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1 Basics of Real Analysis

1.1 Theorem (Implicit Functions Theorem). Let U × V ⊂ Rk × Rm → Rm be open and F ∈
C r(U × V,Rm). Let (a, b) ∈ U × V such that F (a, b) = 0 and

det(DvF (a, b)) 6= 0

Then there are open neighbourhoods U ′ of a and V ′ of b and a mapping g ∈ C r(U ′, V ′) satisfying
g(a) = b and

∀(u, v) ∈ U ′ × V ′ : F (u, v) = 0 ⇔ v = g(u)

1.2 Theorem (Inverse Function Theorem). Let U ⊂ Rn be open and F : U → Rn be of class C r. Let
a ∈ U satisfying

det(DF (a)) 6= 0

Then there exist open neighbourhoods U ′ of a and V ′ of b := f(a) such that F‖U : U ′ → V ′ is a
Diffeomorphism of class C r.

1.3 Definition (Immersion). Let W ⊂ Rk be an open subset. A mapping ψ : W → Rn is an immersion
of class C r if ψ ∈ C r(W,Rn) and

∀w ∈ W : rg(Dψ(w)) = k

2 Smooth Submanifolds of Rn

In this section we will state four criterions a subset M ⊂ Rn can fulfill and proof their equivalence,
which is the main result of this section. A submanifold is defined to be a subset M fulfilling at least
one (and thus all) of these four conditions. We will proof their equivalence via

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i)
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As a preparation it is extremely helpful to clarify some conventions of notation:

2.1 Convention.
(i) Spaces: Although Rn is Rn we are in fact dealing with two different versions of it: The subman-

ifold M is the space itself, we are interested in. It is contained in a surrounding space Rn
s := Rn.

We will also be dealing with a coordinate space Rn
c := Rn used only to describe M . To understand

the following proof it could be helpful to distinguish these spaces from one another. If it doesn’t
help you, then you can completely ignore it.

(ii) Integers: The dimension of the surrounding space as well as the coordinate space will be denoted
by n. The dimension of the submanifold is k and it’s class is r.

(iii) Canonical Isomorphism: Throughout the proof we will identify Rn = Rk × Rn−k.
(iv) Multidimensional Zero: We denote 0k := (0, . . . , 0) ∈ Rk

(v) Neighbourhoods: We will have to deal with open neighbourhoods of points in the surrounding
space as well as in the coordinate space. Our neighbourhood in Rn

s will be denoted with S and a
corresponding neighbourhood in Rn

c will be denoted by C. It will also be necessary to write these
neighbourhoods as cartesian products of k-dimensional and (n−k)-dimensional neighbourhoods.
Of course this is not always possible. But since all norms are equivalent, chosing the maximum-
norm and the euclidian norm we obtain open subsets U ⊂ Rk

s and V ⊂ Rn−k
s such that U×V ⊂ S.

Without loss of generality we can always assume that S = U × V , because we will always be
dealing with local questions. Similiarly we will decompose C into C = W × O where W ⊂ Rk

c ,
O ⊂ Rn−k

c are both open subsets of their spaces. It will often be necessary to slightly modify a
neighbourhood U for example. This will then be denoted by U ′.

2.2 Theorem (Characterization of Submanifolds). Let M ⊂ Rn
s be a non-empty subset and r, k ∈ N,

r > 0, k ≥ 0. Then the following are equivalent:
(i) ”M is locally immersed”: For any p ∈ M there is an open neighbourhood S = U × V ⊂ Rn

s of p
and an open subset W ⊂ Rk

c and an immersion ψ : W → S of class C r such that

M ∩ S = ψ(W )

and ψ : W → M ∩ S is a homeomorphism. Such a ψ is called local parametrization.
(ii) ”M is locally a graph”: For any p ∈ M there exist (after renumbering the coordinates) an open

neighbourhood U × V ⊂ Rk
s × Rn−k

s of p and a mapping g : U → V of class C r such that:
∀(u, v) ∈ U × V : (u, v) ∈ M ⇔ v = g(u). In other words:

M ∩ (U × V ) = Γg ∩ (U × V )

(iii) ”M is locally a zero set”: For any p ∈ M there exists an open neighbourhood U × V ⊂ Rn
s and a

function F : U × V → Rn−k
c of class C r such that

M ∩ (U × V ) = {(u, v) ∈ U × V : F (u, v) = 0} = F−1({0}) ∩ (U × V )

and for all (u, v) ∈ M ∩ (U × V ): rg(DF (u, v)) = n − k. Such an F is called locally defining
function.

(iv) ”M is locally euclidian”: M is a submanifold of dimension k and class C r, so: For any p ∈ M
there exists an open neighbourhood S ⊂ Rn

s of p, an open subset C = W ×O ⊂ Rk
c ×Rn−k

c = Rn
c

and a C r-diffeomorphism ϕ : S → W ×O, such that:

ϕ(M ∩ S)) = W × 0n−k

Such a ϕ is called a chart.
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Proof. First of all let’s introduce some notation: Let πK : Rn → Rk

(x1, . . . , xk, xk+1, . . . , xn) 7→ (x1, . . . , xk)

be the projection of Rn onto the first k coordinates and πK : Rn → Rn−k

(x1, . . . , xk, xk+1, . . . , xn) 7→ (xk+1, . . . , xn)

be the projection of Rn onto the last n− k coordinates.

”(i)⇒(ii)”: Let p ∈ M be arbitrary, ψ : W ⊂ Rk
c → (U × V ) ⊂ Rn

s be the immersion defined in the
hypothesis and x := ψ−1(p). Since ψ is a local homeomorphism x is well defined. By definition (c.f.
1.3) the immersion ψ satisfies rg(Dψ(x)) = k. So after renumbering the coordinates if if necessary we
may assume that

det

((
∂ψi(x)

∂xj

)

1≤i,j≤k

)
= det(D(πK ◦ ψ)(x)) 6= 0

Define ψ̃ : W ⊂ Rk
c → U ⊂ Rk

s , ψ̃ := πk ◦ ψ = (ψ1, . . . , ψk). Then the inverse functions theorem (1.2)
is applicable to ψ̃. So there exist open neighbourhoods W ′ ⊂ W of x and U ′ ⊂ U of πK(p) such that
the restriction ψ̃ : W ′ → U ′ is a class C r - Diffeomorphism. Let’s denote it’s inverse by ϕ : U ′ → W ′.
Now define G := (G1, . . . , Gn) := ψ ◦ϕ : U ′ ⊂ Rk

s → ψ(W ′) ⊂ Rn
s . Then for any u = (u1, . . . , uk) ∈ U ′:

G(u) =(ψ ◦ ϕ)(u)
=(ψ1(ϕ(u)), . . . , ψk(ϕ(u)), ψk+1(ϕ(u)), . . . ψn(ϕ(u)))

=(ψ̃1(ϕ(u)), . . . , ψ̃k(ϕ(u)), Gk+1(u), . . . Gn(u)
=(u1, . . . , uk, Gk+1(u), . . . Gn(u)

=(u, (πK ◦G)(u))

The mapping g := πK ◦ G : U ′ ⊂ Rk
s → πK(ψ(W ′)) =: V ′ ⊂ Rk

s we just defined has all desired
propertys: Let (u, v) ∈ U ′ × V ′ be arbitrary. Suppose v = g(u). Then it follows

(u, v) = (u, g(u)) = G(u) = ψ(ϕ(u)) ∈ ψ(W ′) ⊂ ψ(W ) = M ∩ S ⊂ M

since ψ(W ) = M ∩ S by hypothesis, W ′ ⊂ W and S′ ⊂ S. Conversely suppose that (u, v) ∈ M . Then

∃!w ∈ W ′ : (u, v) = ψ(w) = (ψ̃1(w), . . . , ψ̃k(w), ψk+1(w), . . . , ψn(w))

So u = ψ̃(w) and since ψ̃ is a diffeomorpism ϕ(u) = ϕ(ψ̃(w)) = w. This implies

(u, v) = ψ(w) = ψ(ϕ(u)) = G(u) = (u, g(u))

and thus v = g(u).
”(ii)⇒(iii)”: Let g : U ⊂ Rk

s → V ⊂ Rn−k
s as in the hypothesis and p ∈ U × V . Define a mapping

F = (F1, . . . , Fn−k) : U × V ⊂ Rn
s → Rn−k

c by

F (u, v) := v − g(u)

Then F is of class C r and for any (u, v) ∈ U × V :

F (u, v) = 0 ⇔ v = g(u)(u, v) ⇔∈ M
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So M ∩ (U × V ) is the zero set of F . Finally DvF (u, v) = In−k ∈ R(n−k)×(n−k). Since the unit matrix
In−k has rank n−k and DF (u, v) ∈ R(n−k)×n it follows that for any (u, v) ∈ U×V : DF (u, v) = n−k.

”(iii)⇒(iv)”: Let p ∈ M and F : U × V → Rn−k
c be as in the hypothesis. After renumbering the

coordinates if necessary we may assume, that

det(DvF (p)) = det
(

∂(F1, . . . , Fn−k)
∂(v1, . . . , vn−k)

(p)
)
6= 0

Define idK : Rk
s → Rk

c , x 7→ x and idK ×F : U × V → Rn
c , (u, v) 7→ (u, F (u, v)). Then the inequality

above implies:

det(D(idK ×F )(p)) = det
(

Ik 0
DuF (p) DvF (p)

)
6= 0

as well. By the inverse functions theorem (1.2) there is an open neighbourhood S′ ⊂ U × V of p and
an open neighbourhood C ′ := W ′ × O′ of q := (idK ×F )(p) such that the restriction ϕ := idK ×F :
S′ → W ′ × O′ is a diffeomorphism of class C r. It also fulfills the required propertys because for any
(u, v) ∈ S′:

(u, v) ∈ M ⇔ F (u, v) = 0 ⇔ ϕ(u, v) = (idK ×F )(u, v) = (u, F (u, v)) = (u, 0) ∈ W ′ × 0n−k

”(iv)⇒(i)”: Let p ∈ M be arbitrary and let ϕ : S → W × O be a chart, i.e. a diffeomorphism of class
C r as in the hypothesis. Define ψ : W → S by

w 7→ ϕ−1(w, 0n−k)

Since ϕ−1 is diffeomorphism of class C r as well, ψ is an immersion of class C r and we have by
hypothesis:

ψ(W ) = ϕ−1(W, 0n−k) = M ∩ S

2.3 Definition (Submanifold). A subset ∅ 6= M ⊂ Rn is a differentiable submanifold, if it satisfies
one of the conditions listed in theorem 2.2 above. The integer r is the class of M . M is smooth if it is
of class r for any r ∈ N, r > 0. We call

dimM := k codimM := n− k

the dimension and codimension of M .

3 Tangential and Normal Spaces

3.1 Definition (Tangential Bundle). Let M ⊂ Rn be a non-emtpy subset and p ∈ M be arbitrary. A
vector v ∈ Rn is a tangent to M at p if there exist ε > 0, γ ∈ C 1(]− ε, ε[,M), such that γ(0) = p and
γ̇(0) = v. The set

TpM := {v ∈ Rn|v is tangent to M at p }
is the tangential space of M at p. Their disjoint union

TM :=
∐

p∈M

TpM := {(v, p)|v ∈ TpM, p ∈ M}

is the tangential bundle of M .
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3.2 Definition (Normal Bundle). Let M ⊂ Rn be a non-emtpy subset, p ∈ M be arbitrary and 〈_,_〉
be the euclidian standard scalar product on Rn. Then

NpM := {w ∈ Rn|∀v ∈ TpM : 〈w, v〉 = 0}
is the normal space of M at p. A vector v ∈ NpM is normal to M at p. Analogously

NM :=
∐

p∈M

NpM

is the normal bundle.

3.3 Theorem (Propertys of Tangential and Normal Spaces). Let M be a k-dimensional submanifold
of class C r. Then for any p ∈ M

(i) The sets TpM and NpM are vector spaces and there is a direct and orthogonal decomposition

Rn = TpM ⊕NpM

(ii) We have the dimension formulae

dimTpM = dimM = k dimNpM = codimM = n− k

(iii) If F : U × V ⊂ Rn
s → Rn−k

c , p ∈ U × V , is a locally defining function for M at p, then

TpM = ker dF (p) NpM = im dF (p)

The (gradF1(p), . . . , gradFn−k(p)) are a basis of NpM .
(iv) If ψ : W ⊂ Rk

c → S ⊂ Rn
s , is a local parametrization at p such that p ∈ S, q := ψ−1(p) ∈ W ,

TpM is also given by:
TpM = 〈∂1ψ(q), . . . , ∂kψ(q)〉 = im dψ(q)

The (∂1ψ(q), . . . , ∂kψ(q)) are a basis of TpM .

Proof.
”im dψ(q) ⊂ TpM ”: Let v ∈ im dψ(q) be arbitrary, thus

v =
k∑

i=1

ci∂iψ(q)

where c = (c1, . . . , ck) ∈ Rk is a coordinate vector of v. Define a curve γ :]− ε, ε[→ M , t 7→ ψ(q + ct),
where ε > 0 is sufficiently small, such that ∀t ∈] − ε, ε[: q + ct ∈ W . Then γ(0) = ψ(q) = p,
γ ∈ C 1(W,S) and by chain rule

γ̇(0) = ψ′(γ(0))c =
k∑

i=1

ci∂iψ(q) = v

Thus v ∈ TpM . By hypothesis dim(im dψ(q)) = rg(dψ(q)) = k.
”TpM ⊂ ker dF (p)”: Let v ∈ TpM and γ :]− ε, ε[→ M be a curve satisfying γ(0) = p, γ̇(0) = v. Then
by the chain rule

0 = F ◦ γ ⇒ 0 = dF (γ(0))(γ̇(0)) = dF (p)(v) ⇒ v ∈ ker dF (p)

So TpM ⊂ ker dF (p). By hypothesis rg(dF (p)) = n− k and thus dim(ker dF (p)) = k.
These two parts proof, that TpM is indeed a vector space of dimension k. It immediately follows that
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NpM = (TpM)⊥ and thus NpM is a vector space of dimension n− k. So part (i) and (ii) is shown and
bringing all this together it follows im dψ(q) = TpM - part (iv) - and TpM = ker dF (p). The last part
of (iii) follows very simillar:
”im dF (p) ⊂ NpM ”: Let v ∈ TpM ⊂ ker dF (p). So

∀1 ≤ j ≤ n− k : 0 = 〈gradFj(p), v〉

wich implies
im dF (p) = 〈gradF1(p), . . . , gradFn−k(p)〉⊥v

thus - since v ∈ TpM was arbitrary - im dF (p) ⊂ NpM .
This again implies im dF (p) = NpM , because by hypothesis and (ii) dim(im dF (p)) = dimNpM =
n− k.

4 Extremal Problems under Restraints

4.1 Definition (Local Extrema). Let X ⊂ Rn a an arbitrary subset, f : X → R be a function and
M ⊂ X. A point a ∈ M is a local minimum of f in M if there is a neighbourhood U ⊂ M (with
regard to the subspace topology of M seen as a metric subspace of Rn) such that

∀x ∈ U : f(x) ≥ f(a)

Analogously if
∀x ∈ U : f(x) ≤ f(a)

we say a is a local maximum of f in M . We say a is a local extremum of f in a if it is either a local
minimum or maximum of f in M .

4.2 Theorem (Extrema under restraints). Let U ⊂ Rn be open, M ⊂ U be a k-dimensional manifold
of class C 1 given by a globally defining function g ∈ C 1(U,Rn−k), i.e.

M = {x ∈ U : g(x) = 0} ∀x ∈ U : rg(dg(x)) = n− k

Let f ∈ C 1(U,R) be a function having a local extremum at p ∈ M . Then

grad f(p) ∈ NpM

which is equivalent to:

∃λ = (λ1, . . . , λn−k) ∈ Rn−k : grad f(p) =
n−k∑

j=1

λj grad gj(p)

Proof. Let v ∈ TpM be arbitrary. Thus there is a curve γ :]− ε, ε[→ M , such that γ(0) = p, γ̇(0) = v.
Define h :]− ε, ε[→ R by h := f ◦ γ. Since f has a local extremum at p in M , and im γ ⊂ M , h has a
local extremum at 0. So by elementary calculus and the chain rule we obtain

0 = h′(0) = ∇f(γ(0))(γ̇(0)) = ∇f(p)v = 〈grad f(p), v〉
Thus grad f(p)⊥v. Since v was arbitrary grad f(p) ∈ NpM . Finally theorem 3.3,(iii) states that

NpM = im dg(p) = 〈grad g1(p), . . . , grad gn−k(p)〉
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4.3 Remark.
(i) The scalars λ1, . . . , λn−k are called Lagrangian Multiplicators.
(ii) One says that the condition grad f(p) ∈ NpM is a necassary condition for f to have a local

extremum at p under the restraint conditions g1(x) = . . . = gn−k(x) = 0. This condition is not
sufficient in general.

(iii) This can also be expressed by

grad f(p) +
n−k∑

j=1

λj grad gj(p) = 0

by simply changing the signs of λj .
(iv) Alltogether we obtain the following non-linear system of equations as a necessary condition for

p to be a local extrema of f in M :

(1) : ∂1f(p) =




n−k∑

j=1

λj grad gj(p)




1

. . .

(n) : ∂nf(p) =




n−k∑

j=1

λj grad gj(p)




n

(n + 1) : g1(p) = 0
. . .

(n + k) : gn−k(p) = 0

It consists of the n + k unknowns p1, . . . , pn, λ1, . . . , λn−k and the n + k equations listed above.

4.4 Theorem. Every symmetric matrix A ∈ Rn×n has an eigenvalue.

Proof. Define F : Rn → R by x 7→ xT Ax. Then F is differentiable and ∇F (x) = 2xT A since

lim
h→0

|F (x + h)− F (x)− 2xT Ah|
‖h‖ = lim

h→0

|(x + h)T A(x + h)− xT Ax− 2xT Ah|
‖h‖

= lim
h→0

|xT Ax + xT Ah + hT Ax + hT Ah− xT Ax− 2xT Ah|
‖h‖

= lim
h→0

|hT Ah‖
‖h‖ = lim

h→0

|〈Ah, h〉|
‖h‖ ≤ lim

h→0

‖Ah‖‖h‖
‖h‖ = lim

h→0
‖Ah‖ = 0

where we have used the Cauchy-Schwarz-Inequality and the symmetry of A. Define g : Rn → R by,
x 7→ ‖x‖2 − 1. Then

M := Sn−1 = {x ∈ Rn|g(x) = 0}
Then g is differentiable as well and

∇g(x) = 2‖x‖ xT

‖x‖ = 2xT
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So g is especially continuous and thus M is the reversed image of the closed subset {0} ⊂ R. Since it’s
obviously bounded, M is compact. The mapping F is continuous as well, so F |M : M → R attains it’s
extremal values. Let a ∈ M be such an extremal value. By the theorem 4.2 above there is a λ ∈ R
such that

gradF (a) = λ grad g ⇒ 2Aa = λ grad g(a) = 2λa ⇒ Aa = λa

Since ‖a‖ = 1 it follows that a 6= 0 and thus λ is an eigenvalue of A.
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