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This is a script for talk in Prof. Ballmanns seminar ”Differential Topology and Morse Theory” held in
the summer term 2009 at the University of Bonn. It discusses the three different notions of straight lines,
length minimizers and energy minimizers which are all related to geodesics on the level of Riemannian
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0.1 Convention. For this entire article M denotes a smooth manifold of dimension m. For all
statements involving the geometry of M we fix an arbitrary Riemannian metric g. For any p ∈ M ,
V ∈ TpM we denote by

||V || :=
√

gp(V, V )

the norm induced by g on the tangent space.
We denote by ∇ : TM × TM → TM the Riemannian connection on M and by D the covariant
differentiation operator on vector fields along curves. R(_, _)(_) is the curvature endomorphism.
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1 Remainder: Tangent Space of Manifolds

Before we start let us briefly collect some basic facts about the tangent space of a smooth manifold.

1.1 Definition (Tangent Space via Derivations). Let p ∈ M be a point and denote by C∞p (M) the
space of germs [f ]p of smooth functions f : M → R. Then

TpM := Derp(C∞p (M))

which is just the set of all linear functions v : C∞p (M) → satisfying the product rule

v(fg) = v(f)g(p) + f(p)v(g)

These spaces assemble to
TM :=

∐
p∈M

TpM

which can be given the structure of a smooth manifold of as well.

1.2 Definition (Pushforward). Let M , N be smoth manifolds and F : M → N be a smooth map.
The pushforward of F is a map F∗ : TM → TN defined for p ∈ M as the map F∗|p : TpM → TF (p)N

v 7→ (g 7→ v(g ◦ F ))

One can show that this is a smooth map between TM and TN .

1.3 Theorem (Curves as Derivations). Let γ : I → M be a smooth curve and t0 ∈ I. Then γ induces
a derivation γ̇(t0) ∈ Tγ(t0)M via

f 7→ ∂t(f ◦ γ)|t=t0

Conversely every derivation vp ∈ TpM can be written as γ̇(0) for some curve γ :]− ε, ε[→ M , γ(0) = p,
γ̇(0) = vp.

1.4 Lemma (Curves in Coordinates). Let γ : I → M be a smooth curve and ϕ : U → V be a chart
such that γ(I) ⊂ U . Denote by γϕ : I → V , γϕ := ϕ ◦ γ, the path γ in coordinates ϕ. On the one
hand, we have a coordinate representation

γ̇(t) =
m∑

i=1

γ̇i(t)∂ϕ|γ(t)

of the derivation γ̇(t). On the other hand, we have the classical derivative

γ̇ϕ(t) =
m∑

i=1

γ̇i
ϕ(t)ei

For any 1 ≤ i ≤ m
γ̇i

ϕ(t) = γ̇i(t)

Proof. By definition

γ̇i
ϕ(t) = (ϕi ◦ γ)′(t) = γ̇(t)(ϕi) =

m∑
j=1

γ̇j(t)∂ϕj |γ(t)(ϕi) = γ̇i(t)
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1.5 Theorem (Pushforward for Curves). Let F : M → R be a smooth function, p ∈ M and X ∈ TpM ,
which is represented by γ :]− ε, ε[→, γ(0) = p, γ̇(0) = X. Then

F∗|pX = ∂t(F ◦ γ)|t=0∂t|F (p)

where ∂t is the coordinate field induces by id : R → R.

Proof. Chose any g ∈ C∞F (p)(R) and calculate

(F∗|pX)(g) = X(g◦F ) = γ̇(0)(g◦F ) = ∂t(g◦F ◦γ)|t=0 = ∂tg|F (γ(0))∂t(F ◦γ)|t=0 = ∂t(F ◦γ)|t=0∂t|F (p)(g)

1.6 Definition (Critical Point). A point p ∈ M of F ∈ C∞(M) is a critical point for F , if F∗|p :
TpM → TF (p)R is the zero map.

1.7 Remark. If F : M → R is a function and p ∈ M , then p is a critical point for F if and only if for
all V ∈ TpM , we have F∗|p(V ) = 0. If V is represented by a curve γ :]−ε, ε[→ M , γ(0) = p, γ̇(0) = V ,
the theorem above shows, that F∗|pV = 0 ⇔ ∂t(F ◦ γ)|t=0 = 0. Thus p is a critical point for F if and
only if for every curve γ :]− ε, ε[→ M , γ(0) = p, we have ∂t(F ◦ γ)|t=0 = 0.
There is a canonical alternative definition for a critical point: If F is a function on M one defines the
differential of F at p ∈ M to be dF |p : TpM → R by sending V 7→ dF |p(V ) := V (F ). It is natural
to say, that F has a critical point at p, if dF |p = 0. Notice that these definitions are equivalent:
Since if V is again represented by γ, this implies dF |p(V ) = V (F ) = γ̇(0)(V ) = ∂t(F ◦ γ)|t=0. Thus
dF |p = 0 ⇔ F∗|p = 0.
If one introduces the gradient grad f as df ], where ] : T ∗M → TM denotes the canonical tangent /
cotangent isomorphism on a Riemannian manifold, we can even summarize

dF |p = 0 ⇔ F∗|p = 0 ⇔ grad f |p = 0 ⇔ ∀1 ≤ i ≤ n : ∂ϕi|p(f) = 0

2 Paths, Energy and Geodesics

2.1 Paths in Manifolds

2.1 Definition (Path Space). Let M be a smooth manifold and p, q ∈ M . A piecewise smooth path
from p to q is a continuous map ω : [0, 1] → M such that

(a) There exists a finite subdivision 0 = t0 < t1 < . . . < tk = 1 of [0, 1] such that ω|[ti−1,ti] ∈
C∞([ti−1, ti],M).

(b) ω(0) = p and ω(1) = q

The collection of all those paths is denoted by

Ω(M ; p, q)

When there is no chance of confusion, we also write Ω := Ω(M ; p, q).

2.2 Definition (Vector fields along curves). Let ω ∈ Ω be a smooth path. A smooth vector field along
ω is a smooth map W : [0, 1] → TM such that

∀t ∈ [0, 1] : W (t) ∈ Tω(t)M

If ω is only piecewise smooth, we define a piecewise smooth vector field along ω to be a continuous
map W : [0, 1] → TM such that there exists a finite partition 0 = t0 < . . . < tk = 1 such that every
W |[ti−1,ti] is a smooth vector field along ω|[ti−1,ti].
We denote by

Γ(ω) := {W : [0, 1] → TM |W is a smooth vector field along ω}
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From now on we assume M to be endowed with a Riemannian metric. This enables us to define
geodesics: The Riemannian metric g induces a unique symmetric compatible linear connection ∇ :
TM × TM → TM , which induces a covariant differentiation operator Dt : Γ(ω) → Γ(ω) on the vector
fields along any smooth path ω ∈ Ω. So we may just define

2.3 Definition (Geodesic). A smooth path ω ∈ Ω is a geodesic, if

Dtω̇ ≡ 0

We would like to characterize geodesics in terms of length and energy, making rigorous our intuition
that geodesics are paths of minimal energy.

2.2 Length and Energy

2.4 Definition (Length Function). For any 0 ≤ a ≤ b ≤ 1 we can define the length from a to b to be

Lb
a(ω) :=

∫ b

a
||ω̇(t)||dt

The length of ω is just
L(ω) := L1

0(ω)

We can view L as a Function L : Ω(M ; p, q) → R, called the length Function.

2.5 Definition (Energy Function). Analogously, for any 0 ≤ a ≤ b ≤ 1 we can define the energy from
a to b to be

Eb
a(ω) :=

∫ b

a
||ω̇(t)||2dt

The energy of ω is just
E(ω) := E1

0(ω)

We can view E as a Function E : Ω(M ; p, q) → R, called the energy Function.

2.6 Lemma (Length/Energy-Relation). Let ω ∈ Ω and 0 ≤ a ≤ b ≤ 1 be arbitrary. Then

Lb
a(ω)2 ≤ (b− a)Eb

a(ω)

where equality holds if and only if ω has constant speed.

Proof. Consider f, g ∈ L2([0, 1]) defined by f(t) := 1, g(t) := ||ω̇(t)||. By the Cauchy/Schwarz -
Inequality with respect to the L2 scalar product, we obtain

Lb
a(ω)2 =

(∫ b

a
1 · ||ω̇(t)||dt

)2

= 〈f, g〉2L2 ≤ ||f ||2L2 ||g||2L2 =
∫ b

a
12dt ·

∫ b

a
||ω̇(t)||2dt = (b− a)Eb

a(ω)

Equality holds if and only if f and g are linear dependent which is the case if and only if ||ω̇(t)|| is
constant.

2.7 Theorem. Let (M, g) be a complete Riemannian manifold and let p, q ∈ M have distance d(p, q) =:
d. Then the energy Function E : Ω(M ; p, q) → R attains its infimum d2 precisely on the set of minimal
geodesics from p to q.
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Proof. From the definition of E it follows that

inf
ω∈Ω

E(ω) = inf
ω∈Ω

(∫ 1

0
||ω̇(t)||2dt

)
≥ 0

So the at least this infimum always exists. Since M is complete, there exists a minimal geodesic γ
from p to q by theorem of Hopf-Rinow, [2, 6.13, 6.15]. This says by definition

inf
ω∈Ω

L(ω) = L(γ) = d(p, q) = d

i.e. this infimum is attained by some γ. Since γ is a geodesic and thus has constant speed, we obtain
for any ω ∈ Ω:

E(γ) 2.6= L(γ)2 ≤ L(ω)2 ≤ E(ω)

Thus for every minimizing geodesic γ and any path ω, we obtain E(ω) ≥ E(γ). Thus infω∈Ω(ω) ≤ E(γ)
as well.
The equality L(γ)2 = L(ω)2 can hold if and only if ω also is a length minimizer. On the other hand,
again by 2.6, the equality L(ω)2 = E(ω) can hold if and only if has constant speed. So unless ω is also
a minimal geodesic, we have E(γ) < E(ω) (c.f. [1, 10.7], [2, 6.6]).
Since E(γ) = L(γ)2 for any minimizing geodesic γ, this shows in particular, that E really attains the
infimum d2, thus the infimum is a minimum.

3 The Calculus of Variations

Although Ω is not a smooth manifold, we will think of it as some sort of infinite dimensional gen-
eralization of a smooth manifold. As a first step, we will change our terminology conventions by
setting

3.1 Convention. Let ω ∈ Ω. Then we call

TωΩ := {W : [0, 1] → TM |W is a piecewise smooth vector field along ω and W (0) = W (1) = 0}

the tangent space of ω in Ω

The strategy is now to use an analogous construction as in 1.3. We need the notion of curves in Ω and
a notion of their velocity, i.e. their derivatives, . This leads to variations and variation fields.

3.2 Definition (Variation). Let ω ∈ Ω(M ; p, q) =: Ω and U ⊂ Rn be a neighbourhood of 0. A map
ᾱ : U → Ω is an n-parameter varation of ω, if

(a) ᾱ(0) = ω

(b) There exists a finite subdivision 0 = t0 < . . . < tk = 1 of [0, 1] such that the map α : U × [0, 1] →
M defined by

(u, t) 7→ ᾱ(u)(t)

is continuous on U × [0, 1] and smooth on each U × [ti−1, ti] for any 1 ≤ i ≤ k.
If n = 1 and U =]− ε, ε[, ε > 0, we just say ᾱ :]− ε, ε[→ Ω is a variation of ω.
Note that for each u ∈ U we have a(u, 0) = p and a(u, 1) = q.

We may think of ᾱ :]−ε, ε[→ Ω as a ”smooth path” in Ω, i.e. as a path of paths. Every such α gives rise
to two systems of curves: For any fixed u ∈]−ε, ε[ we obtain a main curve αu : [0, 1] → M , t 7→ α(u, t),
which is only piecewise smooth and for any fixed t ∈ [0, 1] a transversal curve αt :] − ε, ε[→ M ,
u 7→ (u, t), which is smooth. In fact the later ones are most interesting, because they tell us, how the
variation varies the original path. So it is only natural to ask, what their ”velocity vector” is. In fact
this is the following.
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3.3 Definition (Variation field). Let ᾱ be an n-parameter variation of ω ∈ Ω. For any 1 ≤ k ≤ n
Wk : [0, 1] → TM

t 7→ ∂kα(u, t)|u=0 = ∂kα(0, t)

is the variation field of α in direction k and (W1, . . . ,Wk) is the variation field system of ᾱ. If n = 1
we just say W := W1 is the variation field of ᾱ.

Clearly W ∈ TωΩ: For any t ∈ [0, 1], x := α(0, t) and f ∈ C∞x (M) we have

W (t)(f) = ∂u(f(α(u, t))|u=0

So any variation field W of a variation ᾱ of ω is a vector field along ω. The converse is also true. In
fact

3.4 Lemma. Let ω ∈ Ω be a path and (W1, . . . ,Wn) ∈ (TωΩ)n be a system of n vector fields along
ω. Then there exists U ⊂ Rn open and an n-parameter variation ᾱ : U → Ω of ω such that

∂kα(u, t)|u=0 = Wk(t)

Proof. Define α :]− ε, ε[n×[0, 1] → M to be

(u, t) 7→ expω(t)

(
n∑

i=1

uiWi(t)

)

where ε > 0 is sufficiently small, such that exp is well defined. Fix and index 1 ≤ k ≤ n, points
u1, . . . , uk−1, uk+1, . . . , un ∈]− ε, ε[, a time t ∈ I and set p := ω(t). Chose normal coordinates ϕ : U →
V near p. For any X ∈ TpM denote by γX the unique geodesic through p with inital vector X. In
coordinates we may write (c.f. [2, 5.11])

γX(s) = ϕ−1 ◦ (sX1, . . . , sXm)

Consequently, for any f ∈ C∞p (M) we can use Lemma 1.4 to compute

∂kα(u, t)|uk=0(f) = ∂k

(
f ◦ expω(t)

(
n∑

i=1

uiWi(t))

))
|uk=0

= ∂k

(
f ◦ γPn

i=1 uiWi(t)(1)
)
|uk=0

= ∂k

(
f ◦ ϕ−1

(
n∑

i=1

suiW
1
i (t), . . . ,

n∑
i=1

suiW
m
i (t))(1)

))
|uk=0

1.4=
(
ϕ−1

(
W 1

k (t), . . . ,Wm
k (t)

))
(f)

=
m∑

i=1

W i
k(t)∂ϕi|ω(t)(f)

= Wk(f)

In case n = 1 there is a more standard version of this Lemma, which we discuss here as well. The
proof is a bit simpler.

3.5 Lemma. Let W ∈ TωΩ be arbitrary. Then there exists a variation ᾱ :] − ε, ε[→ Ω, such that its
variation field satisfies

∂uα(0, t) = W (t)
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Proof. Define α :]− ε, ε[×[0, 1] → M to be

(u, t) 7→ expω(t)(uW (t))

For any p ∈ M , X ∈ TpM denote by γV the unique geodesic through p with inital vector X. The
properties of the exponential map imply:

∂uα(u, t)|u=0 = ∂u(expω(t)(uW (t)))|u=0 = ∂u(γuW (t)(1))|u=0
(∗)
= ∂u(γW (t)(u))|u=0 = W (t)

The keystep (∗) uses the Rescaling Lemma, which can be found in [2, 5.8].

3.6 Definition (Critical path). A path ω ∈ Ω is a critical path for a function F : Ω → R, if for any
variation ᾱ of ω

∂u(F ◦ ᾱ)|u=0

exists and equals zero.

3.1 First Variation Formula

3.7 Convention. For any piecewise continuous vector field V : [0, 1] → TM along any ω ∈ Ω and, we
define

∀0 < t ≤ 1 : V (t ↙) := lim
s↘t

V (s)

∀0 ≤ t < 1 : V (↗ t) := lim
s↗t

V (s)

∀0 < t < 1 : ∆tV := V (t ↙)− V (↗ t)

Since there is a partition 0 = t0 < . . . < tk = 1 of [0, 1] such that V is continuous on each [ti−1, ti],
∆tV = 0 for all but the finitely many t1, . . . , tk−1. We denote these vectors by ∆iV := ∆tiV .

3.8 Theorem (First Variation Formula). Let (M, g) be a Riemannian manifold p, q ∈ M , ω ∈
Ω(M ; p, q) = Ω and let ᾱ :] − ε, ε[→ Ω be a variation of ω. Let 0 = t0 < . . . < tk = 1 be the
partition of [0, 1] such that α ∈ C∞(]− ε, ε× [ti−1, ti],M). Let W (t) := ∂uα(u, t)|u=0 be the associated
variation field, V (t) := ω̇(t) the velocity vector of ω, and A(t) := DtV (t) be the acceleration vector of
ω. Then the first varation formula holds:

1
2
∂uE(ᾱ(u))|u=0 = −

k−1∑
i=1

〈W (ti),∆iV 〉 −
∫ 1

0
〈W (t), A(t)〉dt

Proof. Since the Riemannian connection is by definition compatible with the Riemannian metric we
have

∂u〈∂tα, ∂tα〉
A.1= 〈Du∂tα, ∂tα〉+ 〈∂tα, Du∂tα〉 = 2〈Du∂tα, ∂tα〉

A.2= 2〈Dt∂uα, ∂tα〉

The identity
∂t〈∂uα, ∂tα〉 = 〈Dt∂uα, ∂tα〉+ 〈∂uα, Dt∂tα〉 (1)

again obtained by the covariant product rule (Lemma A.1), allows us to to the following ”integration
by parts”: ∫ ti

ti−1

〈Dt∂uα, ∂tα〉dt =
∫ ti

ti−1

∂t (〈∂uα, ∂tα〉)− 〈∂uα, Dt∂tα〉dt

= 〈∂uα, ∂tα〉|↗ti
ti−1↙ −

∫ ti

ti−1

〈∂uα, Dt∂tα〉dt (2)
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Putting all this together, we obtain

1
2
∂uE(ᾱ(u))|u=0 =

1
2
∂u

∫ 1

0
||∂tα(u, t)||2dt|u=0

(∗)
=

1
2

∫ 1

0
∂u〈∂tα(u, t), ∂tα(u, t)〉|u=0dt

(1)
=

k∑
i=1

∫ ti

ti−1

〈Dt∂uα(u, t), ∂tα(u, t)〉|u=0dt

(2)
=

k∑
i=1

(
〈∂uα(u, t), ∂tα(u, t)〉|↗ti

ti−1↖|u=0 −
∫ ti

ti−1

〈∂uα(u, t), Dt∂tα(u, t)〉|u=0dt

)

=
k∑

i=1

〈W (ti), V (↗ ti)〉 − 〈W (ti−1), V (ti−1 ↙)〉 −
∫ 1

0
〈W (t), A(t)〉dt

(∗∗)
= −

k−1∑
i=1

(−〈W (ti), V (↗ ti)〉+ 〈W (ti), V (ti ↙)〉)−
∫ 1

0
〈W (t), A(t)〉dt

= −
k−1∑
i=1

〈W (ti),∆iV 〉 −
∫ 1

0
〈W (t), A(t)〉dt

In (∗) we have used Lebesgue dominated convergence theorem or more directly the theorem concerning
differentiation of parameter dependent integrals. This is possible here since (u, t) 7→ ||α(u, t)|| is
piecewise C1 and [0, 1] is compact. This is the point of the proof where we actually show that the
derivative ∂u(E(ᾱ(u))) exists.
In (∗∗) we have reindexed the sum using the fact that W (0) = W (1) = 0.

3.9 Theorem. A path ω ∈ Ω is a critical point for E if and only if ω is a geodesic.

Proof. ”⇐”: If ω is a geodesic, then it is smooth, so we may choose t0 = 0 < t1 = 1 as a partition of
[0, 1]. By definition the accerleration vector A(t) = Dtω̇(t) = 0 and thus

1
2
∂uE(ᾱ(u))|u=0 = −

k−1∑
i=1

〈W (ti),∆iV 〉 −
∫ 1

0
〈W (t), A(t)〉dt = 0

”⇒”: Suppose

0 =
1
2
∂uE(ᾱ(u))|u=0 = −

k−1∑
i=1

〈W (ti),∆iV 〉 −
∫ 1

0
〈W (t), A(t)〉dt

Construct a variation field W ∈ TωΩ such that

W (t) = f(t)A(t)

where f : I → R is piecewise smooth and positive everywhere except that it vanishes at the ti, and
A(t) = Dtω̇ is the acceleration of ω. (Remember, that Lemma 3.5 allows us to write any vector field
along ω as the variation field of a variation.) Then

0 = −
∫ 1

0
f(t)〈A(t), A(t)〉dt = −

∫ 1

0
f(t)||A(t)||2dt

This implies ∀t ∈ [0, 1] : f(t)||A(t)|| = 0. By hypothesis for any t /∈ {t1, . . . , tk−1}

f(t) > 0 ⇒ A(t) = 0
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Piecewise continuity implies A ≡ 0. Thus every ω|[ti−1,ti] is a geodesic.
To show that ω is smooth on the whole of [0, 1], pick a variation field W such that W (ti) = ∆iV ,
1 ≤ i ≤ k − 1. This implies

0 = −
k−1∑
i=1

〈∆iV,∆iV 〉

Thus ∆iV = 0. So it follows that ω is at least of class C1.
Chose any 1 ≤ i ≤ k − 1. Since ω is of class C1, there exists a well defined velocity vector V := ω̇(ti).
By the existence and uniqueness theorem for geodesics (see A.4) there exists ε > 0 and a geodesic
γV :]ti − ε, ti + ε[→ M such that γV (ti) = ω(ti) and γ̇(ti) = V . In particular γV is smooth and from
the uniqueness statement (after shrinking ε if necessary), it follows that:

∀t ∈]ti − ε, ti + ε[: γV (t) = ω(t)

So in particular ω is smooth in a neighbourhood of ti as well, hence of class C∞.

3.2 The Energy Hessian and the Second Variation Formula

3.10 Definition (Hessian of a function). Let f ∈ C∞(M) with critical point p ∈ M . The map
f∗∗ : TpM × TpM → R which is defined as follows is the Hessian of f at p: For X1, X2 ∈ TpM choose
an open neighbourhood V ⊂ R2 and a smooth map α : V → M such that

α(0, 0) = p ∂1α(0, 0) = X1 ∂2α(0, 0) = X2

Then define
f∗∗(X1, X2) := ∂1∂2(f ◦ α)(0, 0)

3.11 Remark. Like in 1.7 other definitions are possible. The most general one would be to define the
Hessian of f to be the 2-tensor field

∇2f(X, Y ) := X(Y (f))− (∇Y X)(f)

(see [2, (4.8)]. Note that if f has a critical point at p ∈ M , we may choose a chart ϕ at p and calculate

(∇Y X)|p(f) = Y i(p)(∇∂ϕi
(Xj∂ϕj))|p(f)

= Y i(p)(∂ϕi|p(Xj)∂ϕj |p(f) + Xj(p)(∇∂ϕi
ϕj)|p(f))

= Y i(p)(∂ϕi|p(Xj)∂ϕj |p(f) + Xj(p)Γk
i,j∂ϕk|p(f))

= 0

Thus at a critical point p
∇2f(X, Y )|p = X|p(Y (f))

which at least agrees with Milnors own definition in [1, I.§1]. Writing X1 and X2 as in 3.10 we see
that all these notions agree:

∇2f(X1, X2)|p = X1(X2(f)) = X1((∂2α)(f)) = X1(∂2(f ◦ α)) = ∂1∂2(f ◦ α)(0, 0) = f∗∗(X1, X2)

Motivated by 3.10 we may now extend this definition to our energy function.

3.12 Definition (Energy Hessian). Let (M, g) be a Riemannian manifold and E : Ω(M ; p, q) → R
be the Energy Function. Then the Hessian of the Energy Function at a critical path ω ∈ Ω is a map
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E∗∗ : TωΩ × TωΩ → R defined as follows: Given vector fields W1,W2 ∈ TωΩ, choose a 2-parameter
variation α : U × [0, 1] → M , where U ⊂ R2 is an open neighbourhood of (0, 0), such that

α(0, 0, t) = ω(t) ∂1α(0, 0, t) = W1(t) ∂2α(0, 0, t) = W2(t)

Then define
E∗∗(W1,W2) := ∂1∂2(E ◦ ᾱ)(0, 0)

where ᾱ(u1, u2) ∈ Ω is the path ᾱ(u1, u2)(t) = α(u1, u2, t).

Of course we have to show, that this is well defined, i.e. it does not depend on the chosen variation.

3.13 Theorem (Second Variation Formula). Let (M, g) be a Riemannian manifold and γ be a geodesic.
Let ᾱ : U → Ω be a 2-parameter variation of γ with variation fields

Wk := ∂kᾱ(0, 0) ∈ TγΩ k = 1, 2

Denote by V := γ̇ the velocity vector field and chose a partition 0 = t0 < . . . < tk = 1 such that DtW1

is smooth on each subinterval [ti−1, ti]. Then the second variation formula holds:

1
2
∂1∂2(E(ᾱ(0, 0)) = −

k−1∑
i=1

〈W2(ti),∆iDtW1〉 −
∫ 1

0
〈W2(t), D2

t W1(t) + R(V,W1)(V )〉dt

Proof. For each fixed u1, u2 7→ ᾱ(u1, u2) is a one parameter variation of ᾱ(u1, 0). So according to the
first variation formula (Theorem 3.8), we have

1
2
∂2E(ᾱ(u1, 0)) = −

k−1∑
i=1

〈∂2α(u1, 0, ti),∆i∂tᾱ(u1, 0)〉 −
∫ 1

0
〈∂2α(u1, 0, t), Dt∂tα(u1, 0, t)〉dt

We will now differentiate this again and insert the various definitions. This is a bit complicated,
but straightfoward. We will give the complete calculation first and mark some points, which will be
explained in more detail below.

1
2
∂1∂2E(0, 0) =−

k−1∑
i=1

〈D1∂2α(0, 0, ti),∆i∂tᾱ(0, 0)︸ ︷︷ ︸
(1)

〉 −
k−1∑
i=1

〈∂2α(0, 0, ti), D1∆i∂tα(0, 0, ti)〉

−
∫ 1

0
〈D1∂2α(0, 0, t), Dt∂tα(0, 0, t)︸ ︷︷ ︸

(2)

〉dt−
∫ 1

0
〈∂2α(0, 0, t), D1Dt∂tα(0, 0, t)〉dt

= −
k−1∑
i=1

〈W2(ti), D1∆i∂tα(0, 0, ti)︸ ︷︷ ︸
(3)

〉 −
∫ 1

0
〈W2(t), D1DtV (t)︸ ︷︷ ︸

(4)

〉

= −
k−1∑
i=1

〈W2(ti),∆iDtW1(t)〉 −
∫ 1

0
〈W2(t), R(V (t),W1(t))(V (t)) + DtD1V (t)︸ ︷︷ ︸

(5)

〉dt

= −
k−1∑
i=1

〈W2(ti),∆iDtW1(t)〉 −
∫ 1

0
〈W2(t), R(V (t),W1(t))(V (t)) + D2

t W1(t)〉dt

Auxiliary Calculations:
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(1) Since γ = ᾱ(0, 0) is a geodesic and hence smooth, we have

∆i∂tᾱ(0, 0) = 0

Thus the entire sum vanishes:

−
k−1∑
i=1

〈D1∂2α(0, 0, ti),∆i∂tᾱ(0, 0)〉 = 0

(2) Again since γ is a geodesic
Dt∂tᾱ(0, 0) = 0

thus the entire integral vanishes:

−
∫ 1

0
〈D1∂2α(0, 0, t), Dt∂tα(0, 0, t)〉dt = 0

(3) By the symmetry Lemma A.2

D1∂tα(0, 0, t) = Dt∂1α(0, 0, t) = DtW1(t)

The operator ∆i commutes with D1 by Lemma A.5.
(4) This is the curvature formula A.3 from the appendix

D1DtV −DtD1V = R(V,W1)V

(5) This is the symmetry relation from A.2 from the appendix

D1V = D1∂tα = Dt∂1α = DtW1

3.14 Corollary. The map E∗∗ : TγM × TγM → R is well defined, symmetric and bilinear.

Proof. Theorem 3.13 shows, that ∂2E(0, 0) always exists and depends only on W1,W2, i.e. it does not
on the chosen variation.
The bilinearity also follows from the second variation formula since this formula is bilinear in (W1,W2).
The symmetry is not at all obvious from this formula, but it follows directly from the theorem of
Schwarz and some other basic calculus outsourced into lemma 3.15: Given vector fields W1,W2 ∈ TωΩ,
choose a 2-parameter variation α : U × [0, 1] → M , where U = I2 ⊂ R2 and I ⊂ R is an open invterval
containing 0 ∈ R, such that

α(0, 0, t) = ω(t), ∂1α(0, 0, t) = W1(t), ∂2α(0, 0, t) = W2(t)

Define β̄ : U → Ω by β̄(u1, u2) := ᾱ(u2, u1). Then

β(0, 0, t) = ω(t), ∂1β(0, 0, t) = W2(t), ∂2β(0, 0, t) = W1(t)

Since ∂2E(0, 0) does not depend on the chosen variation, we may use β̄ to compute (introducing the
notation of 3.15)

E∗∗(W2,W1) = ∂1∂2(E ◦ β̄)(0, 0) = ∂1∂2(E ◦ ᾱ ◦ s)(0, 0) 3.15= ∂2∂1(E ◦ ᾱ)(s(0, 0))

= ∂2∂1(E ◦ ᾱ)(0, 0) Schwarz= ∂1∂2(E ◦ ᾱ)(0, 0) = E∗∗(W1,W2)

11



3.15 Lemma. Let s : R2 → R2, (x, y) 7→ (y, x) be the swap of arguments. Clearly s ∈ C∞(R2, R2).
Consider any open Intervall I ⊂ R, define U := I2 and consider any function f ∈ C2(U, R). Then

∂1∂2(f ◦ s) = (∂2∂1f) ◦ s ∂2∂1(f ◦ s) = (∂1∂2f) ◦ s

Proof. Define g := f ◦ τ . Since s(U) = U for any (x, y) ∈ U , the following expressions are all well
defined and the chain rule implies

(∂1g(x, y), ∂2g(x, y)) = ∇g(x, y) = ∇f(s(x, y))∇s(x, y)

= (∂1f(y, x), ∂2f(y, x))
(

0 1
1 0

)
= (∂2f(y, x), ∂1f(y, x))

Thus

∂1g = (∂2f) ◦ s ∂2g = (∂1f) ◦ s

Repeating this procedure for ∂1g instead of g we obtain

∇∂1g(x, y) = ∇(∂2f)(s(x, y))∇s(x, y) = (∂2∂2f(y, x), ∂1∂2f(y, x))

and for ∂2g

∇∂2g(x, y) = ∇(∂1f)(s(x, y))∇s(x, y) = (∂2∂1f(y, x), ∂1∂1f(y, x))

Alltogether we obtain

∂2∂1g(x, y) = ∂1∂2f(y, x) ∂1∂2g(x, y) = ∂2∂1f(y, x)

Remember that the index of a bilinear form is the dimension of a maximal negative definite subspace.

3.16 Theorem. Let γ ∈ Ω be a minimal geodesic and ᾱ :]−ε, ε[→ Ω be a variation of γ with variation
field W . The diagonal terms of the Energy Hessian can be described as

E∗∗(W,W ) = ∂2
u(E ◦ ᾱ)(0)

The pairing E∗∗ : TγΩ× TγΩ → R is positive semi-definite and hence has index zero.

Proof. For the first statement just define a two parameter variation β̄ :]− ε, ε[2→ Ω

β̄(u1, u2) := ᾱ(u1 + u2)

denote h : R2 → R, (u1, u2) 7→ u1 + u2, and use the chain rule:

∇(E ◦ β̄)(u1, u2) = ∇(E ◦ ᾱ ◦ h)(u1, u2) = ∂u(E ◦ ᾱ)(u1 + u2)
(
1 1

)
=
(
∂u(E ◦ ᾱ), ∂u(E ◦ ᾱ)

)
(u1 + u2)

So for i ∈ {1, 2}
∂i(E ◦ β̄)(u1, u2) = (∂u(E ◦ ᾱ) ◦ h)(u1, u2)

Thus by the same argumentation

∂1∂2(E ◦ β̄)(0, 0) = ∂2
u(E ◦ ᾱ)(0)

The second statement now follows from the first one: Since E(ᾱ(u)) ≥ E(γ) = E(ᾱ(0)) the function
u 7→ E(ᾱ(u)) has a local minimum at zero. Since γ is a geodesic the first derivative

∂uE(ᾱ(u))|u=0

is zero by Theorem 3.9. Thus by elemental calculus

∂2
u(E ◦ ᾱ)(u)|u=0 ≥ 0

because ∂2
u(E ◦ ᾱ)(u)|u=0 < 0 would imply that E(ᾱ(u)) had a local maximum at zero.
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A Notation and Prerequisites from Riemannian Geometry

A.1 Lemma (Covariant Product Rule). Let ω ∈ Ω and V,W ∈ TωΩ. Then

∂t〈V (t),W (t)〉 = 〈DtV (t),W (t)〉+ 〈V (t), DtW (t)〉

Proof. This is the compatibility condition used to define D.

A.2 Lemma (Symmetry Lemma). Let ω ∈ Ω and ᾱ :]ε, ε[→ Ω be a variation of ω. Then the function
α :]− ε, ε[×[0, 1] → M , (u, t) 7→ ᾱ(u)(t) satisfies

Du∂tα(u, t) = Dt∂uα(u, t)

Proof. Can be found in [1, 8.7] or [2, 6.3].

A.3 Lemma (Curvature Formula). Let ω ∈ Ω, V ∈ TωΩ and ᾱ :]ε, ε[→ Ω be a variation of ω. Then
the function α :]− ε, ε[×[0, 1] → M , (u, t) 7→ ᾱ(u)(t) satisfies

DuDtV −DtDuV = R(∂uᾱ, ∂tᾱ)(V )

Proof. Can be found in [1, 9.2] or [2, 10.1]

A.4 Theorem (Existence and Uniqueness of Geodesics). Let M be a Riemannian manifold. For any
p ∈ M , any V ∈ TpM and any t0 ∈ R there exists an open Intervall I ⊂ R, t0 ∈ I, and a geodesic
γV : I → M satisfying γV (t0) = p and ˙γV (t0) = V . Any two such geodesics agree on their common
domain.

Proof. Can be found in [2, 4.10].

A.5 Lemma. Let α :] − ε, ε[×[0, 1], (u, t) 7→ α(u, t), be a two parameter variation of ω ∈ Ω. Let
0 = t0 < . . . < tk = 1 be a partition of [0, 1] such that ω|[ti−1,ti] is smooth. For any 1 ≤ i ≤ k − 1

Du( lim
t↗ti

∂tα(u, 0))(0) = lim
t↗ti

Du(∂tα(u, 0))(0)

Proof. Denote by V (u, t) := ∂tα(u, 0) the velocity fields of α. Choose local coordinates near α(0, ti),
denote by Ek the local coordinate frame and by Γk

i,j the Christoffel symbols of the Riemannian con-
nection in this coordinate frame. By the explicit formula for covariant differentiation, which can e.g.
be found in [2, (4.10)], we have

lim
t↗ti

Du(∂tα(u, 0))(0) = lim
t↗ti

((
∂uV k(0, t) + V j(0, t)∂uα(0, t)Γk

i,j(α(0, t))
)

Ek

)
=
(

lim
t↗ti

(∂uV k(0, t)) + lim
t↗ti

V j(0, t)∂uα(0, t)Γk
i,j(α(0, t))

)
Ek

=
(

∂u

(
lim
t↗ti

V k(0, t)
)

+ lim
t↗ti

V j(0, t)∂uα(0, t)Γk
i,j(α(0, t))

)
Ek

= Du( lim
t↗ti

∂tα(u, 0))(0)

Where we have used the fact, that V (u, t) is smooth on the strip ]− ε, ε[×[ti−1, ti].
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