Geometry of Classical Mechanics

$Nikolai\ Nowaczyk \\ < mail@nikno.de > http://math.nikno.de /$

2013-01-21

Contents

1	Physical Motivation	2
	1.1 Mechanics in Euclidan space	
2	Symplectic Geometry Basics	4
3	Hamiltonian Geometry	4
	3.1 Hamiltonian Vector fields	4
	3.2 Lie Brackets	7
	3.3 Poisson brackets	8
	3.4 Hamiltonian Systems	9
4	Variational Principles	11
	4.1 The Euler-Lagrange Equation	11
	4.2 Legendre Transform	13
A	Flows	16
R	eferences	17
T	Jon	10

1 Physical Motivation

- **1.1 Definition** (particle). Let (Q, g) be a Riemannian manifold, $\gamma : I \to Q$ be a smooth curve and m > 0 be any number. Then (γ, m) is a particle of mass m in Q. We also say γ is the trajectory, and m is its mass and (Q, g) its configuration space. Denote by $D_t : \mathcal{T}(\gamma) \to \mathcal{T}(\gamma)$ the covariant derivative induced by g, let $|\underline{\ }| := |\underline{\ }| g$ be the norm in each tagent space of Q induced by g, let $E^{\text{kin}} := \frac{1}{2}m|\underline{\ }|^2 \in \mathcal{C}^{\infty}(TM)$ be the kinetic energy. For any such particle, we define the following quantities:
 - its velocity $\mathbf{v} := v_{\gamma} := \dot{\gamma} \in \mathcal{T}(\gamma)$,
 - its speed $|\dot{\gamma}| \in \mathcal{C}^0(I, \mathbb{R}_{\geq 0}),$
 - its acceleration $\mathbf{a} := a_{\gamma} := D_t \dot{\gamma} \in \mathcal{T}(\gamma),$
 - its momentum $\mathbf{p} := m\dot{\gamma}^{\flat} \in \mathcal{T}^*(\gamma),$
 - its kinetic energy $\mathbf{E}^{\text{kin}} := E_{\gamma}^{\text{kin}} := \frac{1}{2} m |\dot{\gamma}|^2 \in \mathcal{C}^0(I, \mathbb{R}_{\geq 0}).$

Any function $V \in \mathcal{C}^{\infty}(Q)$ is a potential. We set $E^{\text{pot}} := V \in \mathcal{C}^{\infty}(M)$, $\mathbf{E}^{\text{pot}} := E^{\text{pot}} \circ \gamma \in \mathcal{C}^{\infty}(I, \mathbb{R})$, the induced kinetic energy. The field

$$F := F_V := -\operatorname{grad}^g(V) \in \mathcal{T}(Q)$$

is the induced force field. The particle is Newtonian with respect to V, if it satisfies Newton's Second Law

$$\mathbf{F} = m\mathbf{a},$$

where $\mathbf{F} := F \circ \gamma$. This is to be understood as an equality in $\mathcal{T}(\gamma)$, where $m = m \operatorname{id} \in \operatorname{End}(\gamma)$ is thought of as a field of endomorphisms.

1.1 Mechanics in Euclidan space

1.2 Theorem (Hamilton vs. Newton). Consider \mathbb{R}^n with the Euclidean metric \bar{g} as a configuration manifold and let $T^*\mathbb{R}^n \cong \mathbb{R}^{2n}$ be the associated phase space. Label the coordinates by $(q_1, \ldots, q_n, p_1, \ldots, p_n)$ and let $\omega = \sum_i dq^i \wedge dp^i$ be the canonical symplectic structure, cf. Lemma 2.4. Let $V \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ be any potential and m > 0 be any mass. Let $F := F_V := -\operatorname{grad} V$ be the induced force field and

$$\begin{aligned} H: \mathbb{R}^{\,n} \times \mathbb{R}^{\,n} & \to & \mathbb{R} \\ (q, p) & \mapsto & \frac{1}{2m} |p|^2 + V(q). \end{aligned}$$

be the induced energy Hamiltonian. Then $(\mathbb{R}^{2n}, \omega, H)$ is a Hamiltonian system in the sense of Definition 3.12 and any curve $\gamma: I \to \mathbb{R}^n$ satisfies Newton's second law

$$\forall t \in I : m\ddot{\gamma}(t) = F(\gamma(t)),$$

if and only if $\tau := (\tau_q, \tau_p) := (\gamma, m\dot{\gamma}) : I \to \mathbb{R}^{2n}$ satisfies Hamilons equations (see (3.3))

$$\begin{split} \dot{\tau}_q^i(t) &= \dot{\gamma}^i(t) = \frac{\partial H}{\partial p^i}(\tau(t)), \\ \dot{\tau}_p^i(t) &= \ddot{\gamma}^i(t) = -\frac{\partial H}{\partial a^i}(\tau(t)), \end{split} \tag{1.1}$$

Proof. Calculating the gradient of H, we obtain

$$\operatorname{grad} H = \sum_{i=1}^{n} \frac{2}{2m} |p| \frac{p_i}{|p|} \frac{\partial}{\partial p_i} + \frac{\partial V}{\partial q^i} \frac{\partial}{\partial q^i} = \sum_{i=1}^{n} \frac{p_i}{m} \frac{\partial}{\partial p_i} - F^i \frac{\partial}{\partial q^i}$$

Consequently, Hamiltons equations (1.1) are equivalent in this case to

$$\begin{split} \dot{\tau}_q^i(t) &= \frac{1}{m} \tau_p^i(t), \\ \dot{\tau}_p^i(t) &= F^i(\tau_q(t)). \end{split}$$

The first equation is automatically satisfied by definition of τ . Also by definition of τ , the second equation is equivalent to

$$\dot{\tau}_p = F(\tau_q) \iff m\ddot{\gamma} = F(\gamma),$$

which is Newton's second law.

1.3 Remark. The Hamiltonian is traditionally denoted by E := H, called *energy*, and decomposed into $E = E^{\text{kin}} + E^{\text{pot}}$, the kinetic respectively potential energy. Therefore, we obtain

$$\mathbf{E} = \mathbf{E}^{\text{kin}} + \mathbf{E}^{\text{pot}}.$$

It follows from Lemma 3.14(i) that the energy is conserved, i.e. $\dot{\mathbf{E}} = 0$.

1.4 Theorem (Newton vs. Lagrange). Let $V \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ be any potential with induced force field $F = -\nabla V$ and define

$$L: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}$$
$$(x, v) \mapsto \frac{1}{2} m v^{2} - V(x)$$

A curve $\gamma: I \to \mathbb{R}^n$ satisfies Newtons second law

$$\forall t \in I : m\ddot{\gamma}(t) = F(\gamma(t))$$

if and only if γ satisfies the Euler-Lagrange equation

$$\forall t \in I: \frac{\partial L}{\partial x^i}(\gamma(t),\dot{\gamma}(t)) = \frac{d}{dt}\frac{\partial L}{\partial v^i}(\gamma(t),\dot{\gamma}(t)).$$

Proof. This follows from the simple fact that

$$\begin{split} \frac{\partial L}{\partial x}(x,v) &= -\nabla V(x) = F(x), \\ \frac{\partial L}{\partial v}(x,v) &= mv. \end{split}$$

2 Symplectic Geometry Basics

Let M be a smooth manifold.

- **2.1 Definition.** A symplectic form is an element $\omega \in \Omega^2(M)$, which is closed and non-degenerate. A tuple (M,ω) such that ω is a symplectic form, is a symplectic manifold.
- **2.2 Definition.** A diffeomorphism $f:(M,\omega)\to (N,\eta)$ between symplectic manifolds is a *symplectomorphism*, if $f^*\eta=\omega$.
- **2.3 Definition** (tautological 1-form). Let Q be a smooth manifold, $M:=T^*Q$ and $\pi:M\to Q$ be the canonical projection. Then $\tau\in\Omega^1(M)$ defined by

$$\forall \alpha \in M : \forall X \in T_{\alpha}M : \tau|_{\alpha}(X) := \pi^* \alpha(X) = \alpha(\pi_* X). \tag{2.1}$$

is the tautological 1-form. The form $\omega := -d\tau \in \Omega^2(M)$ is the canonical symplectic form of Q. In this situation, we also say that Q is the configuration space and M is the phase space.

2.4 Lemma. Let Q be a smooth manifold and ω be the canonical symplectic form. Then (T^*Q, ω) is a symplectic manifold. Let $\pi: T^*Q \to Q$ be the canonical projection, (x^i) be local coordinates for Q, $\tilde{x}^i := \pi^*x^i = x^i \circ \pi$ and (ξ^i) be the local coframe on T^*Q induced by (x^i) . Then ω can be expressed locally by

$$\omega = \sum_{i=1}^{n} d\tilde{x}^{i} \wedge d\xi^{i}.$$

2.5 Theorem (Darboux). Let (M, ω) be a 2n-dimensional symplectic manifold. Near every point $p \in M$, there are smooth coordinates $(x^1, y^1, \dots, x^n, y^n)$ such that

$$\omega = \sum_{i=1}^{n} dx^{i} \wedge dy^{i}.$$
 (2.2)

Those coordinates are called *Darboux coordinates* or *symplectic coordinates* or *canonical coordinates*.

3 Hamiltonian Geometry

In this section let (M, ω) be a symplectic manifold.

3.1 Hamiltonian Vector fields

- **3.1 Definition.** Let $X \in \mathcal{T}(M)$ be any vector field.
 - (i) X is symplectic, if $\iota_X \omega$ is closed.

- (ii) X is Hamiltonian, if $\iota_X \omega$ is exact.
- (iii) X is a Hamiltonian vector field for $H \in \mathcal{C}^{\infty}(M)$, if $\iota_X \omega = dH$.

We denote by $\mathcal{T}^{\text{ham}}(M)$ the Hamiltonian vector fields and by $\mathcal{T}^{\text{symp}}(M)$ the symplectic vector fields on M.

- **3.2 Lemma.** Let $X \in \mathcal{T}(M)$ and $H \in \mathcal{C}^{\infty}(M)$.
 - (i) X is symplectic if and only if X is locally Hamiltonian.
 - (ii) If $H^1_{dR}(M) = \{0\}$, then X is symplectic if and only if X is Hamiltonian.
- (iii) A Hamiltonian vector field X for any function H is always Hamiltonian.
- (iv) Any Hamiltonian vector field is symplectic.

Proof.

- (i) This follows from the general fact that a differential form is closed if and only if it is locally exact.
- (ii) This follows from the definition of de Rahm cohomology.
- (iii) By definition of X_H .
- (iv) Any exact form is closed.

3.3 Lemma. Let $X \in \mathcal{T}(M)$ and $\theta : \mathcal{D} \to M$ be the induced flow. Then the following are equivalent.

- (i) X is symplectic.
- (ii) All diffeomorphisms θ_t are symplectomorphisms.
- (iii) $\mathcal{L}_X \omega = 0$.

Proof.

Since $\theta_0 = id$, clearly $\theta_0^* \omega = \omega$ and for any $p \in M$ and $t_0 \in \mathcal{D}^{(p)}$

$$\frac{d}{dt}\theta_t^*\omega|_{t=t_0} = \theta_{t_0}^*\frac{d}{dt}\theta_t^*\omega|_{t=0} = \theta_{t_0}^*\mathcal{L}_X\omega \stackrel{\text{A.1}}{=} \theta_{t_0}^*(d\underbrace{\iota_{X_H}\omega}_{=0} + \iota_{X_H}\underbrace{d\omega}_{=0}) = 0,$$

since $\iota_X \omega$ and ω are both closed.

"(ii)⇒(iii)" By definition

$$\mathcal{L}_X \omega = \frac{d}{dt} \theta_t^* \omega = \frac{d}{dt} \omega = 0.$$

$$0 = \mathcal{L}_X \omega = d\iota_X \omega + \iota_X d\omega = d\iota_X \omega.$$

3.4 Lemma. Let $H \in \mathcal{C}^{\infty}(M)$.

- (i) There exists a unique Hamiltonian vector field $X_H \in \mathcal{T}(M)$ of H.
- (ii) In any local Darboux coordinates (x^i, y^i) the Hamiltonian field X_H is given by

$$X_{H} = \sum_{i=1}^{n} \frac{\partial H}{\partial y^{i}} \frac{\partial}{\partial x^{i}} - \frac{\partial H}{\partial x^{i}} \frac{\partial}{\partial y^{i}}.$$
(3.1)

- (iii) H is constant along the flow θ of X_H , thus each integral curve of X_H is contained in a level set of H.
- (iv) At each regular point $p \in M$ of H, $X_H(p)$ is tangent to the level set $H^{-1}(\{H(p)\})$ of H.
- (v) Each member of the family of diffeomorphisms θ_t defined by the flow θ of X_H is a symplectomorphism.

Proof.

(i) To see uniqueness, assume $X, Y \in \mathcal{T}(M)$ satisfy $\iota_X \omega = dH = \iota_Y \omega$. This implies for any $V \in \mathcal{T}(M)$

$$\omega(X, V) = \iota_X \omega(V) = \iota_Y \omega(V) = \omega(Y, V) \Longrightarrow \omega(X - Y, V) = 0.$$

Since ω is non-degenerate, this implies X = Y. To show existence it suffices to check the local formula (3.1).

(ii) We calculate

$$\iota_{X_H} \omega \stackrel{(2.2)}{=} \sum_{i=1}^n \iota_{X_H} (dx^i \wedge dy^i)$$

$$\stackrel{(A.2)}{=} \sum_{i=1}^n \iota_{X_H} (dx^i) \wedge dy^i - dx^i \wedge \iota_{X_H} (dy^i)$$

$$\stackrel{(3.1)}{=} \sum_{i=1}^n \frac{\partial H}{\partial y^i} dy^i + \frac{\partial H}{\partial x^i} dx^i$$

$$= dH.$$

(iii) For any $(t_0, p) \in \mathcal{D}$

$$\frac{d}{dt}H(\theta^{(p)}(t))|_{t=t_0} = dH(\theta^{(p)}(t_0))(\dot{\theta}^{(p)}(t_0)) = \iota_{X_H}\omega|_{\theta(t_0,p)}(X_H|_{\theta(t_0,p)}) = 0.$$

(iv) Since

$$X_H(H) = \mathcal{L}_{X_H}(H) = \iota_{X_H}(dH) + d\iota_X H = \iota_{X_H}^2 \omega = 0,$$

we obtain

(v) This follows from Lemma 3.3.

3.2 Lie Brackets

For this subsection we do not need the symplectic structure ω on M.

3.5 Definition (Lie algebra). A *Lie algebra* is a real vector space $\mathfrak g$ together with map

$$[,]: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$$

called Lie bracket such that the following holds:

- (i) Bilinearity: $[_, _]$ is bilinear over $\mathbb R$.
- (ii) Anti-symmetry: $\forall X, Y \in \mathfrak{g} : [X, Y] = -[Y, X].$
- (iii) Jacobi Identity: $\forall X, Y, Z \in \mathfrak{g} : [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.$
- **3.6 Definition** ((anti)-homomorphisms of Lie algebras). A homomorphism of Lie algebras $f: (\mathfrak{g}, [_, _]) \to (\mathfrak{h}, [\![_, _]\!])$ is a linear map such that

$$\boxed{\forall X,Y \in \mathfrak{g}: [\![f(X),f(Y)]\!] = f([X,Y]).}$$

We say f is an anti-homomorphism if f is a linear map such that

$$\forall X, Y \in \mathfrak{g} : \llbracket f(X), f(Y) \rrbracket = -f([X, Y]).$$

3.7 Theorem (Lie bracket on vector fields). For any two vector fields $X,Y\in\mathcal{T}(M)$ define

$$\forall f \in \mathcal{C}^{\infty}(M) : [X, Y](f) := X(Y(f)) - Y(X(f))$$

Then $[X,Y] \in \mathcal{C}^{\infty}(M)$ is a vector field, called *Lie bracket* of X and Y. In addition the following hold:

(i) $[X,Y] \in \mathcal{T}(M)$ and in any local coordinates (x^i)

$$[X,Y] = (X^i \frac{dY^j}{\partial x^i} - Y^i \frac{dX^j}{\partial x^i}) \frac{\partial}{\partial x^i} = (X(Y^j) - Y(X^j)) \frac{\partial}{\partial x^j}$$

- (ii) $(\mathcal{T}(M), [_, _])$ is a real Lie algebra.
- (iii) If $F: M \to N$ is a smooth map and $X_1, X_2 \in \mathcal{T}(M), Y_1, Y_2 \in \mathcal{T}(N)$ such that X_i is F-related to Y_i , i = 1, 2, then $[X_1, X_2]$ is F-related to $[Y_1, Y_2]$.
- (iv) For any $f, g \in \mathcal{C}^{\infty}(M)$

$$[fX, gY] = fg[X, Y] + fX(g)Y - gY(f)X.$$

Proof. A proof of this can be found in [1, Chpt. 4]

3.3 Poisson brackets

3.8 Definition (Poisson algebra). A Poisson algebra $(\mathcal{P}, \{_, _\})$ is a commutative associative \mathbb{R} - algebra \mathcal{P} together with a Lie bracket $\{_, _\}$, which satisfies the *Leibniz rule*

$$\forall f, g, h \in \mathcal{P} : \{f, gh\} = \{f, g\}h + g\{f, h\}.$$

Let (M, ω) be a symplectic manifold again.

3.9 Definition (Poisson bracket). Let $f, g \in \mathcal{C}^{\infty}(M)$. Then

$$\{f,g\} := \omega(X_f,X_g) = \iota_{X_f}\omega(X_g) = df(X_g) = X_g(f)$$

is the Poisson bracket of f and g. We say f and g Poisson commute, if $\{f,g\}=0$.

3.10 Lemma. If $X, Y \in \mathcal{T}^{\text{symp}}(M)$, then $[X, Y] \in \mathcal{T}^{\text{ham}}(M)$ and

$$[X,Y] = d(\omega(Y,X)) \tag{3.2}$$

Proof. We calculate

$$\iota_{[X,Y]}\omega \stackrel{\text{(A.3)}}{=} \mathcal{L}_X \iota_Y \omega - \iota_Y \mathcal{L}_X \omega$$

$$\stackrel{\text{(A.1)}}{=} \iota_X \underbrace{d\iota_Y \omega}_{=0} + d\iota_X \iota_Y \omega - \iota_Y \iota_X \underbrace{d\omega}_{=0} - \iota_Y \underbrace{d\iota_X \omega}_{=0}$$

$$= d(\omega(Y,X)),$$

since X and Y are symplectic and ω is closed.

3.11 Theorem. $(\mathcal{C}^{\infty}(M), \{_, _\})$ is a Poisson algebra and the map

$$\begin{array}{ccc} (\mathcal{C}^{\infty}(M),\{_,_\}) & \to & (\mathcal{T}(M),[_,_]) \\ f & \mapsto & X_f \end{array}$$

is a Lie algebra anti-homomorphism.

Proof. The Poisson bracket {__, _} is bilinear by (3.1) and anti-symmetric by construction. To see that this map is an anti-homorphism, we calculate

$$-[X_g, X_f] \stackrel{(3.2)}{=} d\omega(X_f, X_g) = X_{\omega(X_f, X_g)} = X_{\{f, g\}}.$$

To see that the Jacobi-identity is satisfied, we calculate

$$\begin{split} \{f,\{g,h\}\} &= X_{\{g,h\}}f = -[X_g,X_h]f \\ &= -X_g(X_h(f)) + X_h(X_g(f)) = -X_g(\{f,h\}) + X_h(\{f,g\}) \\ &= -\{\{f,h\},g\} + \{\{f,g\},h\}. \end{split}$$

Finally, the Leibniz rule follows from

$$\{fg,h\} = X_h(fg) = X_h(f)g + X_h(g)f = \{f,h\}g + \{g,h\}f.$$

3.4 Hamiltonian Systems

3.12 Definition (Hamiltonian system). For any $H \in C^{\infty}(M)$ we say the triple (M, ω, H) is a *Hamiltonian system* with *Hamiltonian H*. The flow of X_H is the *Hamiltonian flow* and its integral curves γ are the *trajectories* or *orbits* of the system. In any local Darboux coordinates (x^i, y^i) they satisfy *Hamilton's equations*

as can be easily derived from (3.1). For an important example of this, see Theorem 1.2.

3.13 Definition (conserved quantity, infinitesimal symmetry). Let (M, ω, H) be a Hamiltonian system. A function $f \in \mathcal{C}^{\infty}(M)$ is a conserved quantity, if f is constant along any trajectory of the system. Sometimes f is also called a integral of motion, constant of motion or integral of first kind. A vector field $V \in \mathcal{T}(M)$ is an infinitesimal symmetry of that system, if ω and H are invariant under the flow $\vartheta : \mathcal{D} \to M$ of V, i.e. for any $(t, p) \in \mathcal{D}$

$$H(\vartheta(t,p)) = H(p),$$
 $\vartheta_t^* \omega|_p = \omega|_{\vartheta(t,p)}.$

- **3.14 Lemma.** Let (M, ω, H) be a Hamiltonian system.
 - (i) A function $f \in \mathcal{C}^{\infty}(M)$ is a conserved quantity if and only if $\{H, f\} = 0$.
 - (ii) A vector field $V \in \mathcal{T}(M)$ is an infinitesimal symmetry if and only if it is symplectic and VH = 0.
- (iii) If ϑ is the flow of an infinitesimal symmetry V and γ is a trajectory of the system, then for any $s \in \mathbb{R}$, the curve $\vartheta_s \circ \gamma$ is also a trajectory on its domain of definition.

Proof.

(i) Denote by θ the flow of X_H and calculate for any $p \in M$

$$\frac{d}{dt}(f \circ \theta^{(p)}) = \theta^{(p)*}(\mathcal{L}_{X_H} f) = \theta^{(p)*}(\iota_{X_H} df) = \theta^{(p)*}(\iota_{X_H} \iota_{X_f} \omega)
= \theta^{(p)*}(\omega(X_f, X_H)) = \theta^{(p)*}(\{f, H\}).$$

This implies the claim.

(ii) By Lemma 3.3 V is symplectic, if and only if ω is invariant under ϑ . For any $(t,p)\in\mathcal{D}$

$$\tfrac{d}{dt}(H\circ\vartheta^{(p)})(t)=dH_{\vartheta^{(p)}(t)}(\dot{\vartheta}^{(p)(t)})=dH_{\vartheta(t,p)}(V|_{\vartheta(t,p)})=V(H)|_{\vartheta(t,p)},$$

thus V(H) = 0 if and only if H is invariant under ϑ .

(iii)

3.15 Corollary. For any Hamiltonian system (M, ω, H) , the function H is a conserved quantity and X_H is an infinitesimal symmetry.

Proof. By Lemma 3.4(iii), H is a conserved quantity. By definition X_H is symplectic, and since $X_H(X) = 0$ by (3.1), we obtain that X_H is an infinitisemal symmetry by Lemma 3.14(ii).

- **3.16 Theorem** (Noether's Theorem). Let (M, ω, H) be a Hamiltonian system.
 - (i) If $f \in \mathcal{C}^{\infty}(M)$ is a conserved quantity, then X_f is an infinitesimal symmetry.
 - (ii) If $H^1_{dR}(M) = \{0\}$, then for every infinitesimal symmetry V there exists a function f such that $V = X_f$. In that case f is unique up to locally constant functions.
- **3.17 Definition** (independent). A system of functions $f_1, \ldots, f_n \in \mathcal{C}^{\infty}(M)$ is *independent*, if there exists an open dense subset $U \subset M$ such that for all $p \in U$ the covectors $(df_1|_p, \ldots, df_n|_p) \in T_p^*M$ are linearly independent.
- **3.18 Definition** (completely integrable). A Hamiltonian system (M^{2n}, ω, H) is (completely) integrable, if there are conserved quantities $f_1 = H, f_2 \dots, f_n$ that are independent and satisfy $\{f_i, f_j\} = 0$ for all $1 \le i, j \le n$.
- **3.19 Lemma.** Let (M^{2n}, ω, H) be an integrable system with conserved quantities $f_1 = H, f_2, \ldots, f_n$. Let $c \in \mathbb{R}^n$ be a regular value of $f := (f_1, \ldots, f_n)$. If the Hamiltonian vector fields X_{f_1}, \ldots, X_{f_n} are complete on the level set $f^{-1}(c)$, then $f^{-1}(c)$ are homogenous spaces for \mathbb{R}^n , i.e. are diffeomorphic to $\mathbb{R}^{n-k} \times \mathbb{T}^k$, where \mathbb{T}^k is the k-dimensional Torus.
- **3.20 Theorem** (Arnold-Liouville). Let (M^{2n}, ω, H) be an integrable system with conserved quantites $f_1 = H, \ldots, f_n$. Let $c \in \mathbb{R}^n$ be a regular value of $f := (f_1, \ldots, f_n)$. Then the level set $f^{-1}(c)$ is a Lagrangian submanifold of M. In addition the following holds:
 - (i) If the flows of X_{f_1}, \ldots, X_{f_n} starting at a point $p \in f^{-1}(c)$ are complete, then the connected component of $f^{-1}(c)$ containing p is a homogenous space for \mathbb{R}^n . With respect to this affine structure, that component has coordinates $\varphi_1, \ldots, \varphi_n$, called *angle coordinates*, in which the flows of the vector fields X_{f_1}, \ldots, X_{f_n} are linear.
 - (ii) There are coordinates ψ_1, \ldots, ψ_n , known as *action coordinates*, complementary to the angle coordinates such that the ψ_i 's are conserved quantities and $(\varphi_1, \ldots, \varphi_n, \psi_1, \ldots, \psi_n)$ form a Darboux chart.

4 Variational Principles

4.1 The Euler-Lagrange Equation

4.1 Definition (action). Let M be any smooth manifold and $F \in \mathcal{C}^{\infty}(TM, \mathbb{R})$. Let $\gamma : [a, b] \to M$ be a smooth curve. Then

$$\mathcal{A}_{\gamma}^{F} := \int_{a}^{b} F(\dot{\gamma}(t))dt$$

is the action of γ with respect to F. For any fixed $p, q \in M$ we set

$$\mathcal{P}(a,b,p,q) := \{ \gamma \in \mathcal{C}^{\infty}([a,b],M) \mid \gamma(a) = p, \ \gamma(b) = q \}.$$

The action defines a map

$$\mathcal{A}^F: \mathcal{P}(a,b,p,q) \quad \rightarrow \quad \mathbb{R}$$

$$\gamma \quad \mapsto \quad \mathcal{A}^F_{\gamma}.$$

A curve $\gamma_0 \in \mathcal{P}$ is minimizing (in $\mathcal{P}(a, b, p, q)$), if

$$\mathcal{A}_{\gamma_0}^F = \min_{\gamma \in \mathcal{P}(a,b,p,q)} \mathcal{A}_{\gamma}^F.$$

We fix an action F and drop its superscript in notation.

- **4.2 Lemma.** Let $\gamma_0: [a,b] \to M$ be minimizing. Let $[a_1,b_1] \subset [a,b]$ be a subinterval and let $p_1:=\gamma_0(a_1),\ b_1:=\gamma_0(b_1)$. Then $\gamma_1:=\gamma_0|_{[a_1,b_1]}$ is minimizing among $\mathcal{P}(a_1,b_1,p_1,q_1)$.
- **4.3 Theorem.** Let $F \in \mathcal{C}^{\infty}(TM, \mathbb{R})$, $\mathcal{A} = \mathcal{A}^F$ be the induced action and let $\gamma \in \mathcal{P}(a, b, p, q)$ be a minimizer. Let $t \in [a, b]$, (x^i) be local coordinates near $\gamma(t)$ and let (v^i) be the induced local frame for TM. Then γ satisfies the *Euler-Langrange equation*

$$\frac{\partial F}{\partial x^{i}}(\gamma(t), \dot{\gamma}(t)) = \frac{d}{dt} \frac{\partial F}{\partial v^{i}}(\gamma(t), \dot{\gamma}(t)).$$
(EL)

Proof. Choose $t \in I$ and local coordinates $(x^i): U \to V$, $(v^i): TU \to TV$ near $\gamma(t)$. By continuity there exist $a_1, b_1 \in \mathbb{R}$ such that $t \in [a_1, b_1] \subset [a, b]$ and $\gamma([a_1, b_1]) \subset U$. By Lemma 4.2, the restriction $\gamma|_{[a_1, b_1]}$ is also minimizing among $\mathcal{P}(a_1, b_1, \gamma(a_1), \gamma(b_1))$. Therefore we can assume that the endpoints p and q lie in the same coordinate domain U. Consequently, we can assume that U is a subset of \mathbb{R}^n . Let $c = (c_1, \ldots, c_n): [a, b] \to U$ be any smooth curve satisfying c(a) = 0 = c(b) For all sufficiently small $\varepsilon > 0$ the curve

$$\gamma_{\varepsilon} := \gamma + \varepsilon c$$

is smooth and belongs to $\mathcal{P}(a,b,p,q)$. Setting $\mathcal{A}_{\varepsilon} := \mathcal{A}_{\gamma_{\varepsilon}}$, we obtain for the derivative

$$\frac{d\mathcal{A}_{\varepsilon}}{d\varepsilon} = \int_{a}^{b} \frac{d}{d\varepsilon} F(\gamma_{\varepsilon}(t), \dot{\gamma}_{\varepsilon}(t)) dt = \int_{a}^{b} \sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}} (\gamma_{\varepsilon}, \dot{\gamma}_{\varepsilon}) c_{i} + \frac{\partial F}{\partial v^{i}} (\gamma_{\varepsilon}, \dot{\gamma}_{\varepsilon}) \dot{c}_{i} dt \qquad (4.1)$$

Since γ is minimizing

$$0 = \frac{d\mathcal{A}_{\gamma_{\varepsilon}}}{d\varepsilon}|_{\varepsilon=0} = \int_{a}^{b} \sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}(\gamma(t), \dot{\gamma}(t))c_{i}(t) + \frac{\partial F}{\partial v^{i}}(\gamma(t), \dot{\gamma}(t))\dot{c}_{i}(t)dt$$
$$= \sum_{i=1}^{n} \int_{a}^{b} \left(\frac{\partial F}{\partial x_{i}}(\gamma(t), \dot{\gamma}(t)) - \frac{d}{dt}\frac{\partial F}{\partial v^{i}}(\gamma(t), \dot{\gamma}(t))\right)c_{i}(t)dt,$$

where we used partial integration and the fact that c(a) = 0 = c(b). Since this holds for all such curves c, we obtain the claim.

4.4 Theorem (convexity and minimization). Assume that $F \in \mathcal{C}^{\infty}(TM, \mathbb{R})$ satisfies

$$\forall (x,v) \in TM : \det\left(\frac{d^2F}{\partial v^i \partial v^j}(x,v)\right) > 0,$$
 (4.2)

i.e. for any fixed $x, v \mapsto F(x, v)$, is strictly convex. Let $\gamma \in \mathcal{P}(a, b, p, q)$ be a solution of the Euler-Lagrange equation (EL). Then for every sufficiently small subinterval $[a_1, b_1] \subset [a, b]$, the curve $\gamma|_{[a_1, b_1]}$ is minimizing in $\mathcal{P}(a_1, b_1, p_1, q_1)$, $p_1 := \gamma(a_1)$, $q_1 := \gamma(b_1)$.

Proof. Let $c_1, \ldots, c_n \in \mathcal{C}^{\infty}([a,b])$, $c_i(a) = c_i(b) = 0$, $c := (c_1, \ldots, c_n)$ and set $\gamma_{\varepsilon} := \gamma + \varepsilon c \in \mathcal{P}(a,b,p,q)$ and $\mathcal{A}_{\varepsilon} := \mathcal{A}_{\gamma_{\varepsilon}}$. Then the Euler-Lagrange equation is satisfied if and only if $\frac{d\mathcal{A}_{\varepsilon}}{d\varepsilon}(0) = 0$, so 0 is a critical point for $\mathcal{A}_{\varepsilon}$. To see that it is minimizing, we analyse the second derivative:

$$\frac{d^{2}\mathcal{A}_{\varepsilon}}{d\varepsilon^{2}}(0) \stackrel{(4.1)}{=} \int_{a}^{b} \frac{d}{d\varepsilon} \sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}} (\gamma_{\varepsilon}, \dot{\gamma}_{\varepsilon}) c_{i} + \frac{\partial F}{\partial v^{i}} (\gamma_{\varepsilon}, \dot{\gamma}_{\varepsilon}) \dot{c}_{i}|_{\varepsilon=0} dt$$

$$= \int_{a}^{b} \sum_{i,j=1}^{n} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} (\gamma, \dot{\gamma}) c_{i} c_{j} dt \qquad (I)$$

$$+2\int_{a}^{b} \sum_{i,j=1}^{n} \frac{\partial^{2} F}{\partial x_{i} \partial v_{j}} (\gamma, \dot{\gamma}) c_{i} \dot{c}_{j} dt \tag{II}$$

$$+ \int_{a}^{b} \sum_{i,j=1}^{n} \frac{\partial^{2} F}{\partial v^{i} \partial v_{j}} (\gamma, \dot{\gamma}) \dot{c}_{i} \dot{c}_{j} dt$$
 (III)

We estimate There exist constants $K_I, K_{II} > 0$ such that

$$|(\mathbf{I})| = \Big| \int_{a}^{b} \underbrace{\sum_{i,j=1}^{n} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}(\gamma, \dot{\gamma})}_{=:\partial^{2} F} c_{i} c_{j} dt \Big| \leq \int_{a}^{b} |\langle c, \partial_{x}^{2} F c \rangle| dt \leq K_{I} |c|_{L^{2}([a,b])}^{2},$$

for some constant $K_I > 0$. By the same argument and the Hölder inequality

$$|(II)| \le K_{II} \int_a^b |\langle c, \dot{c} \rangle| dt \le K_{II} |c|_{L^2([a,b])} |\dot{c}|_{L^2([a,b])},$$

for another constant $K_{II} > 0$. By (4.2), there exists (III) > 0 such that

$$|(III)| \ge K_{III} |\dot{c}|_{L^2([a,b])}^2$$

Altogether this implies

$$\frac{d^2 \mathcal{A}_{\varepsilon}}{d\varepsilon^2}(0) \ge K_{III} |\dot{c}|_{L^2([a,b])}^2 - 2K_{II} |c|_{L^2([a,b])} |\dot{c}|_{L^2([a,b])} - K_I |c|_{L^2([a,b])}^2$$

By the Wirtinger inequality, c.f. (4.3), if b is very close to a, this expression is positive.

4.5 Lemma (Wirtinger inequality). For any $f \in C^1([a,b])$ satisfying f(a) = f(b) = 0, we have

$$\int_{a}^{b} |f'(t)|dt \ge \frac{\pi^2}{(b-a)^2} \int_{a}^{b} |f(t)|^2 dt \tag{4.3}$$

4.2 Legendre Transform

4.6 Definition (Hessian). Let V be an n-dimensional real vector space, e_1, \ldots, e_n be a basis of V and v_1, \ldots, v_n be the associated coordinates. For any function $F \in \mathcal{C}^{\infty}(V,\mathbb{R})$ and $p \in V$, $u = u^i e_i \in T_p V = V$ we set

$$d^2F|_p(u):=\sum_{i=1}^n\frac{\partial^2F}{\partial v^i\partial v^j}(p)u_iu_j=\frac{d^2}{dt^2}F(p+tu)|_{t=0}.$$

The associated quadratic form d^2F on V is the Hessian of F.

4.7 Definition. A function $F \in \mathcal{C}^{\infty}(V, \mathbb{R})$ is *strictly convex*, if

$$\boxed{\forall p \in V : d^2 F_p > 0,}$$

i.e. the quadratic form d^2F_p is positive definite.

- **4.8 Lemma.** Let $F \in \mathcal{C}^{\infty}(V, \mathbb{R})$ be strictly convex. Then the following are equivalent.
 - (i) F has a critical point.
 - (ii) F has a local minimum at some point.
- (iii) F has a unique critical point.
- (iv) F has a global minimum.
- (v) F is proper, i.e. $\lim_{|p|\to\infty} F(p) = \infty$.

- **4.9 Definition** (stable). A strictly convex function $F \in \mathcal{C}^{\infty}(M, \mathbb{R})$ is *stable*, if one (hence all) of the conditions in Lemma 4.8 is satisfied.
- **4.10 Example.** For any $a \in \mathbb{R}$, the function $\mathbb{R} \to \mathbb{R}$, $x \mapsto e^x + ax$, is strictly convex, but it is stable only for a < 0 (see Figure 1).

14 Nikolai Nowaczyk

Figure 1: The function $x \mapsto e^x + ax$ is stable only for a < 0.

4.11 Definition (stability set). Let $F \in \mathcal{C}^{\infty}(V, \mathbb{R})$ and $l \in V^*$. Define

$$F_l: V \to \mathbb{R}$$

$$v \mapsto F(v) - l(v)$$

Clearly $d^2F = d^2F_l$, so in particular, F is strictly convex if and only if F_l is. If F is strictly convex, then

$$S_F := \{l \in V^* \mid F_l \text{ is stable}\}.$$

is the stability set.

4.12 Definition (Legendre transform). The *Legendre transform* associated to a map $F \in \mathcal{C}^{\infty}(V, \mathbb{R})$ is

$$\begin{array}{ccc} L_F: V & \to & V^* \\ & p & \mapsto & dF_p \in T_p^*V = V^* \end{array}$$

4.13 Theorem. Let F be strictly convex. Then

$$L_F:V\to S_F$$

is a diffeomorphism.

4.14 Definition (dual function). For any strictly convex $F \in \mathcal{C}^{\infty}(V, \mathbb{R})$ the function

$$F^*: S_F \to \mathbb{R}$$

$$l \mapsto -\min_{p \in V} F_l(p)$$

is the dual function.

4.15 Remark. In particular, we have

$$\forall v \in V : F^*(dF_v) = dF|_v - F(v) \tag{4.4}$$

4.16 Theorem.

$$L_F^{-1} = L_{F^*} (4.5)$$

Proof.
$$\Box$$

4.17 Theorem. Let M be a smooth manifold, $F \in \mathcal{C}^{\infty}(TM, \mathbb{R})$ be a function such that for all $p \in M$, $F_p := F|_{T_pM}$ is strictly convex and $S_{F_p} = T_p^*M$. Define the associated Legendre transform and Hamiltonian by

$$L: TM \to T^*M,$$
 $L|_{T_pM} := L_{F_p}$ $H: T^*M \to \mathbb{R},$ $H|_{T_n^*M} := F_p^*$

A curve $\gamma:[a,b]\to M$ satisfies the Euler-Lagrange equations (EL) if and only if $\gamma^*:=L\circ\dot{\gamma}$ is an integral curve for $X_H\in\mathcal{T}(T^*M)$, where T^*M carries the canonical symplectic structure.

Proof. We choose coordinates on some neighbourhood U and obtain induced coordinates for TU and T^*U , which will be labeled by

$$(x_1, \ldots, x_n),$$
 on U ,
 $(x_1, \ldots, x_n, v_1, \ldots, v_n),$ on TU ,
 $(x_1, \ldots, x_n, \xi_1, \ldots, x_n),$ on T^*U .

Locally, the curves $\dot{\gamma}$ and γ^* can be written in these coordinates as

$$\dot{\gamma} = (\gamma_x, \gamma_v) = (\gamma_x, \dot{\gamma}_x)$$
$$\gamma^* = (\gamma_x^*, \gamma_{\mathcal{E}}^*) = (\gamma_x, L(\gamma_x, \dot{\gamma}_x))$$

Recall that γ satisfies the Euler-Lagrange equation if and only if

$$\frac{\partial F}{\partial x}(\gamma_x, \gamma_v) = \frac{d}{dt} \frac{\partial F}{\partial v}(\gamma_x, \gamma_v) \tag{4.6}$$

and γ^* is an integral curve of X_H if and only if it satisfies the Hamilton equations

$$\dot{\gamma}_x^* = \frac{\partial H}{\partial \xi}(\gamma_x^*, \gamma_\xi^*),\tag{4.7}$$

$$\dot{\gamma}_{\xi}^* = -\frac{\partial H}{\partial x}(\gamma_x^*, \gamma_{\xi}^*). \tag{4.8}$$

Let $t_0 \in [a, b]$ such that $\gamma(t_0) \in U$, set $(x_0, v_0) = \dot{\gamma}(t_0)$ and $(x_0, \xi_0) = \gamma^*(t_0)$. Since

$$\frac{\partial H}{\partial \xi}(x_0, \xi_0) = \frac{\partial F_x^*}{\partial \xi}(\xi_0) = L_{F_x^*}(\xi_0) \stackrel{(4.5)}{=} L_{F_x}^{-1}(\xi_0), \tag{4.9}$$

we conclude from the definition of γ^*

$$(4.7) \Longleftrightarrow \dot{\gamma}_x^* \stackrel{(4.9)}{=} L_{F_x}^{-1}(\gamma_\xi^*) \Longleftrightarrow \gamma_\xi^* = L_{F_x}(\dot{\gamma}_x^*) = L_{F_x}(\gamma_v),$$

so (4.7) holds by definition of γ^* . Consequently, we have to show that the Euler-Lagrange equation (4.6) is equivalent to the second Hamilton equation (4.8) in this case. To that end, we recall that for all (x, v), $\xi := L(x, v)$

$$H(x, L(x, v)) = F_x^*(\xi) \stackrel{(4.4)}{=} \xi v - F(x, v) = L(x, v)v - F(x, v).$$

If we differentiate this equation with respect to x, we obtain

$$\frac{\partial H}{\partial x}|_{(x,\xi)} + \frac{\partial H}{\partial \xi}|_{(x,\xi)} \frac{\partial L}{\partial x}|_{(x,v)} = \frac{\partial L}{\partial x}|_{(x,v)} v - \frac{\partial F}{\partial x}|_{(x,v)}$$
(4.10)

Using the fact that if $\xi = L(x, v)$, we obtain

$$\frac{\partial H}{\partial \xi}|_{(x,\xi)} = \frac{\partial F_x^*}{\partial \xi}(\xi) = L_{F_x^*}(\xi) = L_{F_x^{-1}}(F_x(v)) = v,$$

thus we can simplify (4.10) to

$$\frac{\partial H}{\partial x}|_{(x,\xi)} = -\frac{\partial F}{\partial x}|_{(x,v)}.$$
(4.11)

In particular if γ satisfies the Euler-Lagrange Equation, then by

$$\begin{split} \dot{\gamma}_{\xi}^{*}(t_{0}) &= \frac{d}{dt} L_{F_{\gamma_{x}(t)}}(\dot{\gamma}_{x}(t))|_{t=t_{0}} \\ &= \frac{d}{dt} \frac{\partial F}{\partial v}(\gamma_{x}(t), \dot{\gamma}_{x}(t))|_{t=t_{0}} \\ &\stackrel{(4.6)}{=} \frac{\partial F}{\partial x}(\gamma_{x}(t), \gamma_{v}(t))|_{t=t_{0}} \\ &\stackrel{(4.11)}{=} -\frac{\partial H}{\partial x}|_{(x,\xi)}(\gamma_{x}^{*}(t), \gamma_{\xi}^{*}(t)) \end{split}$$

 γ^* satisfies the second Hamilton equation. Conversely, if γ^* satisfies the second Hamilton equation, then by the same reasoning

$$\frac{\partial F}{\partial x}(\gamma_x,\gamma_v) \stackrel{(4.11)}{=} -\frac{\partial H}{\partial x}(\gamma_x^*,\gamma_\xi^*) \stackrel{(4.8)}{=} \dot{\gamma}_\xi^*(t_0) = \frac{d}{dt} \frac{\partial F}{\partial v}(\gamma_x(t),\dot{\gamma}_x(t))|_{t=t_0}$$

 γ satisfies the Euler Lagrange equation.

A Flows

A.1 Definition.

- (i) A flow domain is an open subset $\mathcal{D} \subset \mathbb{R} \times M$ such that for each $p \in M$ the set $\mathcal{D}^{(p)} := \{t \in \mathbb{R} \mid (t,p) \in \mathcal{D}\}$ is an open interval containing 0.
- (ii) A flow is a smooth map $\theta: \mathcal{D} \to M$, where \mathcal{D} is a flow domain, such that for any $p \in M$ $\theta(0,p) = p$, and for any $s \in \mathcal{D}^{(p)}$ and any $t \in \mathcal{D}^{\theta(s,p)}$ such that $s + t \in \mathcal{D}^{(p)}$ we have $\theta(t, \theta(s, p)) = \theta(s + t, p)$. In this case, we set

$$\theta_t(p) := \theta(t, p) =: \theta^{(p)}(t).$$

(iii) For any flow $\theta: \mathcal{D} \to M$ the field $X \in \mathcal{T}(M)$ defined by

$$\forall p \in M : X_p = \frac{d}{dt}\theta^{(p)}(t)|_{t=0}$$

is the *infinitesimal generator* of X.

- (iv) A flow $\theta: \mathcal{D} \to M$ is maximal, if it admits no extension to a larger flow domain.
- **A.2 Theorem** (fundamental theorem on flows). Let $X \in \mathcal{T}(M)$ be any smooth vector field. There exists a unique maximal flow $\theta : \mathcal{D} \to M$ whose infinitesimal generator is X. This flow has the following properties:
 - (i) For any $p \in M$ m the curve $\theta^{(p)} : \mathcal{D}^{(p)} \to M$ is the unique maximal integral curve of X starting at $p \in M$.
 - (ii) If $s \in \mathcal{D}^{(p)}$, then $\mathcal{D}^{(\theta(s,p))} = \mathcal{D}^{(p)} s$.
- (iii) For each $t \in \mathbb{R}$, the set $M_t := \{ p \in M \mid (t,p) \in \mathcal{D} \}$ is open in M and $\theta_t : M_t \to M_t$ is a diffeomorphism satisfying $\theta_t^{-1} = \theta_{-t}$.
- (iv) For any $(t, p) \in \mathcal{D}$, $(\theta_t)_* X_p = X_{\theta_t(p)}$.

We say θ is the flow of X.

- **A.3 Definition** (complete vector field). A vector field $X \in \mathcal{T}(M)$ is *complete*, if its maximal flow $\theta : \mathcal{D} \to M$ satisfies $\mathcal{D} = \mathbb{R} \times M$.
- **A.4 Definition** (Lie derivative). Let $X \in \mathcal{T}(M)$ and θ be the flow of X. For any tensor field $\tau \in \mathcal{T}^k(M)$ define

$$\forall p \in M : (\mathcal{L}_X \tau)|_p := \frac{d}{dt} (\theta_t^* \tau)|_{t=0} = \lim_{t \to 0} \frac{\theta_t^* (\tau_{\theta_t(p)}) - \tau_p}{t}.$$

Then $\mathcal{L}_X \tau \in \mathcal{T}^k(M)$ is the *Lie derivative of* τ .

A.5 Definition (interior multiplication). For any $\tau \in \Omega^k(M)$ and $X \in \mathcal{T}(M)$, let $\iota_X \omega \in \Omega^{k-1}(M)$ be defined by

$$\forall Y_1,\ldots,Y_{k-1}\in\mathcal{T}(M):\iota_X\omega(Y_1,\ldots,Y_k):=\omega(X,Y_1,\ldots,Y_{k-1})$$

The map $\iota_X:\Omega(M)\to\Omega(M)$ is called interior multiplication with X.

- **A.6 Theorem** (properties of interior multiplication). Let M be a smooth manifold, $X \in \mathcal{T}(M)$ and $\alpha \in \mathcal{T}^k(M)$.
 - (i) For any $X \in \mathcal{T}(M)$ and any Cartan's formula holds:

$$\mathcal{L}_X \alpha = \iota_X d\alpha + d\iota_X \alpha. \tag{A.1}$$

(ii) Interior multiplication is an anti-derivation, i.e. for any $\beta \in \Omega^l(M)$

$$\iota_X(\alpha \wedge \beta) = \iota_X(\alpha) \wedge \beta + (-1)^l \alpha \wedge \iota_X(\beta). \tag{A.2}$$

(iii) Interior multiplication satisfies

$$\iota_{[X,Y]}\alpha = \mathcal{L}_X \iota_Y \alpha - \iota_Y \mathcal{L}_X \alpha \tag{A.3}$$

References

- [1] John M. Lee. Introduction to Smooth Manifolds. Springer, 2002.
- [2] Ana Cannas da Silva. Lectures on Symplectic Geometry. Springer, 2008.

Index

acceleration, 2	kinetic energy, 2		
action, 11	T 1 . C 14		
action coordinates, 10	Legendre transform, 14		
angle coordinates, 10	Leibniz rule, 8		
anti-derivation, 17	Lie algebra, 7		
anti-homomorphism, 7	Lie bracket of a Lie algebra, 7		
canonical coordinates, 4	of vector fields, 7		
canonical symplectic form, 4	Lie derivative, 17		
Cartan's formula, 17	mass, 2		
completely integrable, 10	minimizing, 11		
completeness	momentum, 2		
of a vector field, 17	momentum, 2		
configuration space, 4	Newton's Second Law, 2		
conserved quantity, 9	Newtonian, 2		
constant of motion, 9	Noether's Theorem, 10		
	roother's Theorem, 10		
Darboux coordinates, 4	orbit, 9		
dual function, 14			
	particle, 2		
energy Hamiltonian, 2	phase space, 4		
Euler-Langrange equation, 11	Poisson algebra, 8		
0 10	Poisson bracket, 8		
flow, 16	Poisson commute, 8		
maximal, 17	potential, 2		
flow domain, 16	•		
force field, 2	speed, 2		
TT '14 '	stability set, 14		
Hamilton's equations, 9	stable, 13		
Hamiltonian, 9	strictly convex, 13		
vector field, 5	symplectic, 4		
Hamiltonian flow, 9	symplectic coordinates, 4		
Hamiltonian system, 9	symplectic form, 4		
Hessian, 13	symplectic manifold, 4		
homomorphism of Lie algebras, 7	symplectomorphism, 4		
independent, 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
infinitesimal generator of X , 17	tautological 1-form, 4		
infinitesimal symmetry, 9	trajectory, 2, 9		
integral of first kind, 9	vologity 2		
integral of motion, 9	velocity, 2		
	Wirtinger inequality, 13		
interior multiplication, 17			
Jacobi identity, 7			