy

= 〈s, P ∗(t)〉L2 ,

where

P ∗(t)(y) := (2π)−n
∫
R n

∫
R n

ei〈y−x,ξ〉ψ(y)σP (x, ξ)∗t(x)dxdξ (8.3)
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Now the symbol ψ(y)σP (x, ξ)∗ satisfies the hypothesis of 8.1.2. This implies that P ∗ is a
ΨDO and that its symbol has an asymptotic expansion

σP ∗(x, ξ) ∼
∑
α∈N n

iα

α!
Dα
ξD

α
y (ψ(x)σP (y, ξ)∗)|x=y

=
∑
α∈N n

iα

α!
ψ(x)Dα

ξD
α
y (σP (y, ξ)∗)|x=y

=
∑
α∈N n

iα

α!
ψ(x)Dα

ξD
α
x (σP (x, ξ)∗)

=
∑
α∈N n

iα

α!
Dα
ξD

α
x (ψ(x)σP (x, ξ)∗)

=
∑
α∈N n

iα

α!
Dα
ξD

α
x (σ∗P )(x, ξ).

8.1.7 Remark. Since adjoints are unique, P ∗∗ = P .

8.1.8 Theorem (composition). Let P ∈ Ψk1(R n×R n,C r′×r), Q ∈ Ψk2(R n×R n,C r′′×r′).
Then Q ◦ P ∈ Ψk1+k2(R n × R n,C r′′×r) and the symbol has a formal development

σQ◦P (x, ξ) ∼
∑
α∈N n

i|α|

α!
(Dα

ξ σQ)(Dα
xσP )(x, ξ).

Proof. By definition for any s ∈ C∞c (R n,C r), x ∈ K

(Q ◦ P )(s)(x) = (2π)−
n
2

∫
R n

ei〈x,ξ〉σQ(x, ξ)F(Ps)(ξ)dξ, (8.4)

so we need a reasonable expression for F(Ps). Since P ∗∗ = P , we obtain

(Ps)(x) = P ∗∗(s)(x)
(8.3)
= (2π)−n

∫
R n

∫
R n

ei〈x−y,ξ〉σP ∗(y, ξ)
∗s(y)dydξ. (8.5)

Define τ(y, ξ) := σP ∗(y, ξ)
∗. We claim that

F(Ps)(ξ) = (2π)−
n
2

∫
R n

e−i〈y,ξ〉τ(y, ξ)s(y)dy (8.6)

To that end, we calculate F−1 of the right hand side:

F−1

(
ξ 7→

∫
R n

e−i〈y,ξ〉τ(y, ξ)s(y)dy

)
(x)

= (2π)−n
∫
R n

∫
R n

ei〈x−y,ξ〉τ(y, ξ)s(y)dydξ

(8.5)
= Ps(x).

Therefore, we calculate

(Q ◦ P )(s)(x)
(8.4)
= (2π)−

n
2

∫
R n

ei〈x,ξ〉σQ(x, ξ)F(Ps)(ξ)dξ

(8.6)
= (2π)−n

∫
R n

∫
R n

ei〈x−y,ξ〉 σQ(x, ξ)σ∗P ∗(y, ξ)︸ ︷︷ ︸
=:a(x,y,ξ)

s(y)dydξ
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By 4.5.2(iv)

a(x, y, ξ) = σQ(x, ξ)σ∗P ∗(y, ξ) ∈ Sk1+k2(R n × R n × R n,C r′′×r),

thus by Theorem 8.1.2
Q ◦ P ∈ Ψk1+k2(R n × R n,C r′′×r)

and its symbol has an asymptotic expansion

σQ◦P (x, ξ) ∼
∑
α∈N n

iα

α!
Dα
ξD

α
y (σQ(x, ξ)τ(y, ξ))|x=y

=
∑
α∈N n

iα

α!
Dα
ξ (σQ(x, ξ)Dα

y (τ(y, ξ)))|x=y

=
∑
α∈N n

iα

α!

∑
β≤α

(
α

β

)
Dβ
ξ (σQ)(x, ξ)Dα−β

ξ Dα−β+β
x (τ)(x, ξ)

=
∑
α∈N n

∑
β≤α

i|β−α|+|β|

α!

α!

β!(α− β)!
Dβ
ξ (σQ)(x, ξ)Dα−β

ξ Dα−β+β
x (τ)(x, ξ)

=
∑
α∈N n

∑
β+γ=α,
β,γ∈N n

i|γ|+|β|

β!γ!
Dβ
ξ (σQ)(x, ξ)Dγ

ξD
γ
xD

β
x(τ)(x, ξ)

=
∑

β,γ∈N n

i|γ|+|β|

β!γ!
Dβ
ξ (σQ)(x, ξ)Dγ

ξD
γ
xD

β
x(τ)(x, ξ)

=
∑
β∈N n

i|β|

β!
Dβ
ξ (σQ)(x, ξ)Dβ

x

∑
γ∈N n

i|γ|

γ!
Dγ
ξD

γ
x(τ)(x, ξ)


8.1.6∼

∑
β∈N n

i|β|

β!
Dβ
ξ (σQ)(x, ξ)Dβ

x(σP )(x, ξ).

asymptotische
doppelen-
twicklun-
gen?

8.1.9 Theorem (diffeomorphism invariance). Let U, V ⊆̊R n, F : U → V be a diffeomor-
phism. Then for any K b U the map

F∗ : Ψk
K(U × R n,C r′×r)→ Ψk

F (K)(V × R n,C r′×r),

defined by
∀s ∈ DK(U,C r) : F∗(P )(s) := P (s ◦ F ) ◦ F−1.

is well-defined.

Proof. The crucial and only part is to show that F∗(P ) is again a ΨDO. LetG := F−1 and
for any x ∈ V , write x̃ := G(x) ∈ U . Before we start, we make the auxilliary calculation

∀x, y ∈ U : x̃− ỹ = G(x)−G(y) =

∫ 1

0
∂t(G(tx+ (1− t)y)dt

=

∫ 1

0
∇G(tx+ (1− t)y)dt︸ ︷︷ ︸

=:H(x,y)

(x− y) = H(x, y)(x− y)
(8.7)
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Notice that
H(x, x) = ∇G(x),

thus there exists an open neighourhood O of the diagonal in V × V such that

H : O → GL(R n).

Choose χ ∈ D(O) such that χ ≡ 1 in a (smaller) neighbourhood of the diagonal. Let

J : V → R
x 7→ det(H(x, x)) 6= 0

be the Jacobian determinant of G. We calculate for any s ∈ C∞(V,C r)

F∗(P )(s)(x) = P (s ◦ F )(x̃) = (2π)−n
∫
R n

∫
R n

ei〈x̃−ỹ,ξ〉σP (x̃, ξ)s(F (ỹ))dỹdξ

(8.7)
= (2π)−n

∫
R n

∫
R n

ei〈H(x,F (ỹ)(x−F (ỹ)),ξ〉σP (x̃, ξ)s(F (ỹ))J(F (ỹ))−1J(F (ỹ))dỹdξ

= (2π)−n
∫
R n

∫
R n

ei〈H(x,y)(x−y),ξ〉σP (G(x), ξ)s(y)J(y)dydξ

= (2π)−n
∫
R n

∫
R n

ei〈x−y,H(x,y)tξ〉σP (G(x), ξ)s(y)J(y)dydξ

Now we multiply the integrand with χ + (1 − χ) ≡ 1. We obtain two integrals, which we
analyze seperately: For the integral with (1− χ) we obtain (up to (2π)−n)

=

∫
R n

∫
R n

ei〈x−y,H(x,y)tξ〉(1− χ(x, y))σP (G(x), ξ)s(y)J(y)dydξ

=

∫
R n

∫
R n

ei〈x−y,ξ̃〉 (1− χ(x, y))σP (G(x), (H(x, y)t)−1ξ̃) det(H(x, y))−1J(y)︸ ︷︷ ︸
=:a′′(x,y,ξ̃)

s(y)dydξ̃

Now a′′ is a symbol, which satisfies the Workhorse Theorem 8.1.2 and vanishes in a neigh-
bourhood of the diagonal. Hence by 8.1.4 this defines an infinitely smoothing operator.
For the integral with χ we obtain analogously

=

∫
R n

∫
R n

ei〈x−y,ξ̃〉 χ(x, y)σP (G(x), (H(x, y)t)−1ξ̃) det(H(x, y))−1J(y)︸ ︷︷ ︸
=:a′(x,y,ξ̃)

s(y)dydξ̃

Again a′ satisfies the hypothesis of the workhorse Theorem 8.1.2, hence F∗(P ) = P ′ +P ′′,
where P ′′ is infinitely smoothing and P ′ is a ΨDO as claimed.
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A. Appendix

A.1. Leibniz Formulae

Before we can start with the analysis of the PDO Algebra itself, we first have to investigate
the application of a PDO to a function especially to the product of two functions. We
assume the reader to be very familiar with the product rule from basic calulus, i.e. if
f, g ∈ C1(U), then

∀x ∈ U : ∂i(fg)(x) = (∂if)(x)g(x) + f(x)(∂ig(x))

This can be generalized considerably and will be done in this section. The following
notation conventions will be useful.

A.1.1 Definition. For any n, k ∈ N we define(
n

k

)
:=

{
n!

k!(n−k)! , k ≤ n,
0, otherwise.

In addition, if α, β ∈ N n, we define(
α

β

)
:=

{
α!

β!(α−β)! , α ≤ β,
0, otherwise.

A.1.2 Lemma. The binomials satisfy the following law of addition

∀α ≤ β : ∀1 ≤ i ≤ n :

(
α

β − ei

)
+

(
α

β

)
=

(
α+ ei
β

)
A.1.3 Theorem (Leibniz Rule). Let U ⊂ R n be open, f, g ∈ Ck(U), α ∈ N n, |α| = k.
Then

∂α(fg) =
∑
β≤α

(
α
β

)
(∂βf)(∂α−βg) =

∑
β+γ=α

α!

β!γ!
(∂βf)(∂γg)

As a didactial motivation we will prove the very important special case n = 1 seperately.
Logically it is not needed in the proof of the general case and thus may be skipped.

Proof. [for n = 1] In that case, the statement is

(f · g)(k) =

k∑
ν=0

(
k
ν

)
f (ν) · g(k−ν)

We will prove this via induction over k. For k = 1 this is the ordinary product rule:

(f · g)′(x) = f ′(x)g(x) + f(x)g′(x)
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For the induction step k → k + 1 consider

(f · g)(k+1) =
(

(f · g)(k)
)′

=

(
k∑
ν=0

(
k

ν

)
f (ν) · g(k−ν)

)′

=
k∑
ν=0

(
k

ν

)
f (ν+1) · g(k−ν) + f (ν) · g(k+1−ν)

(1)
=

k+1∑
ν=1

(
k

ν − 1

)
f (ν) · g(k−(ν−1)) +

k∑
ν=0

(
k

ν

)
f (ν) · g(k+1−ν)

(2)
=

k∑
ν=1

((
k

ν − 1

)
+

(
k

ν

))
f (ν) · g(k−ν+1) + f (k+1)g + fg(k+1)

(3)
=

k∑
ν=1

(
k + 1

ν

)
f (ν) · g(k−ν+1) +

(
k + 1

k + 1

)
f (k+1)g +

(
k + 1

0

)
fg(k+1)

=

k+1∑
ν=0

(
k + 1

ν

)
f (ν) · g(k+1−ν)

(1): Here we splitted up the sum and shifted the index of the first one up by one.
(2): Here we separated the summands ν = k + 1 in the first sum and ν = 0 in the second
sum from the rest and combined the two remaining sums. (3): This uses the addition
theorem for binomials, c.f. LemBinomAdd, and the fact that(

k + 1

k + 1

)
= 1 =

(
k + 1

0

)
.

Proof. [General Case] We will prove this statment as well by induction over k = |α|.
If k = 1, the statement is just the ordinary product rule. So by induction assume the
statement is valid for k. Any multi-index α̃ with |α̃| = k + 1 can be written in the form
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α̃ = α+ ej , where |α| = k and 1 ≤ j ≤ n. Using induction hypothesis we calculate:

∂α̃(fg) =∂ej∂α(fg) =
∑

0≤β≤α

(
α

β

)
∂j

(
∂βf ∂α−βg

)
=
∑

0≤β≤α

(
α

β

)
∂β+ejf ∂α−βg +

∑
0≤β≤α

(
α

β

)
∂βf ∂α+ej−βg

(1)
=

∑
ej≤β≤α+ej

(
α

β − ej

)
∂βf ∂α−(β−ej)g +

∑
0≤β≤α

(
α

β

)
∂βf ∂α+ej−βg

(2)
=

(
α

α

)
∂α+ejf g +

∑
0≤β≤α
βj=0

(
α

β

)
∂βf ∂α+ej−βg

+
∑

ej≤β≤α

(
α

β − ej

)
∂βf ∂α+ej−β)g +

∑
ej≤β≤α

(
α

β

)
∂βf ∂α+ej−βg

(3)
=

(
α+ ej
α+ ej

)
∂α+ejf g +

∑
0≤β≤α
βj=0

(
α+ ej
β

)
∂βf ∂α+ej−βg

+
∑

ej≤β≤α

(
α+ ej
β

)
∂βf ∂α+ej−β)g

=
∑

0≤β≤α+ej

(
α+ ej
β

)
∂βf ∂α+ej−βg

=
∑

0≤β≤α̃

(
α̃

β

)
∂βf ∂α̃−βg.

(1): Here we ”shifted” the first sum by ej .
(2): Here we separated the summand β = α+ ej from the first sum and all the summands
with βi = 0 from the second sum.
(3): Here we used the addition law LemBinomAdd on the last two sums and the fact that
βj = 0 implies (

αj
βj

)
= 1 =

(
αj + 1

βj

)
,

thus (
α

β

)
=

n∏
ν=1,
ν 6=j

(
αν
βν

)
·
(
αj
βj

)
=

n∏
ν=1,
ν 6=j

(
αν
βν

)
·
(
αj + 1

βj

)
=

(
α+ ej
β

)
.
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begin crap

∂α̃(fg) = ∂j∂
α(fg) = ∂j

∑
β≤α

(
α
β

)
(∂βf)(∂α−βg

=
∑

0≤β≤α

(
α
β

)
(∂j∂

βf)(∂α−βg) + (∂βf)(∂j∂
α−βg)

(1)
=

∑
i 6=j:0≤βi≤αi,0≤βj≤αj

n∏
i=1,i 6=j

(
αi
βi

)(
αj
βj

)
(∂j∂

βf)(∂α−βg) +
∑

0≤β≤α

(
α
β

)
(∂βf)(∂α−βg)

(2)
=

∑
i 6=j:0≤βi≤αi,1≤βj≤αj

n∏
i=1,i 6=j

(
αi
βi

)(
αj − 1
βj − 1

)
(∂βf)(∂α−βg) +

∑
0≤β≤α

(
α
β

)
(∂βf)(∂α−βg)

(3)
=

∑
0≤β≤α

n∏
i=1,i 6=j

(
αi
βi

)(
αj − 1
βj − 1

)
(∂βf)(∂α−βg) +

∑
0≤β≤α

n∏
i=1,i 6=j

(
αi
βi

)(
αj − 1
βj

)
(∂βf)(∂α−βg)

=
∑

0≤β≤α

((
αj − 1
βj − 1

)
+

(
αj − 1
βj

)) n∏
i=1,i 6=j

(
αi
βi

)
(∂βf)(∂α−βg)

(4)
=

∑
0≤β≤α

(
αj
βj

) n∏
i=1,i 6=j

(
αi
βi

)
(∂βf)(∂α−βg)

=
∑

0≤β≤α

(
α
β

)
(∂βf)(∂α−βg)

Where we have used the following facts:
(1) In the first sum, we just wrote down the index set and the expression more com-

plicated. In the second sum we only added summands with multi-indices β, such
that (

α̃
β

)
=

∏
1≤i 6=j≤n

(
αi
βi

)
·
(

αj
αj + 1

)
(2) In the first sum this is an index shift

(0 ≤ βj ≤ α̃j = αj − 1) 7→ (1 ≤ βj ≤ αj)

and the plugging in of the definition of α̃.
(3) In the first sum, we just added summands where βj = 0 and thus(

αj − 1
βj − 1

)
= 0

In the second sum we plugged in the definitions.
(4) This is the addition law for binomial coefficients.

end crap

A.1.4 Remark. This statement is also valid for Dα instead of ∂α (by just multiplying
the equation with (−i)α).
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A.1.5 Corollary (Matrix valued Leibniz Formula). Let U ⊂ R n be open and F ∈
Ck(U,C s×r), G ∈ Ck(U,C t×s) and α ∈ N n such that |α| ≤ k. Then

∂α(FG)(x) =
∑
β≤α

(
α

β

)
(∂βF )(x)(∂α−βG)(x).

Proof. Notice that FG ∈ C k(U,C r×t). Thus we calculate for any 1 ≤ i ≤ r, 1 ≤ j ≤ t

∂α(FG)ij =

s∑
ν=1

∂α(F iνG
ν
j )

A.1.3
=

s∑
ν=1

∑
β≤α

(
α

β

)
∂β(F iν)∂α−β(Gνj )

=
∑
β≤α

(
α

β

) s∑
ν=1

∂β(F iν)∂α−β(Gνj ) =
∑
β≤α

(
α

β

)
(∂β(F )∂α−β(G))ij .

One specific product is of particular importance.

A.1.6 Lemma. Let α, δ ∈ N n be any two multi-indices. Then for all ξ ∈ R n

∂δξξ
α =

{
δ!
(
α
δ

)
ξα−δ, δ ≤ α,

0, otherwise.

Proof.
Step 1n = 1: Let k ∈ N and fk : R → R , t 7→ tk. Then for any l ≤ k

f
(l)
k (t) = k(k − 1) . . . (k − l + 1)tk−l =

k!

(k − l)!
tk−l =

(
k

l

)
l!tk−l.

On the other hand, if l > k, we obtain f (l)
k (t) = 0. Consequently

∀k, l ∈ N : ∀t ∈ R : f
(l)
k (t) = (tk)(l) =

{(
k
l

)
l!xk−l, l ≤ k,

0, otherwise
(A.1)

Step 2general case: We calculate

∂δ(ξα) = ∂δ11 . . . ∂δnn (ξα1
1 · . . . · ξ

αn
n ) =

n∏
i=1

∂δii (ξαii )

Now in case δ ≤ α it follows from (A.1) that

∂δ(ξα) =
n∏
i=1

(
αi
δi

)
δi!ξ

αi−δi
i =

(
α

δ

)
δ!ξα−δ.

If δ ≤ α does not hold, it follows also from (A.1) that ∂δ(ξα) = 0 in this case.

Proof. [old] By induction over n. We always write ∂ := ∂ξ.
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Step 1 (induction start n = 1): In this case α, δ ∈ N 0. In case δ ≤ α

∂δξα = ξα−δ
δ+1∏
i=0

α− i = ξα−δ
α!

(α− δ)!
= δ!

(
α

δ

)
ξα−δ.

This identity implies that in case δ > α.

∂δ(ξα) = ∂δ−α(∂α(ξα)) = 0.

Step 2 (induction step n→ n+ 1): Suppose the formula is valid for multi-indices of length
n and let α, δ ∈ N n+1. Define

α̃ := (α1, . . . , αn) ∈ N n, δ̃ := (δ1, . . . , δn) ∈ N n.

We calculate

∂δξα = ∂δn+1(∂ δ̃(ξα̃ξ
αn+1

n+1 )) = ∂δn+1(ξ
αn+1

n+1 · ∂
δ̃(ξα̃)) = ∂δn+1(ξ

αn+1

n+1 ) · ∂ δ̃(ξα̃) (A.2)

Now if δ ≤ α does not hold, one of these factors equals zero by induction hypothesis. In
case δ ≤ α does hold, we may continue this equation using the induction hypothesis by

(A.2) =
1

δn+1!

(
αn+1

δn+1

)
ξ
αn+1−δn+1

n+1

1

δ̃!

(
α̃

δ̃

)
ξα̃−δ̃ =

1

δ!

(
α

δ

)
ξα−δ.

This allows us to generalize Leibniz formula for PDOs.

A.1.7 Theorem (Leibniz Formula for PDO). Let U ⊂ R n be open F ∈ Ck(U,C r×s),
g ∈ Ck(U,C r) open and

P (x,D) =
∑
|α|≤k

pα(x)Dα ∈ DiffkC (U, s, t)

be a PDO with symbol p(x, ξ). Then

P (D)(Fg) =
∑
|µ|≤k

1

µ!
P (µ)(D)(F )Dµg

where P (µ)(D) ∈ Diff
k−|µ|
C (U, s, t) is the PDO with symbol

p(µ)(x, ξ) = ∂µξ p(x, ξ)

Proof. By the Leibniz formula ?? above

P (x,D)(Fg) =
∑
|α|≤k

pα(x)Dα(Fg) =
∑
|α|≤k

pα(x)
∑
µ≤α

(
α

µ

)
Dα−µ(F )Dµ(g)

Furthermore
p(µ)(x, ξ) =

∑
|α|≤k

pα(x)∂µξ ξ
α A.1.6

=
∑
|α|≤k

pα(x)µ!

(
α

µ

)
ξα−µ
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Consequently

P (x,D)(Fg) =
∑
|α|≤k

∑
µ≤α

pα(x)

(
α

µ

)
Dα−µ(F )Dµg

A.1.6∑
|µ|≤k

1

µ!

∑
|α|≤k

pα(x)µ!

(
α

µ

)
Dα−µ(F )Dµg

=
∑
|µ|≤k

1

µ!
P (µ)(D)(F )Dµg

We would like to generalize generalize these results to products with finitely many factors.

A.1.8 Theorem (Binomial Theorem). For any x, y ∈ C , n ∈ N

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk

In this context 00 := 1.

A.1.9 Theorem (Multinomial Theorem). Let z1, . . . , zk ∈ C n, α ∈ N n. Then(
k∑
i=1

zi

)α
=

∑
B∈(N n)k,|B|=α

(
α

B

)
ZB

where B = (B1, . . . , Bk) is a tuple of multi-indices, ZB := zB1
1 . . . zBkk and

|B| :=
k∑
i=1

Bi

(
α

B

)
:=

α!

B1! . . . Bk!

Proof. We use induction over k. For k = 1, the statement is clear since both side equal
zα1 . For k = 2(

k∑
i=1

zi

)α
=

n∏
i=1

(zi1 + zi2)αi
A.1.8∏ n

i=1

αi∑
γi=1

(
αi
γi

)
(zi1)γi(zi2)αi−γi

=

α1∑
γ1=1

. . .

αn∑
γn=1

n∏
i=1

(
αi
γi

)
zγi1 z

αi−γi
2 =

∑
γ≤α

α!

γ!(α− γ)!
zγ1 z

α−γ
2 =

∑
B∈(N n)2,|B|=α

(
α

B

)
ZB

For the induction step assume k ≥ 3 and that the statement holds for k. Define y :=∑k
i=1 zk, Y = (z1, . . . , zk) ∈ (C n)k Using the induction start for k = 1, 2 and the induction

hypothesis, we obtain:(
k+1∑
i=1

zi

)α
=

(
k∑
i=1

zi + zk+1

)α
= (y + zk+1)α =

∑
γ+δ=α

(
α

(γ, δ)

)
(y, zk+1)(γ,δ)

=
∑

γ+δ=α

α!

γ!δ!
zδk+1

(
k∑
i=1

zi

)γ
=

∑
γ+δ=α

α!

γ!δ!
zδk+1

 ∑
C∈(N n)k,|C|=γ

(
γ

C

)
Y C


=

∑
γ+δ=α

∑
C∈(N n)k,|C|=γ

α!

γ!δ!

γ!

C1! . . . Ck!
zC1

1 . . . zCkk zδk+1 =
∑

B∈(N n)k+1,|B|=α

(
α

B

)
ZB
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A.1.10 Theorem (Leibniz rule for multiple factors). Let f1, . . . , fk ∈ C∞(U,C ), U ⊂ R n

, α ∈ N n. Then

∂α

(
k∏
i=1

fi

)
=

∑
B∈(N n)k,|B|=α

(
α

B

)
∂BF

where F = (f1, . . . , fk) : U → C k, B = (B1, . . . , Bk) is a tuple of multi-indices, ∂BF :=
(∂B1f1) . . . (∂Bkfk) and

|B| :=
k∑
i=1

Bi

(
α

B

)
:=

α!

B1! . . . Bk!

Proof. We use induction over k. For k = 1, the statement is clear since both side equal
∂αf1. For k = 2 this has already been proven as A.1.3. For the induction step k → (k+ 1)
consider:

∂α

(
k+1∏
i=1

fi

)
= ∂α

(
k∏
i=1

fifk+1

)
=

∑
γ+δ=α

(
α

(γ, δ)

)
∂γ

(
k∏
i=1

fifk+1

)
f δk+1

=
∑

γ+δ=α

α!

γ!δ!
zδk+1

 ∑
C∈(N n)k,|C|=γ

(
γ

C

)
∂C(f1, . . . , fk)


=

∑
γ+δ=α

∑
C∈(N n)k,|C|=γ

α!

γ!δ!

γ!

C1! . . . Ck!
(∂C1f1) . . . (∂Ckfk)(∂

δ
k+1f) =

∑
B∈(N n)k+1,|B|=α

(
α

B

)
∂BF

A.2. Auxilliary Lemmata

A.2.1 Lemma. The Euclidean norm | | = ‖ ‖2 on R n satisfies

∀α ∈ N n : ∀x ∈ R n : |xα| ≤ |x|α = |x||α|.

Proof. The last equality holds by definition. The first inequality is proven by stupid
induction over |α| = k. If k = 1 there exists 1 ≤ j ≤ n such that α = ej . Therefore

|x||α| =

√√√√ n∑
k=1

x2
k ≥

√
x2
j = |xα|.

For the induction step k → k+ 1 notice decompose an α satisfying |α| = k+ 1 into β + ej
where |β| = 1 and calculate

|xα| = |xβ||xj | ≤ |x||β||xj | ≤ |x||α|.

A.2.2 Lemma. For any k ∈ N there exist constants {cα > 0 | |α| ≤ 2k} such that

∀x ∈ R n : |x|k ≤
∑
|α|≤2k

cα|xα|.
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Proof. We use induction over k.
Step 1 (k = 0): Clearly

|x|0 = 1 =: c0|x0|

does the job.
Step 2 (k → k + 1): Let

pk(x) =
∑
|α|≤2k

cαx
α

Using the induction hypothesis, we calculate for any |x| ≥ 1

|x|
∑
|α|≤2k

cα|xα| ≤ |x|2
∑
|α|≤2k

cα|xα| =
n∑
j=1

x2
j

∑
|α|≤2k

cα|xα| =
n∑
j=1

∑
|α|≤2k

cα|xα+2ej |

Since for any |x| ≤ 1, |x|k+1 ≤ 1 = x0 as well, the estimate

∀x ∈ R n : |x|k+1 = |x||x|k ≤
n∑
j=1

∑
|α|≤2k

cα|xα+2ej |+ 1

does the job.

A.2.3 Lemma.
∀x, y ∈ R≥0 : ∀k ∈ N : (x+ y)k ≤ 2k(xk + yk)

Proof. By common sense

(x+ y)k ≤ (2 max(x, y))k = 2k max(x, y)k ≤ 2k(xk + yk).

A.2.4 Lemma. Let s ∈ R and define f : R n → R , x 7→ |x|s (remember, that |x| := ‖x‖2)
and let 1 ≤ p <∞. Then

f ∈ Lp(B1(0))⇔ −s < n

p
, f ∈ Lp(R n \B1(0))⇔ −s > n

p
.

A.2.5 Lemma (Peetre Inequality). For any ξ ∈ R n let 〈ξ〉 := (1 + |ξ|2)
1
2 and let |_| be

the Euclidean norm.

∀ξ, η ∈ R n : ∀s ∈ R : 〈ξ〉s ≤ 2|s|〈ξ − η〉|s|〈η〉s

Proof. [see Abels] In a first step, we calculate

〈ξ〉2 = (1 + |ξ|2) ≤ (1 + |ξ|)2 ≤ (1 + |ξ|)2 + (1− |ξ|)2 = 2(1 + |ξ|2),

thus we obtain

〈ξ〉 ≤ (1 + |ξ|) ≤
√

2〈ξ〉 ≤ 2〈ξ〉 (A.3)

Let’s assume s ≥ 0. By the triangle inequality

(1 + |ξ|) ≤ (1 + |ξ − η|+ |η|) ≤ (1 + |ξ − η|)(1 + |η|) (A.4)
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thus

〈ξ〉s
(A.3)
≤ (1 + |ξ|)s

(A.4)
≤ (1 + |ξ − η|)s(1 + |η|)s

(A.3)
≤ 2s〈ξ − η〉s〈η〉s

This implies the claim for s ≥ 0. In case s < 0, interchange the roles of ξ and η in the
previous inequality and apply this to −s. We obtain

〈η〉−s ≤ 2−s〈η − ξ〉−s〈ξ〉−s

=⇒〈ξ〉s ≤ 2−s〈η − ξ〉−s〈η〉s = 2|s|〈η − ξ〉|s|〈η〉s.

A.2.6 Lemma. For any k-times differentiable function h : U ⊂ R n → Rm define

‖h‖Ck := sup
x∈U

max
α∈N n

0 : |α|≤k
max

1≤i≤m
|∂αhi|(x).

Now let F ∈ Ckb (U ⊂ R n, V ⊂ Rm), k ≥ 1, and g ∈ Ckb (V,R ). There exists C > 0, such
that

‖g ◦ F‖Ck(U) ≤ Ck‖F‖Ck(U)‖g‖Ck(V ). (A.5)

Proof. This can be proven by induction over k using the chain rule and the Leibniz rule:
For k = 1, this follows from

|∂j(g ◦ F )| ≤
n∑
i=1

|∂iF j ∂ig| ≤ n‖F‖C1(U)‖g‖C1(V )

For the induction step, we just notice that for any α ∈ N n, such that |α| = k + 1 there
exist β ∈ N n and 1 ≤ i ≤ j, such that |β| = k and α = β + ej . Therefore

|∂α(g ◦ F )| = |∂β∂j(g ◦ F )| ≤
n∑
i=1

|∂β(∂iF
j∂ig)| ≤

n∑
i=1

∑
γ≤β

(
β

γ

)
|∂γ∂iF j ∂β−γ∂ig)| ≤ C‖F‖Ck+1‖g‖Ck+1(V ).

A.2.7 Lemma. The map α : R n → Bn, x 7→ x√
1+|x|2

, is a diffeomorphism with inverse

α−1 : Bn → R n.

A.3. Linear Algebra

A.3.1 Theorem (Adjoints). Assume that
(i) (V, g), (W,h) are finite-dimensional hermitian vector spaces over C ,
(ii) B = (b1, . . . , bn) is a basis of V , C = (c1, . . . , cm) is a basis of W ,
(iii) G = (gij) ∈ GL(n,C ) is the coordinate matrix of G with respect to B,
(iv) H = (hij) ∈ GL(m,C ) is the coordinate matrix of H with respect to C,
(v) f : V →W is a C -linear map,
(vi) M = cBC(f) is the coordinate matrix of f with respect to B and C,
(vii) N = cCV (f∗) is the coordinate matrix of f∗ with respect to C and B.
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Then

N = G−1M∗H,

where M∗ := M̄ t.

Proof. By definition, for any 1 ≤ i ≤ n, 1 ≤ j ≤ m, we claculate on the one hand

h(f(bi), cj) = h
( m∑
k=1

Mkick

)
=

m∑
k=1

Mkih(ck, cj) =
m∑
k=1

MkiHkj

=
m∑
k=1

M t
ikHkj = (M tH)ij

and on the other hand

g(bi, f
∗(cj)) = g

(
bi,

n∑
l=1

Nljbl

)
=

n∑
l=1

N̄ljg(bi, bl) =
n∑
l=1

N̄ljGil

=

n∑
l=1

GilN̄lj = (GN̄)ij .

By definition h(f(bi), cj) = g(bi, f
∗(cj)) and therefore, we obtain

M tH = GN̄ =⇒ G−1M tH = N̄ =⇒ N = Ḡ−1M∗H̄.

A.4. Connections and Vector bundles

Let E →M be a smooth vector bundle over K . In this section we discuss the concecpt of
a connection on a vector bundle. There are slightly different definitions of a connection,
which are all very common in the literature and are all equivalent. In order to see this and
to give some better intuition and understanding, we remind some easy facts from linear
algebra.

A.4.1 Definition. Let V,W be K vector spaces. For any v ∈ V the map Bv : V ′ ×W →
W , (v′, w) 7→ v′(v)w, is bilinear. By the universal property of the tensor product, there
exists a unique linear map βv : V ′ ⊗W → W , such that βv ◦ ⊗ = Bv. The bilinear map
〈_,_〉W : V ×(V ′⊗W )→W , defined by (v, x) 7→ βv(x), is theW -pairing of V . It satisfies

∀v ∈ V : ∀v′ ∈ V ′∀w ∈W : 〈v, v′ ⊗ w〉W = v′(v)w.

A.4.2 Definition (connection). An K -linear map Γ(E)→ Γ(T ∗M ⊗ E), which satisfies

∀f ∈ C∞(M) : ∀σ ∈ Γ(E) : D(fσ) = df ⊗ σ + fDσ

is a connection on E.

A.4.3 Definition (covariant derivative). A K -bilinear map ∇ : Γ(E) × Γ(M) → Γ(E),
(X,σ) 7→ ∇Xσ satisfying
(i) ∀f ∈ C∞(M) : ∀σ ∈ Γ(E) : ∇fXσ = f∇Xσ
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(ii) ∀f ∈ C∞(M) : ∀σ ∈ Γ(E) : ∇X(fσ) = X(f)σ + f∇Xσ
is a covariant derivative on M .

There is an intimate relation between connections and covariant derivatives. The words
are almost used as synonoms in the literature.

A.4.4 Lemma. There is a bijection ϕ : {connections on E} → {covariant derivatives on E}.
For any connection D, define the covariant derivative ∇D := ϕ(D) to be the following: For
any X ∈ Γ(M) define

∇DX(σ) := 〈X,Dσ〉E ,

where 〈X,Dσ〉E is the (pointwise defined) E-pairing between TM and T ∗M .

Proof.
Step 1 (∇DX is a covariant derivative): By construction ∇DX it is K -binlinear and C∞(M)-
linear in X. By the connection property, we obtain

∇DX(fσ) = 〈X,D(fσ)〉E = 〈X, df⊗σ+fDσ〉E = df(X)σ+〈X, fDσ〉E = X(f)σ+f∇DX(σ)

A.4.5 Lemma (Affine structure). Let ∇0 and ∇1 be two linear connections on E → M ,
where E is vector bundle over K . The difference

∀X ∈ T (M) : ∀s ∈ −(E) : A(X, s) := ∇1
Xs−∇0

Xs

is a tensor field A ∈ Γ(T ∗M ⊗ E), i.e. a map T (M) × Γ(E) → Γ(E), that is multilinear
over C∞(M). It is called the difference tensor. The set ∇(E) of all connections on E is
given by

∇(E) = {∇0 +A | A ∈ Γ(T ∗M ⊗ E)}

and is therefore an affine space.

Proof. The linearity over K in X and s is clear. For any f ∈ C∞(M), we calculate

A(fX, s) = ∇1
fXs−∇0

fXs = f∇1
Xs− f∇0

Xs = fA(X, s)

A(X, fs) = ∇1
X(fs)−∇0

X(fs) = X(f)s+ f∇1
Xs−X(f)s− f∇0

Xs = fA(X, s),

thus A ∈ T 2
1 (E) is a tensor field. Conversely if A ∈ T 2

1 (E) is an arbitrary tensor field, the
map

∇1 := ∇0 +A

is a connection: Clearly it is linear over R in both arguments, linear over C∞(M) in X by
definition and the Leibniz rule follows immediately from

∇1(X, fs) = ∇0
X(fs) +A(X, fs) = X(f)s+ f∇0

Xs+ fA(X, s) = X(f)s+∇1
Xs.

A.4.6 Lemma. Let ∇ be a linear connection on M and let {Ei} be a local frame on some
open neighbourhood U ⊂M , and let {Ei} be its dual coframe.
(i) There is a uniquely determined matrix of 1-forms ωji ∈ T ∗(U), called connection

1-forms for this frame such that

∀X ∈ T (U) : ∇XEi = ωji (X)Ej
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(ii) Let τ be the torsion tensor from Problem 4-2 and {τ i} be the torsion 2-forms defined
by

∀X,Y ∈ T (U) : τ(X,Y ) = τ j(X,Y )Ej

Then Cartan’s first structure euqation

dEj = Ei ∧ ωji + τ j

holds.

Proof.
(i) Uniqueness follows easiliy from

∇XEi = ∇XkEk
Ei = Xk∇EkEi = XkΓjkiEj

Since Ej is a local frame, we have no choice but to define

ωji := ΓjkiE
k

Clearly ωji ∈ T ∗(U), which shows existence.
(ii) Let’s expand the various terms. For the differential, we obtain

dEj(X,Y )
[?, 12.17]
X (Y j)− Y (Xj)− Ej([X,Y ])

For the torsion, we obtain

τ j(X,Y ) = Ej(τ(X,Y )) = Ej(∇XY )− Ej(∇YX)− Ej([X,Y ])

= Ej((X(Y k) +XiY lΓkil)Ek)− Ej((Y (Xk) + Y iX lΓkil)Ek)− Ej([X,Y ])

= X(Y j) +XiY lΓjil − Y (Xj)− Y iX lΓjil − E
j([X,Y ])

= X(Y j)− Y (Xj)− Ej([X,Y ])−XiY kΓjik + Y iXkΓjik

The wedge can be written as

(Ei ∧ ωji )(X,Y ) =
(1 + 1)!

1! · 1! · 2
(Ei ⊗ ωji − ω

j
i ⊗ E

i)(X,Y ) = Xiωji (Y )− ωji (X)Y i

= XiY kΓjki −X
kY iΓjki = XkY iΓjik −X

iY kΓjik

These three equations together imply

(dEj − Ei ∧ ωji − τ
j)(X,Y ) = 0
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List of Symbols

∗ convolution, page 57

f̂ the fourier transform of f , page 67

F fourier transform operator, page 67

b compactly contained, page 50

B(p, n) a ball with respect to the seminorm p of radius 1/n, page 38

C∞(U) smooth functions, page 50

C∞c (U) the space of compatly supported smooth functions, page 51

D(U) the space of compatly supported smooth functions, page 51

CΦ , page 124

Dα partial differentiation, page 4

∂α partial differentiation, page 4

Diffk(M ;E,F ) differential operators between sections, page 9

Diffk(U,C r,C s) differential operators of order k, page 4

Diffkc (U,C r,C s) compactly supported differential operators of order k, page 4

∂j partial differentiation in the j-th coordinate direction ej

Dj Dj := −i∂j , where i is the imaginary unit

E smooth functions, page 50

f̌ inverse Fourier transform, page 71

F−1 inverse Fourier transform, page 71

Hs Sobolev space of order s, page 109

K ◦ S composition of sets, page 133

M a smooth manifold

m m = dimM

my rotation, page 68

N the natural numbers starting with 0, 1, 2, . . .

n dimension of R n

Nrm Category of normed spaces, page 37
Osx

oscillatory integral, page 129

f̌ reflection operator, page 68

R reflection operator, page 68

RΦ , page 124
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S the Schwartz space, page 61

sλ scaling, page 68

sing-supp singular support, page 96

SΦ , page 124

supp f support of f , page 51

τy translation, page 68

U U ⊂ R n usually is an open set

ξαϕ power of the pullback of a cotangent vector, page 19
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absorbing, 37
amplitude, 132
asyptotic expantion, 79

balanced, 35
bounded, 36

Cauchy sequence, 36
conical, 124
convex, 35
convolution, 57

of distributions, 99
convolution theorem, 67

diffeomorphism invariance, 7
differential operator, 4

between bundles, 9
differentiation

of a distribution, 87
differentiation theorem, 69
Dirac sequence, 58
distribution, 83

positive, 108
tempered, 83
with compact support, 83

elliptic
PDO, 28

elliptic complex, 34
equivalence

of seminorms, 44
exhaustion function, 78

F-space, 37
FIO, 131
formal development, 79
Fourier Integral Operator, 131
Fourier transform, 67
Fréchet space, 37
functional, 36

Heine-Borel property, 37

invariant metric, 37
inverse Fourier transform, 71

Lp-space, 57
local frame, 8
locally convex, 37

metrizable, 37
Minkowski functional, 37
multiplication

of a distribution, 85

norm, 37
normable, 37

Operator, 36
operator phase function, 132
order

of a distribution, 83
oscillatory integral, 129

PDO, 4
distributional, 87
on manifolds, 9

phase function, 124
positively homogenous, 76

rapidly decreasing, 60
Rellich Lemma, 114
restriction, 20

Schwartz kernel, 103
Schwartz kernel theorem, 103
Schwartz space, 61
section, 8
seminorm, 37
singular support, 96
Sobolev Embedding Theorem, 113
Sobolev space, 109
standard mollifier, 59
support

of a distribution, 90
symbol, 5, 74

full, 5
on manifolds, 14
principal, 5

tensor product
of distributions, 101

tensor product
of functions, 100

topological vector space, 35

vector bundle, 8

weak-*-topology, 44
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Workhorse Theorem, 136

Young’s inequality, 57
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