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1 Physical Motivation

1.1 Definition (particle). Let (Q, g) be a Riemannian manifold, γ : I → Q be a
smooth curve and m > 0 be any number. Then (γ,m) is a particle of mass m in Q.
We also say γ is the trajectory , and m is its mass and (Q, g) its configuration space.
Denote by Dt : T (γ) → T (γ) the covariant derivative induced by g, let |_| := |_|g
be the norm in each tagent space of Q induced by g, let Ekin := 1

2m|_|
2 ∈ C∞(TM)

be the kinetic energy . For any such particle, we define the following quantities:

• its velocity v := vγ := γ̇ ∈ T (γ),

• its speed |γ̇| ∈ C0(I,R≥0),

• its acceleration a := aγ := Dtγ̇ ∈ T (γ),

• its momentum p := mγ̇[ ∈ T ∗(γ),

• its kinetic energy Ekin := Ekin
γ := 1

2m|γ̇|
2 ∈ C0(I,R≥0).

Any function V ∈ C∞(Q) is a potential . We set Epot := V ∈ C∞(M), Epot :=

Epot ◦ γ ∈ C∞(I,R ), the induced kinetic energy . The field

F := FV := − gradg(V ) ∈ T (Q)

is the induced force field . The particle is Newtonian with respect to V , if it satisfies
Newton’s Second Law

F = ma,

where F := F ◦γ. This is to be understood as an equality in T (γ), where m = m id ∈
End(γ) is thought of as a field of endomorphisms.

1.1 Mechanics in Euclidan space

1.2 Theorem (Hamilton vs. Newton). Consider R n with the Euclidean metric ḡ as
a configuration manifold and let T ∗R n ∼= R 2n be the associated phase space. Label
the coordinates by (q1, . . . , qn, p1, . . . , pn) and let ω =

∑
i dq

i ∧ dpi be the canonical
symplectic structure, cf. Lemma 2.4. Let V ∈ C∞(R n) be any potential and m > 0

be any mass. Let F := FV := − gradV be the induced force field and

H : R n × R n → R
(q, p) 7→ 1

2m |p|
2 + V (q).

be the induced energy Hamiltonian. Then (R 2n, ω,H) is a Hamiltonian system in
the sense of Definition 3.12 and any curve γ : I → R n satisfies Newton’s second law

∀t ∈ I : mγ̈(t) = F (γ(t)),
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if and only if τ := (τq, τp) := (γ,mγ̇) : I → R 2n satisfies Hamilons equations (see
(3.3))

τ̇ iq(t) = γ̇i(t) =
∂H

∂pi
(τ(t)),

τ̇ ip(t) = γ̈i(t) = −∂H
∂qi

(τ(t)),

(1.1)

Proof. Calculating the gradient of H, we obtain

gradH =

n∑
i=1

2

2m
|p| pi
|p|

∂

∂pi
+
∂V

∂qi
∂

∂qi
=

n∑
i=1

pi
m

∂

∂pi
− F i ∂

∂qi

Consequently, Hamiltons equations (1.1) are equivalent in this case to

τ̇ iq(t) = 1
mτ

i
p(t),

τ̇ ip(t) = F i(τq(t)).

The first equation is automatically satisfied by definition of τ . Also by definition of
τ , the second equation is equivalent to

τ̇p = F (τq)⇐⇒ mγ̈ = F (γ),

which is Newton’s second law.

1.3 Remark. The Hamiltonian is traditionally denoted by E := H, called energy,
and decomposed into E = Ekin + Epot, the kinetic respectively potential energy.
Therefore, we obtain

E = Ekin + Epot.

It follows from Lemma 3.14(i) that the energy is conserved, i.e. Ė = 0.

1.4 Theorem (Newton vs. Lagrange). Let V ∈ C∞(R n) be any potential with
induced force field F = −∇V and define

L : R n × R n → R
(x, v) 7→ 1

2mv
2 − V (x)

A curve γ : I → R n satisfies Newtons second law

∀t ∈ I : mγ̈(t) = F (γ(t))

if and only if γ satisfies the Euler-Lagrange equation

∀t ∈ I :
∂L

∂xi
(γ(t), γ̇(t)) =

d

dt

∂L

∂vi
(γ(t), γ̇(t)).

Proof. This follows from the simple fact that

∂L

∂x
(x, v) = −∇V (x) = F (x),

∂L

∂v
(x, v) = mv.
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2 Symplectic Geometry Basics

Let M be a smooth manifold.

2.1 Definition. A symplectic form is an element ω ∈ Ω2(M), which is closed and
non-degenerate. A tuple (M,ω) such that ω is a symplectic form, is a symplectic
manifold .

2.2 Definition. A diffeomorphism f : (M,ω)→ (N, η) between symplectic manifolds
is a symplectomorphism, if f∗η = ω.

2.3 Definition (tautological 1-form). Let Q be a smooth manifold, M := T ∗Q and
π : M → Q be the canonical projection. Then τ ∈ Ω1(M) defined by

∀α ∈M : ∀X ∈ TαM : τ |α(X) := π∗α(X) = α(π∗X). (2.1)

is the tautological 1-form. The form ω := −dτ ∈ Ω2(M) is the canonical symplectic
form of Q. In this situation, we also say that Q is the configuration space and M is
the phase space.

2.4 Lemma. Let Q be a smooth manifold and ω be the canonical symplectic form.
Then (T ∗Q,ω) is a symplectic manifold. Let π : T ∗Q→ Q be the canonical projection,
(xi) be local coordinates for Q, x̃i := π∗xi = xi ◦ π and (ξi) be the local coframe on
T ∗Q induced by (xi). Then ω can be expressed locally by

ω =

n∑
i=1

dx̃i ∧ dξi.

2.5 Theorem (Darboux). Let (M,ω) be a 2n-dimensional symplectic manifold. Near
every point p ∈M , there are smooth coordinates (x1, y1, . . . , xn, yn) such that

ω =

n∑
i=1

dxi ∧ dyi. (2.2)

Those coordinates are called Darboux coordinates or symplectic coordinates or canon-
ical coordinates.

3 Hamiltonian Geometry

In this section let (M,ω) be a symplectic manifold.

3.1 Hamiltonian Vector fields

3.1 Definition. Let X ∈ T (M) be any vector field.

(i) X is symplectic, if ιXω is closed.
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(ii) X is Hamiltonian, if ιXω is exact.

(iii) X is a Hamiltonian vector field for H ∈ C∞(M), if ιXω = dH.

We denote by T ham(M) the Hamiltonian vector fields and by T symp(M) the symplec-
tic vector fields on M .

3.2 Lemma. Let X ∈ T (M) and H ∈ C∞(M).

(i) X is symplectic if and only if X is locally Hamiltonian.

(ii) If H1
dR(M) = {0}, then X is symplectic if and only if X is Hamiltonian.

(iii) A Hamiltonian vector field X for any function H is always Hamiltonian.

(iv) Any Hamiltonian vector field is symplectic.

Proof.

(i) This follows from the general fact that a differential form is closed if and only
if it is locally exact.

(ii) This follows from the definition of de Rahm cohomology.

(iii) By definition of XH .

(iv) Any exact form is closed.

3.3 Lemma. Let X ∈ T (M) and θ : D →M be the induced flow. Then the following
are equivalent.

(i) X is symplectic.

(ii) All diffeomorphisms θt are symplectomorphisms.

(iii) LXω = 0.

Proof.

”(i)=⇒(ii)”
Since θ0 = id, clearly θ∗0ω = ω and for any p ∈M and t0 ∈ D(p)

d
dtθ
∗
tω|t=t0 = θ∗t0

d
dtθ
∗
tω|t=0 = θ∗t0LXω

A.1
= θ∗t0(d ιXHω︸ ︷︷ ︸

=0

+ιXH dω︸︷︷︸
=0

) = 0,

since ιXω and ω are both closed.

”(ii)=⇒(iii)” By definition

LXω = d
dtθ
∗
tω = d

dtω = 0.

”(iii)=⇒(i)” By (A.1)

0 = LXω = dιXω + ιXdω = dιXω.
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3.4 Lemma. Let H ∈ C∞(M).

(i) There exists a unique Hamiltonian vector field XH ∈ T (M) of H.

(ii) In any local Darboux coordinates (xi, yi) the Hamiltonian field XH is given by

XH =

n∑
i=1

∂H

∂yi
∂

∂xi
− ∂H

∂xi
∂

∂yi
. (3.1)

(iii) H is constant along the flow θ ofXH , thus each integral curve ofXH is contained
in a level set of H.

(iv) At each regular point p ∈M ofH,XH(p) is tangent to the level setH−1({H(p)})
of H.

(v) Each member of the family of diffeomorphisms θt defined by the flow θ of XH

is a symplectomorphism.

Proof.

(i) To see uniqueness, assume X,Y ∈ T (M) satisfy ιXω = dH = ιY ω. This implies
for any V ∈ T (M)

ω(X,V ) = ιXω(V ) = ιY ω(V ) = ω(Y, V ) =⇒ ω(X − Y, V ) = 0.

Since ω is non-degenerate, this implies X = Y . To show existence it suffices to
check the local formula (3.1).

(ii) We calculate

ιXHω
(2.2)
=

n∑
i=1

ιXH (dxi ∧ dyi)

(A.2)
=

n∑
i=1

ιXH (dxi) ∧ dyi − dxi ∧ ιXH (dyi)

(3.1)
=

n∑
i=1

∂H

∂yi
dyi +

∂H

∂xi
dxi

= dH.

(iii) For any (t0, p) ∈ D
d
dtH(θ(p)(t))|t=t0 = dH(θ(p)(t0))(θ̇(p)(t0)) = ιXHω|θ(t0,p)(XH |θ(t0,p)) = 0.

(iv) Since

XH(H) = LXH (H) = ιXH (dH) + dιXH = ι2XHω = 0,

we obtain

(v) This follows from Lemma 3.3.
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3.2 Lie Brackets

For this subsection we do not need the symplectic structure ω on M .

3.5 Definition (Lie algebra). A Lie algebra is a real vector space g together with
map

[_,_] : g× g→ R

called Lie bracket such that the following holds:

(i) Bilinearity: [_,_] is bilinear over R .

(ii) Anti-symmetry: ∀X,Y ∈ g : [X,Y ] = −[Y,X].

(iii) Jacobi Identity: ∀X,Y, Z ∈ g : [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0.

3.6 Definition ((anti)-homomorphisms of Lie algebras). A homomorphism of Lie
algebras f : (g, [_,_])→ (h, J_,_K) is a linear map such that

∀X,Y ∈ g : Jf(X), f(Y )K = f([X,Y ]).

We say f is an anti-homomorphism if f is a linear map such that

∀X,Y ∈ g : Jf(X), f(Y )K = −f([X,Y ]).

3.7 Theorem (Lie bracket on vector fields). For any two vector fields X,Y ∈ T (M)

define

∀f ∈ C∞(M) : [X,Y ](f) := X(Y (f))− Y (X(f))

Then [X,Y ] ∈ C∞(M) is a vector field, called Lie bracket of X and Y . In addition
the following hold:

(i) [X,Y ] ∈ T (M) and in any local coordinates (xi)

[X,Y ] = (Xi dY
j

∂xi
− Y i dX

j

∂xi
)
∂

∂xi
= (X(Y j)− Y (Xj))

∂

∂xj

(ii) (T (M), [_,_]) is a real Lie algebra.

(iii) If F : M → N is a smooth map and X1, X2 ∈ T (M), Y1, Y2 ∈ T (N) such that
Xi is F -related to Yi, i = 1, 2, then [X1, X2] is F -related to [Y1, Y2].

(iv) For any f, g ∈ C∞(M)

[fX, gY ] = fg[X,Y ] + fX(g)Y − gY (f)X.

Proof. A proof of this can be found in [1, Chpt. 4]
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3.3 Poisson brackets

3.8 Definition (Poisson algebra). A Poisson algebra (P, {_,_}) is a commutative
associative R - algebra P together with a Lie bracket {_,_}, which satisfies the Leibniz
rule

∀f, g, h ∈ P : {f, gh} = {f, g}h+ g{f, h}.

Let (M,ω) be a symplectic manifold again.

3.9 Definition (Poisson bracket). Let f, g ∈ C∞(M). Then

{f, g} := ω(Xf , Xg) = ιXfω(Xg) = df(Xg) = Xg(f)

is the Poisson bracket of f and g. We say f and g Poisson commute, if {f, g} = 0.

3.10 Lemma. If X,Y ∈ T symp(M), then [X,Y ] ∈ T ham(M) and

[X,Y ] = d(ω(Y,X)) (3.2)

Proof. We calculate

ι[X,Y ]ω
(A.3)
= LXιY ω − ιY LXω

(A.1)
= ιX dιY ω︸ ︷︷ ︸

=0

+dιXιY ω − ιY ιX dω︸︷︷︸
=0

−ιY dιXω︸ ︷︷ ︸
=0

= d(ω(Y,X)),

since X and Y are symplectic and ω is closed.

3.11 Theorem. (C∞(M), {_,_}) is a Poisson algebra and the map

(C∞(M), {_,_}) → (T (M), [_,_])

f 7→ Xf

is a Lie algebra anti-homomorphism.

Proof. The Poisson bracket {_,_} is bilinear by (3.1) and anti-symmetric by con-
struction. To see that this map is an anti-homorphism, we calculate

−[Xg, Xf ]
(3.2)
= dω(Xf , Xg) = Xω(Xf ,Xg) = X{f,g}.

To see that the Jacobi-identity is satisfied, we calculate

{f, {g, h}} = X{g,h}f = −[Xg, Xh]f

= −Xg(Xh(f)) +Xh(Xg(f)) = −Xg({f, h}) +Xh({f, g})
= −{{f, h}, g}+ {{f, g}, h}.

Finally, the Leibniz rule follows from

{fg, h} = Xh(fg) = Xh(f)g +Xh(g)f = {f, h}g + {g, h}f.
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3.4 Hamiltonian Systems

3.12 Definition (Hamiltonian system). For any H ∈ C∞(M) we say the triple
(M,ω,H) is a Hamiltonian system with Hamiltonian H. The flow of XH is the
Hamiltonian flow and its integral curves γ are the trajectories or orbits of the system.
In any local Darboux coordinates (xi, yi) they satisfy Hamilton’s equations

γ̇ix(t) =
∂H

∂yi
(γ(t)),

γ̇iy(t) = −∂H
∂xi

(γ(t)),

(3.3)

as can be easily derived from (3.1). For an important example of this, see Theorem 1.2.

3.13 Definition (conserved quantity, infinitesimal symmetry). Let (M,ω,H) be a
Hamiltonian system. A function f ∈ C∞(M) is a conserved quantity , if f is constant
along any trajectory of the system. Sometimes f is also called a integral of motion,
constant of motion or integral of first kind . A vector field V ∈ T (M) is an infinitesimal
symmetry of that system, if ω and H are invariant under the flow ϑ : D → M of V ,
i.e. for any (t, p) ∈ D

H(ϑ(t, p)) = H(p), ϑt
∗ω|p = ω|ϑ(t,p).

3.14 Lemma. Let (M,ω,H) be a Hamiltonian system.

(i) A function f ∈ C∞(M) is a conserved quantity if and only if {H, f} = 0.

(ii) A vector field V ∈ T (M) is an infinitesimal symmetry if and only if it is sym-
plectic and V H = 0.

(iii) If ϑ is the flow of an infinitesimal symmetry V and γ is a trajectory of the
system, then for any s ∈ R , the curve ϑs ◦ γ is also a trajectory on its domain
of definition.

Proof.

(i) Denote by θ the flow of XH and calculate for any p ∈M

d
dt (f ◦ θ

(p)) = θ(p)∗(LXHf) = θ(p)∗(ιXHdf) = θ(p)∗(ιXH ιXfω)

= θ(p)∗(ω(Xf , XH)) = θ(p)∗({f,H}).

This implies the claim.

(ii) By Lemma 3.3 V is symplectic, if and only if ω is invariant under ϑ. For any
(t, p) ∈ D

d
dt (H ◦ ϑ

(p))(t) = dHϑ(p)(t)(ϑ̇
(p)(t)) = dHϑ(t,p)(V |ϑ(t,p)) = V (H)|ϑ(t,p),

thus V (H) = 0 if and only if H is invariant under ϑ.

(iii)
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3.15 Corollary. For any Hamiltonian system (M,ω,H), the function H is a con-
served quantity and XH is an infinitesimal symmetry.

Proof. By Lemma 3.4(iii), H is a conserved quantity. By definitionXH is symplectic,
and since XH(X) = 0 by (3.1), we obtain that XH is an infinitisemal symmetry by
Lemma 3.14(ii).

3.16 Theorem (Noether’s Theorem). Let (M,ω,H) be a Hamiltonian system.

(i) If f ∈ C∞(M) is a conserved quantity, then Xf is an infinitesimal symmetry.

(ii) If H1
dR(M) = {0}, then for every infinitesimal symmetry V there exists a func-

tion f such that V = Xf . In that case f is unique up to locally constant
functions.

3.17 Definition (independent). A system of functions f1, . . . , fn ∈ C∞(M) is in-
dependent, if there exists an open dense subset U ⊂ M such that for all p ∈ U the
covectors (df1|p, . . . , dfn|p) ∈ T ∗pM are linearly independent.

3.18 Definition (completely integrable). A Hamiltonian system (M2n, ω,H) is (com-
pletely) integrable, if there are conserved quantities f1 = H, f2 . . . , fn that are inde-
pendent and satisfy {fi, fj} = 0 for all 1 ≤ i, j ≤ n.

3.19 Lemma. Let (M2n, ω,H) be an integrable system with conserved quantities
f1 = H, f2, . . . , fn. Let c ∈ R n be a regular value of f := (f1, . . . , fn). If the
Hamiltonian vector fields Xf1 , . . . , Xfn are complete on the level set f−1(c), then
f−1(c) are homogenous spaces for R n, i.e. are diffeomorphic to R n−k × T k, where
T k is the k-dimensional Torus.

3.20 Theorem (Arnold-Liouville). Let (M2n, ω,H) be an integrable system with
conserved quantites f1 = H, . . . , fn. Let c ∈ R n be a regular value of f := (f1, . . . , fn).
Then the level set f−1(c) is a Lagrangian submanifold ofM . In addition the following
holds:

(i) If the flows of Xf1 , . . . , Xfn starting at a point p ∈ f−1(c) are complete, then the
conneted component of f−1(c) containing p is a homogenous space for R n. With
respect to this affine structure, that component has coordinates ϕ1, . . . , ϕn,
called angle coordinates, in which the flows of the vector fields Xf1 , . . . , Xfn are
linear.

(ii) There are coordinates ψ1, . . . , ψn, known as action coordinates, complemen-
tary to the angle coordinates such that the ψi’s are conserved quantities and
(ϕ1, . . . , ϕn, ψ1, . . . , ψn) form a Darboux chart.
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4 Variational Principles

4.1 The Euler-Lagrange Equation

4.1 Definition (action). Let M be any smooth manifold and F ∈ C∞(TM,R ). Let
γ : [a, b]→M be a smooth curve. Then

AFγ :=

∫ b

a

F (γ̇(t))dt

is the action of γ with respect to F . For any fixed p, q ∈M we set

P(a, b, p, q) := {γ ∈ C∞([a, b],M) | γ(a) = p, γ(b) = q}.

The action defines a map

AF : P(a, b, p, q) → R
γ 7→ AFγ .

A curve γ0 ∈ P is minimizing (in P(a, b, p, q)), if

AFγ0 = min
γ∈P(a,b,p,q)

AFγ .

We fix an action F and drop its superscript in notation.

4.2 Lemma. Let γ0 : [a, b] → M be minimizing. Let [a1, b1] ⊂ [a, b] be a subin-
terval and let p1 := γ0(a1), b1 := γ0(b1). Then γ1 := γ0|[a1,b1] is minimizing among
P(a1, b1, p1, q1).

4.3 Theorem. Let F ∈ C∞(TM,R ), A = AF be the induced action and let γ ∈
P(a, b, p, q) be a minimizer. Let t ∈ [a, b], (xi) be local coordinates near γ(t) and
let (vi) be the induced local frame for TM . Then γ satisfies the Euler-Langrange
equation

∂F

∂xi
(γ(t), γ̇(t)) =

d

dt

∂F

∂vi
(γ(t), γ̇(t)). (EL)

Proof. Choose t ∈ I and local coordinates (xi) : U → V , (vi) : TU → TV near γ(t).
By continuity there exist a1, b1 ∈ R such that t ∈ [a1, b1] ⊂ [a, b] and γ([a1, b1]) ⊂ U .
By Lemma 4.2, the restriction γ|[a1,b1] is also minimizing among P(a1, b1, γ(a1), γ(b1)).
Therefore we can assume that the endpoints p and q lie in the same coordinate domain
U . Consequently, we can assume that U is a subset of R n. Let c = (c1, . . . , cn) :

[a, b] → U be any smooth curve satisfying c(a) = 0 = c(b) For all sufficiently small
ε > 0 the curve

γε := γ + εc

is smooth and belongs to P(a, b, p, q). Setting Aε := Aγε , we obtain for the derivative

dAε
dε

=

∫ b

a

d

dε
F (γε(t), γ̇ε(t))dt =

∫ b

a

n∑
i=1

∂F

∂xi
(γε, γ̇ε)ci +

∂F

∂vi
(γε, γ̇ε)ċidt (4.1)
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Since γ is minimizing

0 =
dAγε
dε
|ε=0 =

∫ b

a

n∑
i=1

∂F

∂xi
(γ(t), γ̇(t))ci(t) +

∂F

∂vi
(γ(t), γ̇(t))ċi(t)dt

=

n∑
i=1

∫ b

a

(
∂F

∂xi
(γ(t), γ̇(t))− d

dt

∂F

∂vi
(γ(t), γ̇(t))

)
ci(t)dt,

where we used partial integration and the fact that c(a) = 0 = c(b). Since this holds
for all such curves c, we obtain the claim.

4.4 Theorem (convexity and minimization). Assume that F ∈ C∞(TM,R ) satisfies

∀(x, v) ∈ TM : det
( d2F

∂vi∂vj
(x, v)

)
> 0, (4.2)

i.e. for any fixed x, v 7→ F (x, v), is strictly convex. Let γ ∈ P(a, b, p, q) be a solution
of the Euler-Lagrange equation (EL). Then for every sufficiently small subinterval
[a1, b1] ⊂ [a, b], the curve γ|[a1,b1] is minimizing in P(a1, b1, p1, q1), p1 := γ(a1), q1 :=

γ(b1).

Proof. Let c1, . . . , cn ∈ C∞([a, b]), ci(a) = ci(b) = 0, c := (c1, . . . , cn) and set γε :=

γ + εc ∈ P(a, b, p, q) and Aε := Aγε . Then the Euler-Lagrange equation is satisfied if
and only if dAε

dε (0) = 0, so 0 is a critical point for Aε. To see that it is minimizing,
we analyse the second derivative:

d2Aε
dε2

(0)
(4.1)
=

∫ b

a

d

dε

n∑
i=1

∂F

∂xi
(γε, γ̇ε)ci +

∂F

∂vi
(γε, γ̇ε)ċi|ε=0dt

=

∫ b

a

n∑
i,j=1

∂2F

∂xi∂xj
(γ, γ̇)cicjdt (I)

+2

∫ b

a

n∑
i,j=1

∂2F

∂xi∂vj
(γ, γ̇)ciċjdt (II)

+

∫ b

a

n∑
i,j=1

∂2F

∂vi∂vj
(γ, γ̇)ċiċjdt (III)

We estimate There exist constants KI ,KII > 0 such that

|(I)| =
∣∣∣ ∫ b

a

n∑
i,j=1

∂2F

∂xi∂xj
(γ, γ̇)︸ ︷︷ ︸

=:∂2
xF

cicjdt
∣∣∣ ≤ ∫ b

a

|〈c, ∂2xFc〉|dt ≤ KI |c|2L2([a,b]),

for some constant KI > 0. By the same argument and the Hölder inequality

|(II)| ≤ KII

∫ b

a

|〈c, ċ〉|dt ≤ KII |c|L2([a,b])|ċ|L2([a,b]),

for another constant KII > 0. By (4.2), there exists (III) > 0 such that

|(III)| ≥ KIII |ċ|2L2([a,b])
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Altogether this implies

d2Aε
dε2

(0) ≥ KIII |ċ|2L2([a,b]) − 2KII |c|L2([a,b])|ċ|L2([a,b]) −KI |c|2L2([a,b])

By the Wirtinger inequality, c.f. (4.3), if b is very close to a, this expression is
positive.

4.5 Lemma (Wirtinger inequality). For any f ∈ C1([a, b]) satisfying f(a) = f(b) = 0,
we have ∫ b

a

|f ′(t)|dt ≥ π2

(b− a)2

∫ b

a

|f(t)|2dt (4.3)

4.2 Legendre Transform

4.6 Definition (Hessian). Let V be an n-dimensional real vector space, e1, . . . , en
be a basis of V and v1, . . . , vn be the associated coordinates. For any function F ∈
C∞(V,R ) and p ∈ V , u = uiei ∈ TpV = V we set

d2F |p(u) :=

n∑
i=1

∂2F

∂vi∂vj
(p)uiuj =

d2

dt2
F (p+ tu)|t=0.

The associated quadratic form d2F on V is the Hessian of F .

4.7 Definition. A function F ∈ C∞(V,R ) is strictly convex , if

∀p ∈ V : d2Fp > 0,

i.e. the quadratic form d2Fp is positive definite.

4.8 Lemma. Let F ∈ C∞(V,R ) be strictly convex. Then the following are equivalent.

(i) F has a critical point.

(ii) F has a local minimum at some point.

(iii) F has a unique critical point.

(iv) F has a global minimum.

(v) F is proper, i.e. lim|p|→∞ F (p) =∞.

Proof.

4.9 Definition (stable). A strictly convex function F ∈ C∞(M,R ) is stable, if one
(hence all) of the conditions in Lemma 4.8 is satisfied.

4.10 Example. For any a ∈ R , the function R → R , x 7→ ex+ax, is strictly convex,
but it is stable only for a < 0 (see Figure 1).
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Figure 1: The function x 7→ ex + ax is stable only for a < 0.

4.11 Definition (stability set). Let F ∈ C∞(V,R ) and l ∈ V ∗. Define

Fl : V → R
v 7→ F (v)− l(v)

Clearly d2F = d2Fl, so in particular, F is strictly convex if and only if Fl is. If F is
strictly convex, then

SF := {l ∈ V ∗ | Fl is stable}.

is the stability set.

4.12 Definition (Legendre transform). The Legendre transform associated to a map
F ∈ C∞(V,R ) is

LF : V → V ∗

p 7→ dFp ∈ T ∗p V = V ∗

4.13 Theorem. Let F be strictly convex. Then

LF : V → SF

is a diffeomorphism.

4.14 Definition (dual function). For any strictly convex F ∈ C∞(V,R ) the function

F ∗ : SF → R
l 7→ −minp∈V Fl(p)

is the dual function.

4.15 Remark. In particular, we have

∀v ∈ V : F ∗(dFv) = dF |v − F (v) (4.4)
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4.16 Theorem.

L−1F = LF∗ (4.5)

Proof.

4.17 Theorem. Let M be a smooth manifold, F ∈ C∞(TM,R ) be a function such
that for all p ∈ M , Fp := F |TpM is strictly convex and SFp = T ∗pM . Define the
associated Legendre transform and Hamiltonian by

L : TM → T ∗M, L|TpM := LFp

H : T ∗M → R , H|T∗
pM

:= F ∗p

A curve γ : [a, b] → M satisfies the Euler-Lagrange equations (EL) if and only if
γ∗ := L ◦ γ̇ is an integral curve for XH ∈ T (T ∗M), where T ∗M carries the canonical
symplectic structure.

Proof. We choose coordinates on some neighbourhood U and obtain induced coor-
dinates for TU and T ∗U , which will be labeled by

(x1, . . . , xn), on U,
(x1, . . . , xn, v1, . . . , vn), on TU,
(x1, . . . , xn, ξ1, . . . , xn), on T ∗U.

Locally, the curves γ̇ and γ∗ can be written in these coordinates as

γ̇ = (γx, γv) = (γx, γ̇x)

γ∗ = (γ∗x, γ
∗
ξ ) = (γx, L(γx, γ̇x))

Recall that γ satisfies the Euler-Lagrange equation if and only if

∂F

∂x
(γx, γv) =

d

dt

∂F

∂v
(γx, γv) (4.6)

and γ∗ is an integral curve of XH if and only if it satisfies the Hamilton equations

γ̇∗x =
∂H

∂ξ
(γ∗x, γ

∗
ξ ), (4.7)

γ̇∗ξ = −∂H
∂x

(γ∗x, γ
∗
ξ ). (4.8)

Let t0 ∈ [a, b] such that γ(t0) ∈ U , set (x0, v0) = γ̇(t0) and (x0, ξ0) = γ∗(t0). Since

∂H

∂ξ
(x0, ξ0) =

∂F ∗x
∂ξ

(ξ0) = LF∗
x

(ξ0)
(4.5)
= L−1Fx (ξ0), (4.9)

we conclude from the definition of γ∗

(4.7)⇐⇒ γ̇∗x
(4.9)
= L−1Fx (γ∗ξ )⇐⇒ γ∗ξ = LFx(γ̇∗x) = LFx(γv),
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so (4.7) holds by definition of γ∗. Consequently, we have to show that the Euler-
Lagrange equation (4.6) is equivalent to the second Hamilton equation (4.8) in this
case. To that end, we recall that for all (x, v), ξ := L(x, v)

H(x, L(x, v)) = F ∗x (ξ)
(4.4)
= ξv − F (x, v) = L(x, v)v − F (x, v).

If we differentiate this equation with respect to x, we obtain

∂H

∂x
|(x,ξ) +

∂H

∂ξ
|(x,ξ)

∂L

∂x
|(x,v) =

∂L

∂x
|(x,v)v −

∂F

∂x
|(x,v) (4.10)

Using the fact that if ξ = L(x, v), we obtain

∂H

∂ξ
|(x,ξ) =

∂F ∗x
∂ξ

(ξ) = LF∗
x

(ξ) = LF−1
x

(Fx(v)) = v,

thus we can simplify (4.10) to

∂H

∂x
|(x,ξ) = −∂F

∂x
|(x,v). (4.11)

In particular if γ satisfies the Euler-Lagrange Equation, then by

γ̇∗ξ (t0) =
d

dt
LFγx(t)

(γ̇x(t))|t=t0

=
d

dt

∂F

∂v
(γx(t), γ̇x(t))|t=t0

(4.6)
=

∂F

∂x
(γx(t), γv(t))|t=t0

(4.11)
= −∂H

∂x
|(x,ξ)(γ∗x(t), γ∗ξ (t))

γ∗ satisfies the second Hamilton equation. Conversely, if γ∗ satisfies the second Hamil-
ton equation, then by the same reasoning

∂F

∂x
(γx, γv)

(4.11)
= −∂H

∂x
(γ∗x, γ

∗
ξ )

(4.8)
= γ̇∗ξ (t0) =

d

dt

∂F

∂v
(γx(t), γ̇x(t))|t=t0

γ satisfies the Euler Lagrange equation.

A Flows

A.1 Definition.

(i) A flow domain is an open subset D ⊂ R ×M such that for each p ∈M the set
D(p) := {t ∈ R | (t, p) ∈ D} is an open interval containing 0.

(ii) A flow is a smooth map θ : D → M , where D is a flow domain, such that for
any p ∈ M θ(0, p) = p, and for any s ∈ D(p) and any t ∈ Dθ(s,p) such that
s+ t ∈ D(p) we have θ(t, θ(s, p)) = θ(s+ t, p). In this case, we set

θt(p) := θ(t, p) =: θ(p)(t).
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(iii) For any flow θ : D →M the field X ∈ T (M) defined by

∀p ∈M : Xp = d
dtθ

(p)(t)|t=0

is the infinitesimal generator of X.

(iv) A flow θ : D →M is maximal , if it admits no extension to a larger flow domain.

A.2 Theorem (fundamental theorem on flows). Let X ∈ T (M) be any smooth
vector field. There exists a unique maximal flow θ : D → M whose infinitesimal
generator is X. This flow has the following properties:

(i) For any p ∈ Mm the curve θ(p) : D(p) → M is the unique maximal integral
curve of X starting at p ∈M .

(ii) If s ∈ D(p), then D(θ(s,p)) = D(p) − s.

(iii) For each t ∈ R , the set Mt := {p ∈ M | (t, p) ∈ D} is open in M and
θt : Mt →Mt is a diffeomorphism satisfying θ−1t = θ−t.

(iv) For any (t, p) ∈ D, (θt)∗Xp = Xθt(p).

We say θ is the flow of X.

A.3 Definition (complete vector field). A vector field X ∈ T (M) is complete, if its
maximal flow θ : D →M satisfies D = R ×M .

A.4 Definition (Lie derivative). Let X ∈ T (M) and θ be the flow of X. For any
tensor field τ ∈ T k(M) define

∀p ∈M : (LXτ)|p := d
dt (θ

∗
t τ)|t=0 = lim

t→0

θ∗t (τθt(p))−τp
t .

Then LXτ ∈ T k(M) is the Lie derivative of τ .

A.5 Definition (interior multiplication). For any τ ∈ Ωk(M) and X ∈ T (M), let
ιXω ∈ Ωk−1(M) be defined by

∀Y1, . . . , Yk−1 ∈ T (M) : ιXω(Y1, . . . , Yk) := ω(X,Y1, . . . , Yk−1).

The map ιX : Ω(M)→ Ω(M) is called interior multiplication with X.

A.6 Theorem (properties of interior multiplication). Let M be a smooth manifold,
X ∈ T (M) and α ∈ T k(M).

(i) For any X ∈ T (M) and any Cartan’s formula holds:

LXα = ιXdα+ dιXα. (A.1)

(ii) Interior multiplication is an anti-derivation, i.e. for any β ∈ Ωl(M)

ιX(α ∧ β) = ιX(α) ∧ β + (−1)lα ∧ ιX(β). (A.2)

(iii) Interior multiplication satisfies

ι[X,Y ]α = LXιY α− ιY LXα (A.3)



18 Nikolai Nowaczyk

References

[1] John M. Lee. Introduction to Smooth Manifolds. Springer, 2002.
[2] Ana Cannas da Silva. Lectures on Symplectic Geometry. Springer, 2008.



Mechanics and symplectic Geometry 19

Index
acceleration, 2
action, 11
action coordinates, 10
angle coordinates, 10
anti-derivation, 17
anti-homomorphism, 7

canonical coordinates, 4
canonical symplectic form, 4
Cartan’s formula, 17
completely integrable, 10
completeness

of a vector field, 17
configuration space, 4
conserved quantity, 9
constant of motion, 9

Darboux coordinates, 4
dual function, 14

energy Hamiltonian, 2
Euler-Langrange equation, 11

flow, 16
maximal, 17

flow domain, 16
force field, 2

Hamilton’s equations, 9
Hamiltonian, 9

vector field, 5
Hamiltonian flow, 9
Hamiltonian system, 9
Hessian, 13
homomorphism of Lie algebras, 7

independent, 10
infinitesimal generator of X, 17
infinitesimal symmetry, 9
integral of first kind, 9
integral of motion, 9
interior multiplication, 17

Jacobi identity, 7

kinetic energy, 2

Legendre transform, 14
Leibniz rule, 8
Lie algebra, 7
Lie bracket

of a Lie algebra, 7
of vector fields, 7

Lie derivative, 17

mass, 2
minimizing, 11
momentum, 2

Newton’s Second Law, 2
Newtonian, 2
Noether’s Theorem, 10

orbit, 9

particle, 2
phase space, 4
Poisson algebra, 8
Poisson bracket, 8
Poisson commute, 8
potential, 2

speed, 2
stability set, 14
stable, 13
strictly convex, 13
symplectic, 4
symplectic coordinates, 4
symplectic form, 4
symplectic manifold, 4
symplectomorphism, 4

tautological 1-form, 4
trajectory, 2, 9

velocity, 2

Wirtinger inequality, 13


	Physical Motivation
	Mechanics in Euclidan space

	Symplectic Geometry Basics
	Hamiltonian Geometry
	Hamiltonian Vector fields
	Lie Brackets
	Poisson brackets
	Hamiltonian Systems

	Variational Principles
	The Euler-Lagrange Equation
	Legendre Transform

	Flows
	References
	Index

