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1 Physical Motivation

1.1 Definition (particle). Let (@, g) be a Riemannian manifold, v : I — @ be a
smooth curve and m > 0 be any number. Then (vy,m) is a particle of mass m in Q.
We also say y is the trajectory, and m is its mass and (Q, g) its configuration space.
Denote by Dy : T(y) — T () the covariant derivative induced by g, let | _| :=|_|,
be the norm in each tagent space of Q induced by g, let E¥" := 2m|_|* € C>°(T'M)
be the kinetic energy. For any such particle, we define the following quantities:

e its velocity v := v, :=5 € T (v),

e its speed || € CO(I,R >),

its acceleration a := a, := Dy € T(7),
e its momentum p := mA® € T*(7),
o its kinetic energy EX™ := EX .= Im|4|? € C°(1, R »).

Any function V' € C*(Q) is a potential. We set EP°* := V € C*®(M), EP°* :=
EP°t oy € C®(I,R), the induced kinetic energy. The field

F:=Fy:=—grad?(V) € T(Q)

is the induced force field. The particle is Newtonian with respect to V, if it satisfies
Newton’s Second Law

F = ma,

where F := F o~. This is to be understood as an equality in 7 (), where m = mid €
End(7) is thought of as a field of endomorphisms.

1.1 Mechanics in Euclidan space

1.2 Theorem (Hamilton vs. Newton). Consider R™ with the Euclidean metric g as
a configuration manifold and let T*R™ = R 2" be the associated phase space. Label
the coordinates by (¢1,...,¢n,p1,...,pn) and let w =", dq® A dp* be the canonical
symplectic structure, cf. Lemma 2.4. Let V € C*°(R") be any potential and m > 0
be any mass. Let F' := Fy := —grad V be the induced force field and

H:R"xR" — R
(¢:p) — o=[pI>+Vi(g).

be the induced energy Hamiltonian. Then (R?",w, H) is a Hamiltonian system in
the sense of Definition 3.12 and any curve v : I — R" satisfies Newton’s second law

vVt e I:my(t) = F(y(t)),
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if and only if 7 := (74,7,) := (y,m%) : I — R?" satisfies Hamilons equations (see

(3.3))

() =30 = 57 (0),
A o1 (1.1)
540 = 4'0) = ~ 57 (0)

Proof. Calculating the gradient of H, we obtain

8V 0 i pi O .0

dH = E = =) = S
s | ‘p 8p 861’ dqt  “— m Op; g
=1

Consequently, Hamiltons equations (1.1) are equivalent in this case to

Tit) = E7(t),

Tp(t) = F'(74(t)).

The first equation is automatically satisfied by definition of 7. Also by definition of

T, the second equation is equivalent to
T = F(1) <= m7 = F(v),
which is Newton’s second law. O

1.3 Remark. The Hamiltonian is traditionally denoted by F := H, called energy,
and decomposed into F = EXn 4 EPot  the kinetic respectively potential energy.
Therefore, we obtain

E = Ekin 4 EpOt.
It follows from Lemma 3.14(i) that the energy is conserved, i.e. E = 0.

1.4 Theorem (Newton vs. Lagrange). Let V € C>(R™) be any potential with
induced force field F = —VV and define
L:R"xR"™ — R
(z,v) — %mv2 —V(x)

A curve v : I — R™ satisfies Newtons second law
vt e I:mAy(t) = F(y(t))

if and only if 7 satisfies the Fuler-Lagrange equation

Ve T: SE((0.4(0) = & e (1(0),4(0)

Proof. This follows from the simple fact that

%(x’y) = —VV(I') = F(Z‘),
oL
%(x’v) = mu.
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2 Symplectic Geometry Basics

Let M be a smooth manifold.

2.1 Definition. A symplectic form is an element w € Q%(M), which is closed and
non-degenerate. A tuple (M,w) such that w is a symplectic form, is a symplectic
manifold.

2.2 Definition. A diffeomorphism f : (M,w) — (INV,n) between symplectic manifolds

is a symplectomorphism, if f*n = w.

2.3 Definition (tautological 1-form). Let @ be a smooth manifold, M := T*Q and
7 M — @Q be the canonical projection. Then 7 € Q'(M) defined by

Vae M VX € T,M : 7|o(X) := 1" a(X) = a(m. X). (2.1)

is the tautological 1-form. The form w := —dr € Q?(M) is the canonical symplectic
form of @. In this situation, we also say that @ is the configuration space and M is
the phase space.

2.4 Lemma. Let @) be a smooth manifold and w be the canonical symplectic form.
Then (T*@Q,w) is a symplectic manifold. Let 7w : T*@Q — @ be the canonical projection,
(%) be local coordinates for Q, 7 := 7*x* = 2% o 7 and (£%) be the local coframe on
T*Q induced by (z%). Then w can be expressed locally by

w= idii A dEt.
=1

2.5 Theorem (Darboux). Let (M, w) be a 2n-dimensional symplectic manifold. Near

every point p € M, there are smooth coordinates (x!,y!,..., 2™, y™) such that
n
w= Z dx* Ndy'. (2.2)
i=1

Those coordinates are called Darboux coordinates or symplectic coordinates or canon-
ical coordinates.

3 Hamiltonian Geometry

In this section let (M,w) be a symplectic manifold.

3.1 Hamiltonian Vector fields

3.1 Definition. Let X € T (M) be any vector field.

(i) X is symplectic, if txw is closed.
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(ii) X is Hamiltonian, if txw is exact.
(ii) X is a Hamiltonian vector field for H € C*°(M), if 1xw = dH.

We denote by 7" (M) the Hamiltonian vector fields and by 75™P (M) the symplec-
tic vector fields on M.

3.2 Lemma. Let X € T(M) and H € C*(M).
(i) X is symplectic if and only if X is locally Hamiltonian.

)

(ii) If Hiz (M) = {0}, then X is symplectic if and only if X is Hamiltonian.

(iii) A Hamiltonian vector field X for any function H is always Hamiltonian.
)

(iv) Any Hamiltonian vector field is symplectic.

Proof.

(i) This follows from the general fact that a differential form is closed if and only
if it is locally exact.

(ii) This follows from the definition of de Rahm cohomology.
(iii) By definition of Xp.
(iv) Any exact form is closed.
O

3.3 Lemma. Let X € T(M) and 6 : D — M be the induced flow. Then the following
are equivalent.

(i) X is symplectic.
(ii) All diffeomorphisms 6; are symplectomorphisms.

(iii) Lxw = 0.

Proof.
”(i):>(ii)”
Since 0y = id, clearly 05w = w and for any p € M and t, € DP)
DO* o], = 0F L0Twli—g = 0 Lxw = 07 (dix,w+ix, dw)=0
dt’t =to todt”t = to to H H )
=0 =0
since txw and w are both closed.
?(ii)=(iii)” By definition
w = 0.

—dpg*,,_ d
Lxw= S0iw=F

» (i) == (i)” By (A.1)

0=Lxw=dixw+ txdw = dixw.
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O
3.4 Lemma. Let H € C>(M).
(i) There exists a unique Hamiltonian vector field Xy € T (M) of H.

(ii) In any local Darboux coordinates (¢, %) the Hamiltonian field Xz is given by

“0H 9 OH 0
Xp =) (3.1)

dyt 9zt Ot Ayt

=1

(iii) H is constant along the flow 8 of Xy, thus each integral curve of Xy is contained
in a level set of H.

(iv) At each regular point p € M of H, X (p) is tangent to the level set H ' ({H (p)})
of H.

(v) Each member of the family of diffeomorphisms 6; defined by the flow 6 of Xy
is a symplectomorphism.
Proof.

(i) To see uniqueness, assume X,Y € T (M) satisty t.xw = dH = tyw. This implies
for any V € T(M)

wX,V)=1xw(V) =tyw(V) =w(/, V) = w(X -Y,V)=0.

Since w is non-degenerate, this implies X =Y. To show existence it suffices to
check the local formula (3.1).

(ii) We calculate

2.2 n . .
LX W (22) Z txy (dz' A dy')

i=1

(4-2) Z Lxy (det) A dy' — da* A vx,, (dy?)

=1
B ~—0H . O0H .
= —dy’ —dz’
;ayz Y+ aa ™
=dH.

(iii) For any (t9,p) € D
FHOP (0)lmty = dH (0 (10)) (0P (t0)) = 1x@lo(r0,0) (Xrrlotro,p)) = 0.
(iv) Since
Xp(H)=Lx,(H)=1x,(dH)+dxH = 1%,w=0,
we obtain

(v) This follows from Lemma 3.3.
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3.2 Lie Brackets

For this subsection we do not need the symplectic structure w on M.

3.5 Definition (Lie algebra). A Lie algebra is a real vector space g together with
map

[, _]:gxg—R

called Lie bracket such that the following holds:
(i) Bilinearity: [ , | is bilinear over R.
(ii) Anti-symmetry: VX, Y € g: [X,Y] = —[Y, X].
(iii) Jacobi Identity: VX,Y, Z € g: [X,[Y, Z]] + [Z,[X, Y]] + [V, [Z, X]] = 0.

3.6 Definition ((anti)-homomorphisms of Lie algebras). A homomorphism of Lie
algebras f:(g,]_, ]) — (b,[_, _]) is a linear map such that

VXY €g: [f(X), F(V)] = (X, Y]).|

We say f is an anti-homomorphism if f is a linear map such that

VXY €g: [f(X). SV = —F(X. YD)

3.7 Theorem (Lie bracket on vector fields). For any two vector fields X,Y € T(M)
define

|V ece(M): [X,Y](f) = X(Y(f)) - Y(X(/))|

Then [X,Y] € C*(M) is a vector field, called Lie bracket of X and Y. In addition
the following hold:

(i) [X,Y] € T(M) and in any local coordinates (x*)

dY7 dX7 0 ; 0
— (i _yi — 3y _ j
X, Y] = (X5 )5 = (X(V) = Y (X))o
(il) (T(M),]_, ]) is a real Lie algebra.

(iii) If F: M — N is a smooth map and X1, Xz € T(M), Y1,Y2 € T(N) such that
X; is F-related to Y;, i = 1,2, then [X;, Xo] is F-related to [Y7, Y3].

(iv) For any f,g € C*(M)

[f X, gY] = fglX, Y]+ fX(9)Y — gY (f)X.

Proof. A proof of this can be found in [1, Chpt. 4] O
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3.3 Poisson brackets

3.8 Definition (Poisson algebra). A Poisson algebra (P,{ , }) is a commutative
associative R - algebra P together with a Lie bracket { , }, which satisfies the Leibniz
rule

Vf.9.h € P:{f.gh} = {f,g}h+g{f.h}]

Let (M,w) be a symplectic manifold again.
3.9 Definition (Poisson bracket). Let f,g € C*(M). Then

[{£.9} = w(X;, X,) = x,w(X,) = dF(X,) = X,(F) ]

is the Poisson bracket of f and g. We say f and g Poisson commute, if {f,g} = 0.
3.10 Lemma. If X,Y € T%™P(M), then [X,Y] € TP™ (M) and

[X, Y] =d(w(Y, X)) (3.2)
Proof. We calculate
LX, YW (43 Lxtyw—tyLxw
(A1) _ B
=" i1xdiyw+dixtyw —tytx dw —iy dixw
=0 =0 =0
= d(w(Y, X)),
since X and Y are symplectic and w is closed. O

3.11 Theorem. (C*°(M),{ _, }) is a Poisson algebra and the map

C=),{_,_}) — (TM),[_,_])
f —> Xf

is a Lie algebra anti-homomorphism.

Proof. The Poisson bracket { , } is bilinear by (3.1) and anti-symmetric by con-
struction. To see that this map is an anti-homorphism, we calculate

(3.2)

*[ngXf] dw(vaXg) :Xw(vaxg) :X{f,g}'

To see that the Jacobi-identity is satisfied, we calculate

{fa {gah}} = X{g,h}f = _[ngXh]f
= —Xg(Xn(f)) + Xn(Xy(f) = =Xo({f, 1}) + Xn({ . 9})
= _{{fv h}vg} + {{fv g}a h}

Finally, the Leibniz rule follows from

{fg9.h} = Xin(fg) = Xn(f)g + Xn(9)f ={f,h}g +{g, h}].
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3.4 Hamiltonian Systems

3.12 Definition (Hamiltonian system). For any H € C*°(M) we say the triple
(M,w, H) is a Hamiltonian system with Hamiltonian H. The flow of Xy is the
Hamiltonian flow and its integral curves -y are the trajectories or orbits of the system.
In any local Darboux coordinates (x%,y") they satisfy Hamilton’s equations

(0 = 5 (0,
| - (3.3)
3500 =~ 28 (1),

as can be easily derived from (3.1). For an important example of this, see Theorem 1.2.

3.13 Definition (conserved quantity, infinitesimal symmetry). Let (M,w,H) be a
Hamiltonian system. A function f € C>°(M) is a conserved quantity, if f is constant
along any trajectory of the system. Sometimes f is also called a integral of motion,
constant of motion or integral of first kind. A vector field V' € T (M) is an infinitesimal
symmetry of that system, if w and H are invariant under the flow 9 : D — M of V,
i.e. for any (¢t,p) € D

H(9(t,p)) = H(p), Ve wlp = Wl p)-
3.14 Lemma. Let (M,w, H) be a Hamiltonian system.
(i) A function f € C*°(M) is a conserved quantity if and only if {H, f} = 0.

(ii) A vector field V € T(M) is an infinitesimal symmetry if and only if it is sym-
plectic and VH = 0.

(iii) If ¥ is the flow of an infinitesimal symmetry V and + is a trajectory of the
system, then for any s € R, the curve 9J; o« is also a trajectory on its domain
of definition.

Proof.

(i) Denote by 6 the flow of Xy and calculate for any p € M

L(fot®))y=0W(Ly, f)=0P"(tx, df) = 0" (Lx, 1x,w)
= 0P (w(Xy, Xp)) = 0P ({f, H}).

This implies the claim.

(ii) By Lemma 3.3 V is symplectic, if and only if w is invariant under ¢. For any
(t,p) €D

L(H o 9W)(t) = dHy (1) (0P D) = dHy(r ) (V]ge)) = VIEH)o(t,p)-

thus V(H) = 0 if and only if H is invariant under 9.

(iii)
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O

3.15 Corollary. For any Hamiltonian system (M,w, H), the function H is a con-
served quantity and Xy is an infinitesimal symmetry.

Proof. By Lemma 3.4(iii), H is a conserved quantity. By definition X is symplectic,
and since Xy (X) = 0 by (3.1), we obtain that Xy is an infinitisemal symmetry by
Lemma 3.14(ii). O

3.16 Theorem (Noether’s Theorem). Let (M,w, H) be a Hamiltonian system.
(i) If f € C*(M) is a conserved quantity, then X is an infinitesimal symmetry.

(ii) If Hiz (M) = {0}, then for every infinitesimal symmetry V there exists a func-
tion f such that V = X;. In that case f is unique up to locally constant
functions.

3.17 Definition (independent). A system of functions f1,..., f, € C*(M) is in-
dependent, if there exists an open dense subset U C M such that for all p € U the
covectors (dfilp, .. .,dfnlp) € Ty M are linearly independent.

3.18 Definition (completely integrable). A Hamiltonian system (M?",w, H) is (com-
pletely) integrable, if there are conserved quantities f1 = H, f2..., f, that are inde-
pendent and satisfy {f;, f;} =0 forall 1 <4,j <n.

3.19 Lemma. Let (M?" w, H) be an integrable system with conserved quantities
fi = H,fa,...,fn. Let ¢ € R™ be a regular value of f := (f1,...,fn). If the
Hamiltonian vector fields Xy,,..., X, are complete on the level set f~!(c), then
f~1(c) are homogenous spaces for R™, i.e. are diffeomorphic to R"~* x T* where
T* is the k-dimensional Torus.

3.20 Theorem (Arnold-Liouville). Let (M?" w, H) be an integrable system with
conserved quantites f; = H, ..., f,. Let c € R™ be aregular value of f := (f1,..., fn).
Then the level set f~!(c) is a Lagrangian submanifold of M. In addition the following
holds:

(i) If the flows of X¢,,..., Xy, starting at a point p € f~!(c) are complete, then the
conneted component of f~1(c) containing p is a homogenous space for R"™. With

respect to this affine structure, that component has coordinates ¢1,..., vn,,
called angle coordinates, in which the flows of the vector fields Xy, ,..., Xy, are
linear.

(ii) There are coordinates 1,...,v%,, known as action coordinates, complemen-

tary to the angle coordinates such that the ;’s are conserved quantities and
(01, Pns 1, ...,%y) form a Darboux chart.
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4 Variational Principles

4.1 The Euler-Lagrange Equation

4.1 Definition (action). Let M be any smooth manifold and F € C*(TM,R). Let
v : [a,b] = M be a smooth curve. Then

b
F._ :
A = / F(5(t))dt
is the action of v with respect to F'. For any fixed p,q € M we set

P(a,b,p.q) :=={y € C*([a,b], M) | v(a) = p, v(b) = q}.
The action defines a map

AP P(a,b,p,q) — R

A curve vy € P is minimizing (in P(a,b,p,q)), if

A,i) = min AF.
YEP(a,b,p,q)

We fix an action F' and drop its superscript in notation.

4.2 Lemma. Let 79 : [a,b] = M be minimizing. Let [a1,b;] C [a,b] be a subin-
terval and let p; := 7o(a1), b1 := Y(b1). Then 1 := Yol[4, ,] IS Minimizing among
P(ax, b1, p1,q1)-

4.3 Theorem. Let F € C°(TM,R), A = A" be the induced action and let v €
P(a,b,p,q) be a minimizer. Let ¢ € [a,b], (z') be local coordinates near v(t) and
let (v') be the induced local frame for TM. Then ~ satisfies the Euler-Langrange

equation

O 0. 30) = 208 1), 50) (L)

Proof. Choose t € I and local coordinates (z¢) : U — V, (v') : TU — TV near v(t).
By continuity there exist aj,b; € R such that ¢ € [a1,b1] C [a,b] and v([a1,b1]) C U.
By Lemma 4.2, the restriction 7|4, 5,] is also minimizing among P (a1, b1,v(a1), v(b1)).
Therefore we can assume that the endpoints p and ¢ lie in the same coordinate domain
U. Consequently, we can assume that U is a subset of R™. Let ¢ = (c1,...,¢,) :
[a,b] — U be any smooth curve satisfying c(a) = 0 = ¢(b) For all sufficiently small
€ > 0 the curve

Ve =77+ EC

is smooth and belongs to P(a, b, p, q). Setting A, := A,_, we obtain for the derivative

e[ oOF, .
de _/a de F(7:(1), 4= (t))dt = /Za (e, %e)ei + avi(%’%)cidt (4.1)
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Since v is minimizing

a Z/ (6371 ), 7(t)) = %25 (v(ﬂﬁ(t))) ci(t)dt,

where we used partial integration and the fact that c(a) = 0 = ¢(b). Since this holds
for all such curves ¢, we obtain the claim. O

4.4 Theorem (convexity and minimization). Assume that F' € C>°(TM,R) satisfies

2
V(z,v) € TM : det (%(Jc,v)) >0, (4.2)

i.e. for any fixed x, v — F(z,v), is strictly convex. Let v € P(a, b, p, ¢) be a solution
of the Euler-Lagrange equation (EL). Then for every sufficiently small subinterval
[a1,b1] C [a,b], the curve 7|, p,] is minimizing in P(a1, b1, p1,q1), p1 := Y(a1), 1 :=

v(b1)-

Proof. Let c1,...,c, € C®([a,b]), ci(a) = ¢;(b) =0, ¢ := (c1,...,¢,) and set v, :=

v+ec € P(a,b,p,q) and A, := A, . Then the Euler-Lagrange equation is satisfied if
dAs

and only if (0) = 0, so 0 is a critical point for A.. To see that it is minimizing,

we analyse the second derivative:

4 1) aF . .
d52 / d€ Z 76/76 ¢ + w(7577€)ci‘5=0dt

b n 62
:/ Z di0r, (v Y)eic;dt I
a ij= K

+2/ Z 8 8 (7, %)eic;dt (IT)

"' & OPF s
+/a ,Zlm(%wcicjdt (1IT)

1,)=

We estimate There exist constants K7, K;; > 0 such that

82F
(7,7 clc]dt’ / |(c, 0?Fc)|dt < K]|C|L2([a b))

=:02F

for some constant K; > 0. By the same argument and the Holder inequality

b
(D] < Kt [ 1{eseld < Kirlelaoanléloa oy,
for another constant K;; > 0. By (4.2), there exists (IIT) > 0 such that

(D) > Krrr|él o)
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Altogether this implies

d? A,
de?

(0) > Krr1lélZ2(qap) — 2Krrlel 2o €l 2 (a)) = Krlel72 (o)

By the Wirtinger inequality, c.f. (4.3), if b is very close to a, this expression is
positive. [

4.5 Lemma (Wirtinger inequality). For any f € C!([a, b]) satisfying f(a) = f(b) = 0,
we have

b , 7.[_2 b )
[z T [P (13)

4.2 Legendre Transform

4.6 Definition (Hessian). Let V' be an n-dimensional real vector space, e, ..., e,
be a basis of V' and vy,...,v, be the associated coordinates. For any function F €
C®(V,R)and p € V, u=u'e; € T,V =V we set

" 9%F d?

2 Foiges PIuits = 25 F(p + tu)le—o.

d*F|p(u) :=

The associated quadratic form d?F on V is the Hessian of F.

4.7 Definition. A function F' € C*(V,R) is strictly convez, if

Vp eV :d’F, >0,

i.e. the quadratic form d?F}, is positive definite.

4.8 Lemma. Let F' € C*°(V,R) be strictly convex. Then the following are equivalent.
(i) F has a critical point.
(ii) F has a local minimum at some point.

)
)
(iii) F has a unique critical point.
(iv) F has a global minimum.

)

(v) F'is proper, i.e. lim,_q F(p) = oc.

Proof. O

4.9 Definition (stable). A strictly convex function F' € C*°(M,R) is stable, if one
(hence all) of the conditions in Lemma 4.8 is satisfied.

4.10 Example. For any a € R, the function R — R, z — e® +ax, is strictly convex,
but it is stable only for a < 0 (see Figure 1).
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T T
....... e® + 5 :

150 [ L——¢" — 5% P
100 | .
50 | .
0 | |

| | | | |
6 -4 -2 0 2 1 6

Figure 1: The function x — e® 4 ax is stable only for a < 0.

4.11 Definition (stability set). Let F' € C>*(V,R) and | € V*. Define

F:V - R
v = F)—1)

Clearly d?F = d2Fj, so in particular, F is strictly convex if and only if Fj is. If F is
strictly convex, then

Sp :={l € V* | Fj is stable}.

is the stability set.

4.12 Definition (Legendre transform). The Legendre transform associated to a map
FeC=(V,R)is

Lp:V — V*
p v dF,eT;V =V"

4.13 Theorem. Let F' be strictly convex. Then
Lrp:V — Sp
is a diffeomorphism.
4.14 Definition (dual function). For any strictly convex F' € C*°(V,R) the function

F*:8 — R
I — —miny,ey Fi(p)

is the dual function.

4.15 Remark. In particular, we have

Vo e Vi F*(dF,) = dF|, — F(v) (4.4)
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4.16 Theorem.

L' = Lp- (4.5)

Proof. O

4.17 Theorem. Let M be a smooth manifold, F € C*°(T'M,R) be a function such
that for all p € M, F, := F|TpM is strictly convex and Sg, = T;M. Define the
associated Legendre transform and Hamiltonian by

LZTM—)T*M, L|TPM = LFp

H:T*M — R, H|rsas = F

A curve v : [a,b] — M satisfies the Euler-Lagrange equations (EL) if and only if
~* := Lo+ is an integral curve for Xz € T(T*M), where T*M carries the canonical
symplectic structure.

Proof. We choose coordinates on some neighbourhood U and obtain induced coor-
dinates for TU and T*U, which will be labeled by

(-131,...7$n)7 on Ua
(T1ye ey Ty U1,y Up), on TU,
(1, s Tny &1y e oy Ty on T*U.

Locally, the curves 4 and «v* can be written in these coordinates as

'3/ = (’sz'}/v) = (%,"Yx)
Y =2 %) = (Vay L(Vz, ¥2))
Recall that ~ satisfies the Euler-Lagrange equation if and only if

oF d OF

and v* is an integral curve of Xy if and only if it satisfies the Hamilton equations

ok 78H * ok

Let tg € [a,b] such that y(to) € U, set (x0,v0) = ¥(to) and (x9,&r) = v*(tp). Since

H *
87(500750) = 3;?

29
we conclude from the definition of v*

(4.5)

(¢0) = Lr: (&) = Lg (%), (4.9)

R CC) * * <k
(A7) =4 = Ly (v) <= v = Lr,(35) = Lr, (1),
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so (4.7) holds by definition of v*. Consequently, we have to show that the Euler-
Lagrange equation (4.6) is equivalent to the second Hamilton equation (4.8) in this
case. To that end, we recall that for all (z,v), £ := L(x,v)

H(z, L(z,0)) = F*(€) ) ¢v — F(z,v) = L(z,v)v — F(z,v).

If we differentiate this equation with respect to x, we obtain

67H| +87H| 87L| 737L‘ ,87F‘ (4.10)
ox (z,8) o€ (z,8) Oz (zv) = O (z,0)V ox (z,v) .

Using the fact that if £ = L(z,v), we obtain

on, _oE:
o¢ (,8) — o¢

(5) = LFI* (5) = LF*1 (Fz(v)) =,

x

thus we can simplify (4.10) to

OH OF
==L, 411
5 | @6 5 @) (4.11)

In particular if v satisfies the Euler-Lagrange Equation, then by

. d .
Ye (tO) - @LFW(,:) (Vz(t)”t:to
d OF

S L= CRURAT)
(46) gi;(%(w,%a»\t:tg

411y OH N ‘
= *%kz,g) (72 (t), Ve (t))

~v* satisfies the second Hamilton equation. Conversely, if v* satisfies the second Hamil-
ton equation, then by the same reasoning

OF (411 OH , ., . 48) ., d OF .

= Uz v = a3 U = to) = ——— Lt7Lt =

5 (o ) on (oY) = Fe(to) = 2 - (1(8), o (1)) i=to
~ satisfies the Euler Lagrange equation. O
A Flows

A.1 Definition.

(i) A flow domain is an open subset D C R x M such that for each p € M the set
D®) .= {t € R | (t,p) € D} is an open interval containing 0.

(ii) A flow is a smooth map 6 : D — M, where D is a flow domain, such that for
any p € M 6(0,p) = p, and for any s € D® and any t € DYP) such that
s+t € DP) we have 0(t,0(s,p)) = 0(s +t,p). In this case, we set

6:(p) = 0(t, p) = 6P ().
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(iii) For any flow 6 : D — M the field X € T (M) defined by
VpeM:X,= 20" (1)
is the infinitesimal generator of X.

(iv) A flow 6 : D — M is mazximal, if it admits no extension to a larger flow domain.

A.2 Theorem (fundamental theorem on flows). Let X € T (M) be any smooth
vector field. There exists a unique maximal flow § : D — M whose infinitesimal
generator is X. This flow has the following properties:

(i) For any p € Mm the curve §%) : D®) — M is the unique maximal integral
curve of X starting at p € M.

(ii) If s € DP), then D) = D) — 5.

(i) For each t € R, the set My := {p € M | (t,p) € D} is open in M and
0 : My — M, is a diffeomorphism satisfying 0;1 =0_4.

(IV) For any (tvp) S D7 (at)*Xp = Xﬂt(p)-
We say 0 is the flow of X.

A.3 Definition (complete vector field). A vector field X € T(M) is complete, if its
maximal flow § : D — M satisfies D =R x M.

A.4 Definition (Lie derivative). Let X € T(M) and 6 be the flow of X. For any
tensor field 7 € T#(M) define

* ; 07 (7o, (»))—Tp
Vpe M: (LXT)‘p = %(9t7)|t:0 = lim %.

t—0

Then Lx7 € T*(M) is the Lie derivative of T.

A.5 Definition (interior multiplication). For any 7 € Q¥(M) and X € T (M), let
txw € QF1(M) be defined by

VYl, - 7Ykal € T(M) . wa(Yl, ey Yk) = w(X7 Yl, A 7Yk71)_
The map tx : QM) — Q(M) is called interior multiplication with X.

A.6 Theorem (properties of interior multiplication). Let M be a smooth manifold,
X € T(M) and a € T*(M).

(i) For any X € T(M) and any Cartan’s formula holds:

’EonzLXda—l—dLon.‘ (A1)

(ii) Interior multiplication is an anti-derivation, i.e. for any g € Q'(M)

ix(aAB) =1x(a) AB+ (=1)anux(B). (A.2)

(iii) Interior multiplication satisfies

ux,yjo = Lxtya — iy Lya (A.3)
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