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1 Basics of Real Analysis

1.1 Theorem (Implicit Functions Theorem). Let U x V' C R¥ x R™ — R™ be open and F €
¢ (U x V,R™). Let (a,b) € U x V such that F(a,b) =0 and

det(D,F(a,b)) # 0

Then there are open neighbourhoods U’ of a and V' of b and a mapping g € €"(U’, V') satisfying
g(a) = b and
V(u,v) €U x V' : F(u,v) =0 & v = g(u)

1.2 Theorem (Inverse Function Theorem). Let U C R™ be open and F': U — R" be of class ¢". Let
a € U satisfying
det(DF(a)) #0

Then there exist open neighbourhoods U’ of a and V' of b := f(a) such that F|y : U — V' is a
Diffeomorphism of class €.

1.3 Definition (Immersion). Let W C R* be an open subset. A mapping ¢ : W — R™ is an immersion
of class €" if ¢ € €"(W,R") and

Vw e W :rg(Dyp(w)) =k

2 Smooth Submanifolds of R”

In this section we will state four criterions a subset M C R™ can fulfill and proof their equivalence,
which is the main result of this section. A submanifold is defined to be a subset M fulfilling at least
one (and thus all) of these four conditions. We will proof their equivalence via

(i) = (i) = (iii) = (iv) = (i)



As a preparation it is extremely helpful to clarify some conventions of notation:

2.1 Convention.

(i)

Spaces: Although R™ is R™ we are in fact dealing with two different versions of it: The subman-
ifold M is the space itself, we are interested in. It is contained in a surrounding space R := R".
We will also be dealing with a coordinate space R’ := R"™ used only to describe M. To understand
the following proof it could be helpful to distinguish these spaces from one another. If it doesn’t
help you, then you can completely ignore it.

Integers: The dimension of the surrounding space as well as the coordinate space will be denoted
by n. The dimension of the submanifold is k& and it’s class is r.

Canonical Isomorphism: Throughout the proof we will identify R” = R* x R**,

) Multidimensional Zero: We denote 0y, := (0,...,0) € R¥
) Neighbourhoods: We will have to deal with open neighbourhoods of points in the surrounding

space as well as in the coordinate space. Our neighbourhood in R will be denoted with S and a
corresponding neighbourhood in R} will be denoted by C'. It will also be necessary to write these
neighbourhoods as cartesian products of k-dimensional and (n — k)-dimensional neighbourhoods.
Of course this is not always possible. But since all norms are equivalent, chosing the maximum-
norm and the euclidian norm we obtain open subsets U C R¥ and V' € R?~* such that UxV C S.
Without loss of generality we can always assume that S = U x V', because we will always be
dealing with local questions. Similiarly we will decompose C into C' = W x O where W C R¥,
O C R?* are both open subsets of their spaces. It will often be necessary to slightly modify a
neighbourhood U for example. This will then be denoted by U’.

2.2 Theorem (Characterization of Submanifolds). Let M C R? be a non-empty subset and r, k € N,
r > 0, k > 0. Then the following are equivalent:

(i)

(i)

(iii)

"M is locally immersed™ For any p € M there is an open neighbourhood S =U x V C R? of p
and an open subset W C R]g and an immersion ¢ : W — S of class " such that

MNS =y(W)

and ¢ : W — M N S is a homeomorphism. Such a ) is called local parametrization.

"M is locally a graph” For any p € M there exist (after renumbering the coordinates) an open
neighbourhood U x V € R¥ x R?™* of p and a mapping g : U — V of class €” such that:
V(u,v) €U XV : (u,v) € M < v = g(u). In other words:

MU xV)=T,n (U xV)

”M 1is locally a zero set”™ For any p € M there exists an open neighbourhood U x V' C R} and a
function F: U x V — R?7F of class ™ such that

MNUxV)={(u,v) €U xV:F(u,v) =0} = F*({0}) N (U x V)

and for all (u,v) € M N (U x V): rg(DF(u,v)) = n — k. Such an F is called locally defining
function.

”M is locally euclidian” M is a submanifold of dimension k and class €, so: For any p € M
there exists an open neighbourhood S C R? of p, an open subset C' = W x O C RF x R?‘k =Rl
and a " -diffeomorphism ¢ : S — W x O, such that:

W(MQS)) =W x0p—k

Such a ¢ is called a chart.



Proof. First of all let’s introduce some notation: Let 7 : R — R

(x17"'7xk‘7mk+17"'7xn)'_> (.I'l,...,.%'k)

be the projection of R™ onto the first k coordinates and 7 : R — R»F

(.1,‘1,... ,J;k,xk+1,...,xn) — (xk+1,...,xn)

be the projection of R™ onto the last n — k coordinates.

"(i)=-(ii)”: Let p € M be arbitrary, 1» : W C R¥ — (U x V) C R? be the immersion defined in the
hypothesis and z := 1 ~!(p). Since 1 is a local homeomorphism x is well defined. By definition (c.f.
1.3) the immersion ¢ satisfies rg(Dw(x)) = k. So after renumbering the coordinates if if necessary we

may assume that
det ((8%(:6)) ) = det(D(nx o) (x)) # 0
Ox; 1<i,j<k

Define ¢ : W C ]R’j — U CRF, =m0t = (¢1,...,¢). Then the inverse functions theorem (1.2)
is applicable to . So there exist open neighbourhoods W' C W of x and U’ C U of g (p) such that

the restriction v : W/ — U’ is a class €" - Diffeomorphism. Let’s denote it’s inverse by ¢ : U" — W'.
Now define G := (G, ...,Gp) :=op: U C RF — (W) C R?. Then for any u = (uq,...,u;) € U

G(u) =(¢ o p)(u)
=(1(p(w)), - Yr(e(w)), Vit (p(w)), ... Yn(p(u)))
=1 (p(u), -, Yr(p(w), Gk+1(u) - Gn(u)
=(u, .. Uk,GkH( ), Gn(u)
=(u, (v 0 G)(u))

The mapping g := 78 o G : U’ ¢ REF — 7#K(p(W’)) =: V' € R¥ we just defined has all desired
propertys: Let (u,v) € U’ x V' be arbitrary. Suppose v = g(u). Then it follows

(u,0) = (u, 9(u) = G(u) = ¥(p(u)) €YW) CP(W)=MnSc M
since 1(W) = M NS by hypothesis, W’ € W and S’ C S. Conversely suppose that (u,v) € M. Then
Fw e W' (u,0) = P(w) = (Pr(w), .., Pr(w), Prer (W), ..., Pa(w))
So u = ¥(w) and since ¥ is a diffeomorpism ¢(u) = ¢(¢(w)) = w. This implies
(u,v) = P(w) = P(p(u) = G(u) = (u,g(u))

and thus v = g(u).

"(ii)=(iii)” Let g : U € R¥ — V < R?7* as in the hypothesis and p € U x V. Define a mapping
F=(F,. .. ,F):UxVCR!— Rk by

F(u,v) = v —g(u)
Then F is of class €" and for any (u,v) € U x V:

F(u,v) =0 v =g(u)(u,v) € M



So M N (U x V) is the zero set of F. Finally D, F(u,v) = I,,_j, € RF)*("=F) Since the unit matrix
I,_j, has rank n— k and DF(u,v) € R®=%)>" it follows that for any (u,v) € UxV : DF(u,v) = n—k.

"(iii)=(iv)™ Let p € M and F : U x V. — R?7* be as in the hypothesis. After renumbering the
coordinates if necessary we may assume, that

A(F1, ..., Foy)
V1, Unr) (p)> 70

Define idg : R¥ — RF z+— z and idg xF : U x V. — R%, (u,v) = (u, F(u,v)). Then the inequality
above implies:

det(D, F(p)) = det <

det(D(idx x F)(p)) = det ( DuIFk o Dvg (p)> £0

as well. By the inverse functions theorem (1.2) there is an open neighbourhood S’ C U x V of p and
an open neighbourhood C’ := W’ x O’ of ¢ := (idx X F)(p) such that the restriction ¢ := idg X F :
S’ — W' x O is a diffeomorphism of class €. It also fulfills the required propertys because for any
(u,v) € S

(u,v) € M & F(u,v) =0 < ¢(u,v) = (idg xF)(u,v) = (u, F(u,v)) = (u,0) € W’ x 0,

"(iv)=-(i)": Let p € M be arbitrary and let ¢ : S — W x O be a chart, i.e. a diffecomorphism of class
%" as in the hypothesis. Define ¢ : W — S by

w — gofl(w, On—%)

1

Since ¢~ is diffeomorphism of class € as well, ¢ is an immersion of class ¥ and we have by

hypothesis:
Y(W) = H(W,0,4) =M NS

O]

2.3 Definition (Submanifold). A subset @ # M C R" is a differentiable submanifold, if it satisfies
one of the conditions listed in theorem 2.2 above. The integer r is the class of M. M is smooth if it is
of class r for any r € N, r > 0. We call

dim M =k codimM :=n—k

the dimension and codimension of M.

3 Tangential and Normal Spaces

3.1 Definition (Tangential Bundle). Let M C R™ be a non-emtpy subset and p € M be arbitrary. A
vector v € R™ is a tangent to M at p if there exist € > 0, v € €*(] — ¢, e[, M), such that v(0) = p and
4(0) = v. The set

T,M = {v € R"|v is tangent to M at p }
is the tangential space of M at p. Their disjoint union

TM := H TyM = {(v,p)|lv € T,M,p € M}
peEM

is the tangential bundle of M.



3.2 Definition (Normal Bundle). Let M C R™ be a non-emtpy subset, p € M be arbitrary and (_, )
be the euclidian standard scalar product on R™. Then
NyM :={w € R"Vv € T,M : (w,v) =0}
is the normal space of M at p. A vector v € N,M is normal to M at p. Analogously
NM =[] NyM
peEM
is the normal bundle.

3.3 Theorem (Propertys of Tangential and Normal Spaces). Let M be a k-dimensional submanifold
of class €. Then for any p € M

(i) The sets T, M and N,M are vector spaces and there is a direct and orthogonal decomposition
R" =T,M & N,M
(ii) We have the dimension formulae

dimT,M = dim M =k dim NyM = codimM =n — k

(iii) If F: U xV CR? - R?* pc U x V, is alocally defining function for M at p, then
T, M = ker dF'(p) NpM =imdF(p)

The (grad Fi(p), ..., grad F,_,(p)) are a basis of N, M.
(iv) If ¢ : W Cc RF — S C R, is a local parametrization at p such that p € S, q := ¢ ~1(p) € W,
T,M is also given by:
Tp,M = (019(q); - - -, Ot(q)) = imdip(q)
The (019(q), ..., 0k¥(q)) are a basis of T, M.

Proof.
"imdiy(q) C Tp,M": Let v € imdi(q) be arbitrary, thus

k
v = Z ci0(q)
i—1

where ¢ = (c1,...,c,) € RF is a coordinate vector of v. Define a curve v :] — ,e[— M, t +— (q + ct),
where ¢ > 0 is sufficiently small, such that V¢ €] —e,e[: ¢+ ct € W. Then v(0) = ¢(q) = p,
v € €W, S) and by chain rule

k
3(0) = ¢'(7(0))e = Zciaﬂb(q) =0
i=1

Thus v € T, M. By hypothesis dim(im dy(q)) = rg(d¢(q)) = k.
"T,M C ker dF(p)”: Let v € T,M and v :] — e,e[— M be a curve satisfying v(0) = p, ¥(0) = v. Then
by the chain rule

0=Foy=0=dF(v(0))(¥(0)) = dF(p)(v) = v € ker dF'(p)

So T, M C ker dF(p). By hypothesis rg(dF'(p)) = n — k and thus dim(ker dF'(p)) = k.
These two parts proof, that 7T}, M is indeed a vector space of dimension k. It immediately follows that



N,M = (T,M)* and thus N, M is a vector space of dimension n — k. So part (i) and (ii) is shown and
bringing all this together it follows im di(q) = T, M - part (iv) - and T,M = ker dF'(p). The last part
of (iii) follows very simillar:

"imdF(p) C NpM”: Let v € T,M C kerdF(p). So

V1<j<n—Fk:0=(grad Fj(p),v)

wich implies
imdF(p) = (grad F1(p),...,grad F},_r(p))Lv

thus - since v € T,M was arbitrary - imdF'(p) C N, M.
This again implies im dF(p) = N,M, because by hypothesis and (ii) dim(imdF(p)) = dim N,M =
n—k. O

4 Extremal Problems under Restraints

4.1 Definition (Local Extrema). Let X C R™ a an arbitrary subset, f : X — R be a function and
M C X. A point a € M is a local minimum of f in M if there is a neighbourhood U C M (with
regard to the subspace topology of M seen as a metric subspace of R™) such that

Ve eU: f(z) = f(a)

Analogously if
Vo e U: f(x) < f(a)

we say a is a local mazimum of f in M. We say a is a local extremum of f in a if it is either a local
minimum or maximum of f in M.

4.2 Theorem (Extrema under restraints). Let U C R™ be open, M C U be a k-dimensional manifold
of class €' given by a globally defining function g € €*(U, R"¥), i.e.

M={zeU:g(z)=0} Ve e U :rg(dg(x)) =n—k
Let f € €'(U,R) be a function having a local extremum at p € M. Then
grad f(p) € N,M

which is equivalent to:

n—k

A= (M., Ang) ER™F i grad f(p) = Y _ A; grad g;(p)
j=1

Proof. Let v € T,M be arbitrary. Thus there is a curve v :] — e, e[— M, such that v(0) = p, 7(0) = v.
Define h :] —e,e[— R by h := f o~. Since f has a local extremum at p in M, and im~y C M, h has a
local extremum at 0. So by elementary calculus and the chain rule we obtain

0= 1'(0) = Vf(7(0))(7(0)) = Vf(p)v = (grad f(p),v)
Thus grad f(p)Lv. Since v was arbitrary grad f(p) € N,M. Finally theorem 3.3,(iii) states that

NpM = imdg(p) = (grad g1(p), - - , grad gn—(p))



4.3 Remark.
(i) The scalars Aq,..., \,_j are called Lagrangian Multiplicators.

(ii) One says that the condition grad f(p) € N,M is a necassary condition for f to have a local
extremum at p under the restraint conditions gi1(x) = ... = gnp—i(z) = 0. This condition is not
sufficient in general.

(iii) This can also be expressed by

n—k

grad f(p) + »_ Ajgradg;(p) =0
j=1

by simply changing the signs of A;.
(iv) Alltogether we obtain the following non-linear system of equations as a necessary condition for
p to be a local extrema of f in M:

n—=k

(1): duf(p) = | D Ajeradg;(p)

=1

n—k

(n): Ouf(p) = | D_ Aseradg;(p)

=1
(n+1): ¢1(p) =0

n+k): gnir(p)=0

It consists of the n + k unknowns p1,...,pn, A1, ..., \n—r and the n + k equations listed above.

4.4 Theorem. Every symmetric matrix A € R™*™ has an eigenvalue.

Proof. Define F : R® — R by x + 27 Az. Then F is differentiable and VF(z) = 22T A since

|F(z +h) — F(x) — 22T Ah| l(z +h)TA(z + h) — 2T Az — 227 Ah|

lim = lim
h—0 5] h—0 7]
~ lim 2T Az + 2T Ah + hT Az + hT Ah — 2T Az — 227 AR
h—0 7]
TA A A
= lim [h_AR] = lim [{AR, 1y < lim IAR] IR ] = lim [|Ah| =0
h=0 [lall a0 A h=0  |[h]] h—0

where we have used the Cauchy-Schwarz-Inequality and the symmetry of A. Define g : R — R by,
x + ||z||? — 1. Then

M :=S""1 = {z e R"|g(x) = 0}
Then g is differentiable as well and

J,'T T
Vy(z) = 2||3«"Hm =2z



So g is especially continuous and thus M is the reversed image of the closed subset {0} C R. Since it’s
obviously bounded, M is compact. The mapping F' is continuous as well, so F'|y; : M — R attains it’s
extremal values. Let a € M be such an extremal value. By the theorem 4.2 above there is a A € R
such that

grad F'(a) = Agradg = 2Aa = Agrad g(a) = 2Xa = Aa = \a

Since ||a|| = 1 it follows that a # 0 and thus A is an eigenvalue of A.
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