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1 Distance Functions and the Riccati Equation

Let M be a Riemannian n-manifold.

1.1 Definition (distance function). Let U C M be open. A smooth function f: U — R satisfying
| grad f|| =1

is a local distance function.
The non-empty level sets M, := f~!(r) are hypersurfaces, i.e. (n — 1)-dimensional submanifolds of M.

1.2 Example. Let p € M and ¢ > 0, such that exp, : B.(0,) — B:(p) is a diffeomorphism. Let
U:=B.(p)and f: U\ {p} = R, f(q) :=d(p,q). Then f is a local distance function: By construction
U is open and f is smooth. In order to show, that the condition on the gradient holds, choose normal
coordinates near p and consider the radial distance function r near p (c.f. [2, (5.9)]) and the radial unit
vector field 0,. By definition f(q) = d(p, q) = r(q), which together with the Gauss Lemma implies

69 .
grad |, = grad rl, V= 0,1, P 2 ¢ (£(9)),

where ¢, is the unique minimizing unit speed geodesic from p to g.

From now on let f: U — R be a local distance function.

1.3 Lemma. Let ¢: [a,b] — U C M be a piecewise smooth curve, define
p:=c(a) q := c(b) f(p) =70 flg) =m

and suppose rg < r1. Then
L(c) > r1 — 7o,

where equalitiy holds if and only if ¢ is (up to reparametrization) the solution curve ¢, of
¢, =grad foc, cp(0) = p.
In particular ¢, is a geodesic and shortest path in U from M,, = f~1(rg) to M,, = f~1(r1).

Proof. We calculate

/ le(e) e "o = / le(t) | grad floge lldt > / (E(t), grad flug)ldt (L1)

/Q<<>,gradf|c \d \ /dfl (Ee))dt

>

b
= [ (¢ o0y (0t = F(clt) - Flela) = (@) = 5) =1~ 0

Analogously for ¢,

b
L(cy) / 6, ()t = / | grad f(c(t))]|dt = / (f o &)/ (t)dt = 11 — o,

In particular ¢, is a shortest path in U by construction, thus a geodesic in U, thus a geodesic in M.
Conversely, if ¢ is not ¢, (up to reparametrization), there exists to € I, such that ¢(to) # grad f|q«)
This implies strict inequality in the Cauchy-Schwarz-Inequality in (1.1). O

We are interested in the second derivatives of f.



1.4 Definition (Hessian). Let f € C°°(M). For any two smooth vector fields X,Y define
Hess f(X,Y) := V2f(X,Y) = Y(X(f)) — (VyX)(f) = Y ({grad f, X)) — (V¥ X)(f)
= Vy((grad f, X)) — (grad f, Vy X) = (Vy grad f, X)
(c.f. [2, Exc. 4.5]). This defines a symmetric tensor field ! | i.e.
Hess f(X,Y) = (Vxgrad f,Y)
as well.

1.5 Lemma. Let f: U — R be a distance function, X,Y € T(U), r € R and p € M, := f~}(r)NU.
(i) Then Lin(grad f|,) = (TpM,)* = N,M, and for any X,Y € T,M,:

Hess f(X,Y) = (VxY, —grad f) = (II(X,Y),—grad f) = h(X,Y),

i.e. Hess f is the scalar second fundamental form h of M, with respect to the unit normal field

—grad f.
(i) f X € T,M,Y € N,M,, then Hess f(X,Y) = 0.
(iii) Moreover the restriction of U € T (U)

U(X):=Vxgrad f

onto T, M, — T, M, is the shape operator (" Weingartenabbildung”) of M, with respect to — grad f
(c.f. [2, p.140]).

Proof. We consider M, as a submanifold of M.
STEP 1 (Characterization of the tangential space): For any arbitrary curve v : I — M, through p we
have r = f oy, consequently

0 = df|5()(7(0)) = (grad flp,¥(0)) = grad f|, L 7(0),

thus Lin(grad f|,) C (T,M,)*. Equality holds for dimensional reasons.

STEP 2 (Analysis in normal directions): Since f is a distance function, we have || grad f|| = 1. This
implies
0= Vi (grad f, grad f) = 2(V.x grad f, grad ),
thus Vx grad f L grad f. By step 1 we obtain Vx grad f € 7 (M,).
For Y := grad f, we get

Y(f) =df(Y) = (grad f,grad f) = 1 = X(Y(f)) =0
and
(VxY)(f) =df(VxY) = (grad f, Vx grad f) = 0.

Consequently
Hess f(X,Y) = X(Y (/) - VxY(f) = 0.

! Since g is symmetric and V is torsion free:

Hess f(Y, X) — Hess f(X,Y) = X(Yf) = VxY (f) = Y(Xf) = Vy X(f) = [X, Y](f) = VXY () = V¥y X(f) = 0.



STEP 3 (Analysis in tangential directions): If Y € 7 (M,.), we obtain

Hess f(X,Y) = (Vx grad f,Y) = Vx((Y, grad f)) — (VY grad f)
=0
= (VxY,—grad f) = (II(X,Y), —grad f).

This implies the statements concerning the shape operator by definition (c.f. [2, (8.3)]). O

At this point we assume the reader to be familiar with covariant differentiation of vector and tensor
fields on manifolds and along curves (otherwise see for example LRM). Since there is a canonical
isomorphism End(V) — T}(V) between the endomorphisms of a vector space and its tensors of type
(1,1), we also obtain a diffeomorphism End(M) — 7;}(M) between the endomorphism fields and the
tensor fields of type (1,1) on M (c.f. [2, 2.1]). Using this identification we can also introduce covariant
differentiation of endomorphism fields in a very general setting. We have to use the fact, that a linear
connection on a manifold induces connections on all tensor bundles in a canonical manner (see [2, 4.6]).
If you are unfamiliar with the concept of covariant differentiation of endomorphism fields, you may
also want to consult the appendix first.

1.6 Definition (Riccati equation and solution). Let ¢ : I — M be a unit speed geodesic and U €
End(ct) be a symmetric field of endomorphisms along ¢. If R := R, := R(_,¢)(¢) € End(ct), v = ¢(0),
is the curvature endomorphism along ¢, we call

U+U*+R=0
the Riccati equation. We say U € End(cl) is a solution of the Riccati equation, if

VX € T(ch) : U'(X) + U*(X) + R(X) = 0.

1.7 Definition (Jacobi equation and solution). Let ¢ : I — M be a unit speed geodesic. We call

J'"+RoJ=0
the Jacobi equation. We say J € End(ct) is a solution of the Jacobi equation, if

VX € T(ch) : J"(X) + R(J(X)) = 0.

1.8 Theorem (Riccati equation). Let f : U — R be a local distance function, » € R, such that
M, = f1(r)NU # 0 and let U € End(U) be the shape operator of M, as in Lemma 1.5. Let
¢ : I — M, be a unit speed solution curve of ¢ = grad foc, foc =id ? and restrict U to U € End(ct).
Then U is a solution of the Riccati equation, i.e.

U'+U>+R=0.
We remark that U, U’ and R are symmetric operators on 7 (c*).

Proof. Since this is a local question it suffices to check this near an rg € I. let o :] — e,e[— M,, be
any smooth curve satisfying o(0) = ¢(rg). Let ¢s be the solution curve of

¢s = grad f o ¢4 cs(ro) = o(s)

2This is always possible since
(f o) (t) = df|cw)(c(t) = (grad fo), grad for)) = 1.



Then H :] —e,e[x]|rg — 3,10+ 6|, (s,7) — H(s,r) := cs(r), is a smooth variation. According to 1.3 the
variation is a variation through geodesics and consequently the variation field J is a Jacobi field (c.f.
[2, 10.2]). By definition of U

D, J(r) = Doy H(0,7) ¥ D0, H(0,7) = Dy grad a7 lsm0

= Vom0, 8rad flaor) = Uer) (0sH(0,7)) = Ur(J(r)).
Inserting this in the product rule, we obtain (using the Jacobi equation)
U (J(r)) = Dp(UJ)(r) = Up(DyJ (r)) = (D7 J)(r) = UZ(J(r)) = =R(J(r), é(r))é(r) = U (J (1))

By choosing o accordingly we can create (n — 1) normal Jacobi fields in that way which are all linearly
independent on a small neighbourhood near rg. Therefore U is a solution of the Riccati equation.

By |2, p.140] the shape operator U is symmetric.

By the symmetries of the curvature tensor (c.f. [2, 7.4]), we obtain

(R(X,6)(),Y) = Rm(X,6,6,Y) = Rm(&,Y, X,é) = Rm(Y, ¢,é, X) = (R(Y,é)(¢), X) = (X, R(Y.¢)(6))
and therefore R is symmetric. Thus U’ = —U? — R is symmetric as well. O

In order to solve the Riccati equation, we do not necessarily need a local distance function and the
corresponding level sets.

1.9 Theorem (Riccati and Jacobi equation). Let ¢ : I — M be a unit speed geodesic, F1 = ¢, and
let Es,. .., E, be a parallel ONB along c. Let to € I and let X, ..., X, be any basis of (¢(ty))*. For
any 2 < i < n let J; be the Jacobi field (existence is guaranteed by [2, 10.4]) along ¢ satisfying

Ji(to) =X; DtJi(to) = Uo(Xi),

where Up is a given symmetric endomorphism on é(tp)*. Define a tensor J; : (¢(t))* — (&(t))* along

c by . .
Jt ( Z OéiEZ') = Z OéiJi.
=2 =2

The endomorphism J = J; solves the Jacobi equation J” + RJ = 0, is invertible for any ¢ near to and
Up:=J/oJ ?

is a symmetric solution of the Riccati equation.
Conversely, if U; is a symmetric solution of the Riccati equation, a field J satisfying J| = UpJ; is a
solution of the Jacobi equation J/' + RyJ; = 0.

Proof. By construction J;(tg) = X; and the X; are a basis of (¢(¢))*. So Jy, is invertible, which
implies that it is invertible in a small neighbourhood of ty by smoothness. There the Jacobi equation
(c.f. [2, (10.2)]) implies, that for any 2 <i<mn
J/'(E;) + (R o Jy)(E;) = Dy(J{(E;)) — Ju(DE;) + Ry(J;)
= D{(Ji) + Ri(Ji) = 0
or just
J!' + RyJy = 0.

on ¢+, For t near tq define
Up:=J o J ' T(e)r — T(e)t.



Using A.3, we obtain for any Y € 7 (c')

( ) =Dy(U(Y)) —U(D(Y))
= D}J(J7HY)) 4+ DeJ(Dy(JHY))) + Dy J (J7HDY)) — Dy (J7H(Dy(Y))))
= —R(J((J ( ) + DeJ(Dy(J~H(J(JH(Y))))

—R(Y) + DpJ(=J (D) (JH(Y)))

—R(Y) - U( ) =0.

Conversely let U be a symmetric solution of the Riccati equation, i.e.
DU +U*+R=0

and additionally let
J =Uol.

Now it suffices to check the Jacobi equation for J on a parallel ONB. Therefore if E is parallel

JU(E)+ R(J(E)) = (J(E))" + R(J(E)) = (J'(E)) + R(J(E)) = (U(J(E)))" + R(J(E))
=U'(J(B)) + U(J'(B)) + R(J(E)) = ~U*(J(E)) = R(J(E)) + U*(J(E)) + R(J(E)) = 0.



2 Comparison Theory for the Riccati Equation

In the last section we discussed the Riccati equation as an equation of field of endomorphisms on 7 (¢)
along c. Now we discuss the corresponding one dimensional ODE of the same type.

2.1 Definition. Let kK € R and let v : I C R be differentiable. Then «

() is a solution of the Riccati inequality, if
o’ < —u? — k.

(i) is a solution of the Riccati equation, if

(iii) is a solution of the Jacobi equation, if
v 4+ ku = 0.
Notice that we already encountered the Jacobi equation as an equation of fields of endomorphisms

in the last chapter. The study of this equation as an equation of vector fields is a classic topic in
differential geometry (c.f. [2, 10]).

2.2 Lemma. Let ¢ : I — M be a unit speed geodesic, U be a symmetric solution of the Riccati
equation along ¢, F be a parallel vector field along ¢ such that F L ¢ and ||E|| = 1. Define u: I — R,
u:=(U(FE),E), and let K(E(t) A¢(t)) denote the sectional curvature of the plane determined by F(t)
and ¢(t). Assume K (E(t) A é(t)) > k for some k € R. Then u is a solution of the Riccati inequality

< —u?— k.
Proof. By definition

u' = ((U(B)), B) + (U(E), E') = (U{(E) + Uy(E"), E) = (-U*(E) — Ry(E), B)
= —(U(E),U(E)) = (R(E, )¢, E) = —(U(E),U(E)) = K(E A (1))

By the theorem of Cauchy/Schwarz
u’ = (U(E), B)* < |[UEB)|?|EI* = (U(E), U(E)).
This implies the statement. O

2.3 Lemma. Let ¢ : I — M be a unit speed geodesic, U be a symmetric solution of the Riccati
equation and J be a field of isomorphisms satisfying J' = J o U (in particular one may choose U and
J as in Theorem 1.9). Define u: I — R by

w=- ! (In(det(7)))"

Then u = 1= tr(U) and

n—1

1
u < —u? — 1 Ric(é, ¢).

Consequently, if there exists a constant x € R, such that Ric(¢,¢) > (n — 1)k, then u is a solution of
the Riccati inequality.



Proof. Let E,..., E, be a parallel ON frame along ¢, tg € I and let j]i be the matrix of J w.r.t. this
frame. Then det .J := det(j;) does not depend on this choice of frame. The rules of differentiation for
the determinant imply (since J is invertible):

(n—1)u det/|;(J) = det(J) tr(J~LJ') = tr(U).

1
~ det(J) det(J)

Furthermoore since U solves the Riccati equation

1 1

1
/! ! _ AN 2\
u = n_ltr(U) = n_ltr(U)— n_ltr(U ) n_ltr(Rt)
- tr — i =—u*— ——Ri —u’ — K.
12 —— Ric(é,¢ u' ———7 Rie(¢,é) < —u —x
(1): By definition tr(R) = Ric(¢,¢) (c.f. 1.6). The estimate for the trace is done in the next Lemma
2.4. O
2.4 Lemma. Let U € R™*"™ be symmetric. Then
tr(U)? < tr(U?)n,
where equalitiy holds if and only if there exists A € R such that U = AE.
Proof. Define the scalar product
(A,B) =tr(AB") =Y (AB");= > A.B
i=1 ij=1
on R™*". Using the Cauchy/Schwarz inequality, we calculate
tr(U)? = tr(UEY)? = (U, E)? < |U|?||E||? = (U,UNE, E) = tr(UU") tr(EE?) = tr(U?)n.
O

2.5 Lemma (Jacobi and Riccati equation). Let k € R. If j : I C R — R solves the Jacobi equation
J' 4 k=0

and Vt € I : j(t) # 0, then u := j'/j solves the Riccati equation
/ 2

U = —u — k.

Conversely if u solves the Riccati equation, then any solution j of

-/

J =uyj
solves the Jacobi equation
7"+ ki =0.
Proof. We calculate
ANl e Sy i Y T T
u=\\=] = 5 = 5 =—kG —u'=-u"—kK
J J J J

and conversely

§" kg = (uf) +wj = lf g+ Rj = —u’ = Rj a4 Rj = 0.



2.6 Definition. We denote by sn, the unique solution of the Jacobi equation satisfying
sng(0) =0 s/ (0) =1
und by cs, the unique solution of the Jacobi equation satisfying

cse(0) =1 csl.(0) = 0.

For our comparison theory we require specific solutions of the Jacobi equation, which will be useful
throughout the script. We collect some easy facts about them.

2.7 Lemma (Properties of sn, and cs,;). For any k € R, the following hold.

(i) The solutions are explicitely given by sny,cs, : R — R

ﬁ sin(y/kt) k>0 cos(vy/kt) k>0
sng(t) =Xt k=0 cse(t) =41 k=0
\/%7 sinh(v/—kt) k<0 cosh(v/—kt) k<0
(ii) Defining
RI{:: ﬁ 7/<t'/>0 LK:: m 7H>0,
o Lk<0 o Lk<0
we obtain
Vt €]0, Ry[: sn.(t) > 0, Vit €]0, L[: csi(t) > 0.

(iii) We obtain the symmetries
Vt € R :sn(—t) = —sn,(t), Vit € R :cs(—t) = csk(t).
(iv) These functions satisfy
sn), = csy, cs), = —KSh .

(v) In particular
CSk
cty == —
sn
solves the Riccati equation on ]0, R,[ and satisfies

lim ct, () = 4o0.
t\0

Proof.
(i) Just verify, that these functions solve the desired initial value problem.
(ii) This is a direct consequence of (i) and the zeros of all the functions occuring there.

(iii) Follows from 1 and the symmetries of all the functions occuring there.

10



(iv) This is a consequence of the uniqueness of initial value problems: The function sn/, satisfies

(sn),)"” + ksnl, = (snf))’ + ksn), = —ksnl, +xsn), =0,
sn! (0) = 1 = cs,(0), sn’(0) = —rsn(0) = 0 = cs,(0)
Thus sn/, is a solution of the Jacobi equation with the same initial values as cs,. Analogously,
we verify:
(csh)" + kesl, = (esh) + kesl, = —kes), +rcs, =0,
csi(0) = 0 = —k snk(0), csi(0) = —kcsx(0) = —k = —rsn’,(0).

(v) Follows from (ii), (iv) and Lemma 2.5.
Ul

2.8 Lemma. Let k € R and let w, v : [a,b] — R be solutions of the Riccati inequality rsp. the Riccati
equality, i.e.

u’S—uz—n, v = —0? — k.
(i) The function v — u is monotonously increasing. In particular, if v(a) > u(a), then
Vt € [a,b] s v(t) > u(t).
(ii) If v(a) > u(a) and additionally 3t € [a, b]: v(tg) = u(to), we obtain
V(a,to] = Ulja,to)-
Proof. Let F' be any anti-derivative of u + v. We calculate
(0 = weFY = (o —w)eF + (v —w)(eF) = (&' — ' + (v — w)(v +w)eF

=W —u +0v? —u)ef > (—v® =+ v+ r+ 02 —u?)el =0.

2.9 Lemma. Let u :]0,b[— R solve the Riccati inequality v’ < —u? — k and assume

lim u(t) = +oc.
N0

This implies
Yt €]0,b[: u(t) < cty(t)

and if there exists ¢y €]0, b[, such that u(tg) = ctx(to), then
uho,to} = Ctn hovtO].

Proof. Assume to the contrary that there exists tg, such that u(tg) > ct(tg). Then u(ty) > cty(to—¢e)
for a sufficiently small € > 0, thus u(t) > ct,(t —€) on |e, tp] by Lemma 2.8. This contradicts

u(e) = l{r; u(t) < oo,

thus we obtain the first statement.
In case u(tg) = cty(to), we obtain u(t) = ct.(t) for all ¢ €]0,¢y] by Lemma 2.8. O

11



3 Cut Locus and Conjugate Locus

In this chapter M is a complete Riemannian manifold.

3.1 Definition. For reasons of convenience we will employ the notation
Vpe M :SyM :={veT,M||v| =1}

and
SM = | ] s,M.
peEM

3.2 Definition. Let ¢: R — M be a unit speed geodesic, v = ¢(0) and p = ¢(0). We define
to :=to(c) :=to(v) :=sup{t > 0|t =d(c(t),p)} €]0, ]
t1 :=t1(c) :=t1(v) := inf{t > 0| ¢(¢) is conjugate to p} €]0, o0],

where we employ the convention inf () = co. If t; < oo, there exists a Jacobi field J # 0 along ¢ such
that J(0) = J(t1) = 0.

3.3 Lemma. With the notation above, we always obtain
t] > to.

More explicitely: If there exists a Jacobi field J # 0 along ¢ such that J(0) = J(¢t) = 0 for some ¢ > 0,
then t > to (see also [2, 10.15]).

Proof. Let s > t. For such a J we define

Then X is a piecewise smooth vector field along cl(o 4 satisfying X(0) = X(s) = 0. Since J # 0 and
J(t) =0, we get J'(t) # 0 (since otherwise J = 0). Choose a smooth vector field Y along ¢ satisfying
Y(0) =Y (s) =0 and Y(t) = —J'(t) and define X, := X +¢cY. Then X, is a piecewise smooth vector
field along c|[0, s], which satisfies X.(0) = X.(s) = 0 and which is broken at ¢ 3. We want to calculate
the index form I(X., X.) along ¢|[0, s] and consider

I(X,Y) = - /S (X"(u) + R(X (u), () (é(w), V)du— Y~ (A X Y(t)
0 break points t;
- [ )+ ROC) 80 @), V) du— [ (X (0) + RO, 0) 6w, V)
0 =0 ,since X satisfies the Jacobi equation here ! =0 ,since here X=0
— (X't /) = X' 1),Y (1)
= —(J'(1), J'()) = (1T (®)]*.

Analogously
I(X,X)=—(X"(t/) - X'(/t),X(t)) = (J'(t), X(1)) = 0.

3Notice, that the derivative satisfies

X/ ) =X'(/ 1) +eY'(t) = J' () +eY'(t) #eY'(t) = XL(t ).

12



Consequently the index form satisfies
I(X., X)) =1(X,X)+2I(X,Y) +21(Y,Y) = =2¢||J' ()| + 2 1(Y,Y) < 0

for small e > 0. This implies, that the unit speed geodesic ¢|[0, s] is not minimizing (c.f. [2, 10.13])),
which implies s > . O

3.4 Definition (Cut locus and conjugate locus). Let ¢ : R — M, ¢(0) = p be a unit speed geodesic
and let tg(c) < oo. Then ¢(tg(c)) is the cut point of p along c¢. The set C'(p) of all cut points of p is
the cut locus of p. We call

Cr(p) == {to(v)v | v € SyM, to(v) < oo} C T,M

the tangential cut locus near p. By definition exp,(Cr(p)) = C(p).
If t1(c) < oo, we call ¢(t1(c)) the first conjugate point of p along c. The set of all first conjugate points
along c is called the first conjugate locus of p.

3.5 Remark. If M is compact, then tp < diam M (e.g. on S™). But ¢;(c) = oo is possible, even for
all unit speed geodesics ¢ in M (e.g. on flat Tori).

3.6 Lemma. Let ¢ : R — M be a unit speed geodesic, let ty := to(c) < oo, t1 = ti(c), ¢(0) =: p,
and let ¢ := ¢(tg) be a cut point of p along ¢. Then there are two possibilities, which are not mutually

exclusive :

(i) ¢ is conjugate to p along ¢, thus t; = to.
(ii) There is a second unit speed geodesic ¢ : R — M satisfying ¢(0) = p and é(tg) = q.

Proof. Assume, that ¢ is not conjugate to p along c. Let v € Sy M such that ty = to(c) = to(v). Then
q = exp,(tov) and there exists a neighbourhood U C T,,M of tyv and a neighbourhood V' C M of g,
such that exp, : U — V' is a smooth diffeomorphism ([2, 10.11]).

Certainly there exists a sequence (¢,) in R such that ¢, \ ¢ty and c(¢,) € V. Thus we have

exp, (tnv) = ct,o(1) = cy(tn) = c(tn).

Since t,, > to, the definition of ¢y implies d(c(ty),p) < t,. Consequently the curve ¢ is not minimizing
the distance between p and c¢(t,). By the theorem of Hopf-Rinow there exists a minimizing geodesic
between p and ¢(t,,), which implies

Jwy, € TpyM : expy(wn) = exp,(tav) = c(ty).

This implies ||wy| = d(c(tn),p) < tp. In particular (wy,) is bounded. We claim that w, ¢ U, w, € U
would imply
exp(wy,) = exp(tnv) = wy, = tyv,

by the invertibility of exp, : U — V. But wy, # {,v by construction, so wy, ¢ U. Since in addition
t,v — tou, this shows, that tyv cannot be an accumulation point of the sequence (wy,).

But since (wy,) is bounded, there exists at least one accumulation point w ¢ U (we may assume that
(wy,) converges). This point satisfies

|lw] = lim ||w,|| < lim t, =ty
n—oo n—oo
and
exp,(w) = lim exp(wy,) = lim c(t,) = c(to) = ¢.
n—oo n—oo

Write w = t'v, where ||v]| = 1 and ¢’ := ||w||. We claim that ¢ := ¢ is our desired geodesic: Clearly
¢(0) = p, &(t') = q and © # v. We already obvserved t' < ty3. On the other hand tg = d(p,q) <
L(¢lo,4) = t', which alltogether implies ¢’ = to. O

4For example consider antipodal points p, ¢ € S™.

13



3.7 Remark. If 0 < t < tg none of the possibilites enlisted in Lemma 3.6 above can hold. The first
is a direct contradiction to Lemma 3.3. For the second, suppose there exists such a second unit speed
geodesic ¢. Then for any ¢ < s < tg the curve ¢ defined by

L je(r) 0T <t
C(T).—{ S

is a curve from p to c(s) satisfying
L(¢) = L(¢|[0,t]) + L(cl|[t,s]) =t + s —t = s = L(c[0, s]) = d(p, c(s))

by definition of tg. Thus the curve ¢ is a minimizing curve from p to ¢(s). Since ¢ # ¢, but ¢(t) = ¢(t),
this implies &(t) # ¢(¢) and ¢ is broken in ¢. This is a contradiction, since a broken geodesic can never
be minimizing (c.f. [2, 6.6]).

3.8 Corollary. Let p,q € M be arbitrary. Then
q € C(p) <= pe (g

Proof. Let ¢: R — M be a unit speed geodesic and ¢(0) = p. Let ty := to(c) and let ¢ := c(tp) be the
cut point of p along ¢. We claim, that p is the cut point of ¢ along ¢ : R — M, s — c(typ — s). Since
distance is symmetric, certainly

to = to(c) = d(p, c(to)) = d(c(to), p) = d(g, &(to))-

So by definition #o := t(¢) > to(c) = to. For the other estimate consider the two possibilites of Lemma
3.6

CasE 1: If p is cojugate to g along c, then to(c) = t1(c) and there exists a Jacobi field J # 0 along c,
such that J(0) = J(tp) = 0. Consequently J(s) := J(tg — s) is a Jacobi field # 0 along ¢ satisfying

J(0) = J(to) = 0 = J(0) = J(to).

Thus ¢ is conjugate to p along ¢ and g < #1(&) = t1(c) = to(c).

CASE 2: Assume p is not conjugate to ¢ along ¢ and assume to > to. Then by Lemma 3.6 there exists
a second geodesic ¢ : R — M satisfying ¢(0) = p and ¢(t9) = ¢q. Consequently s — ¢(to — s) is a second
geodesic from ¢ to p. But since £y > tg, this geodesic must not exist by Remark 3.7 applied to ¢!

O

3.9 Lemma. The map tg: SM —]0, 0] is continuous.
Proof. Consider a sequence v; € SM, v; — v, and define

t* := limsup to(v;) ty := liminf ¢o(v;).

1—00 =00

Obviously we have to show that t* = tg(v) = ¢..
STEP 1: For any ¢ < t* there exists a subsequence (v;,) such that ¢y(v;,) > t. Denoting by ¢ the
geodesic satisfying ¢;(0) = v;,, we obtain

d(cy(t), ck(0)) = t.

Since v, — v as k — oo and since exp, and d are continuous, this implies d(c(t),c(0)) =t , where ¢
is the geodesic satisfying ¢(0) = v. Consequently Vt < t* : to(v) > ¢ and thus to(v) > t*.
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In the next step we will show, that ty(v) < ¢.. Since t, < t* anyway, this implies alltogether
t* < to(v) < t, < t*

and thus the claim.
STEP 2: Now let (v;,) be a subsequence such that

ty = liminf¢p(v;) = lim to(v;,).

1—00 k—o0

Suppose t, < 0o (otherwise there is nothing to show) and let c(t.) not be conjugate to ¢(0). > The
inverse function theorem on manifolds ([3, 7.10]) implies the existence of an open neighbourhood U of
t.v in T'M, such that exp [ynr,ar is invertible for all ¢ € 7(U), i.e. near p := ¢(0), where 7 : TM — M
is the canonical projection.
Since to(vi, ) — t« by construction, we obtain for all large &, that ¢y(v;, )v;, € U. Since exp is invertible
on U, py := m(v;,) is not conjugate to g := cx(to(vi,)) = exp(to(vi,)vi, ), where ¢y is the unit speed
geodesic between pi and ¢qr. Applying Lemma 3.6 to every k, the second item is in power and thus
there exist vectors v;, # v;, in the same tangent space as v;,, such that

exp(to(vi, )vi,) = exp(to(vi,)viy)-

By construction of U we obtain to(v;, )v;, € U, but to(v;, )v;, ¢ U for all large k (again since exp is
bijective on U). Since the geodesics from 3.6 also have unit speed, we obtain ||7;,|| = 1. In particular
the sequence v;, is bounded and thus has an accumulation point ¥. This point satisfies ¥ # v, but
¢(0) = ¢(0) and ¢(t«) = c(t«). Alltogether we have constructed a second unit speed geodesic between
¢(0) and ¢(t,). This implies to(v) < t4, since t, < to(v) contradicts Remark 3.7.

O

3.10 Lemma. Let
Dr(p) :={tv |veS;M,0 <t <ty(v)}.

Then Dr(p) is star-shaped with respect to 0,, open in T,M, 0D7(p) = Cr(p) and
Vw € Dr(p) : expy(w) ¢ C(p).

Proof. The definitions and Lemma 3.9 imply the first statements.
Suppose there exists w € Dr(p) such that exp,(w) € C(p). Then there is a w € Cr(p) satisfying

exp, (W) = exp,(w).

Define

By definition of ¢y the geodesics ¢ und ¢ determined by v resp. ¥ are minimizing till ||w|| < to(v) resp.
|lw|| = to(v). By hypothesis ¢(||w]||) = ¢(||w]|) and consequently

[w]l = d(p, c([[w]])) = d(p, c(l[@])) = [[@]-

Thus to(v) = ||w|| = ||w]| < to(v) and in particular v # v. Alltogether we have found two geodesics
from p to c¢(w), which by Remark 3.7 implies ||w]|| > to(v). Contradiction! O

SOtherwise tg < t1 < t. by Lemma 3.3 anyway.
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3.11 Theorem. For any p € M the set M \ C(p) is open and exp, : Dr(p) — M \ C(p) is a
diffeomorphism. The function f : M — R, ¢ — %d(p, q)?, is smooth on M \ C(p) and for any
q € M\ C(p) the following holds.

(i) Denoting by ¢, the geodesic satisfying ¢,(0) = exp, ]BIT(p)(q), we obtain grad f(q) = ¢4(1).

(ii) Denoting by J the Jacobi field along ¢, satisfying J(0) = 0, J(1) = X, X € T,M, we obtain
Vxgrad f = J'(1).

Proof.

STEP 1 (exp, is a diffeomorphism): Since M is complete by hypothesis, for any ¢ € M there exists a
minimizing geodesic form p to ¢. So exp, : Dr(p) — M \ C(p) is surjective. Remark 3.7 implies the
injectivity. Since conjugate points do not occur before {9 by Lemma 3.3, exp, has maximal rank on
Dr(p) (cf. [2,10.11]) and thus is a diffeomorphism.

STEP 2: We will now prove statement (i). Let ¢ € M \ C(p) and X € T,M. Choose ¢ > 0 and a
smooth curve o :| —¢,e[— M\ C(p), such that 0(0) = ¢, 6(0) = X. Define w :] —¢,e[— Dr(p) C T,M,
w(s) := (exp, | pp(p)) ' (0(s)), and H :] —e,e[x[0,1] — M by

H{(s,t) := exp,(tw(s)).

So t +— H(s,t) is the radial geodesic from p to o(s) which implies

1 2 1
f@@DZ;ﬂnd$V=;<AH&H@ﬂMQ =;A<@H@¢L&H@0Mt

In the last step we are just for once allowed to interchange the square with the integral, because
t — H(s,t) has constant speed. Furthermore

(grad f(q), X) = dfy(X) = Xo(f) = 6(0)(f) = 0s(f 0 0)(0)
1 1 1
rx /0 (O,H (5, ), OuH (5,1))dt|s—o — /O (DuOH (5, 1), uH (5, 1)) dt] oo

(1)

1
_ / (D H, 9, H) (0, £)dt 2 (9,8, 0,H)(0, )| Y
0

(0,0)

— (9,H(0, 1), 5,H (0, 1)) — (,H(0,0), 8,H(0,0) 2 (X, &,(1))

(1): We have
0y(0sH,0,H) = (Dy0sH,0,H) + (0;H, D;0,H)

and D;0,H(0, ) =0 since H(0, ) is a geodesic from p to o(0) = gq.
(2): By construction

H(s,1) = exp,(1-w(s)) = o(s) = 0sH(0,1) = 5(0) = X
H(0,) = exp, (t(0)) = BH(0, 1) = 0y exp(tw(0)) i1 = Oy expy(texpylp) . (a)) it = (1)
H(s,0) = exp,(0w(s)) =p = 0,H(0,0) =0

STEP 3: To prove the second statement, we remark that
Vx grad flg = Vg(0)¢q(1) = D50 H(0,1) = D95 H(0, 1).

But 0;H (0, ) is (according to Step 2, (2)) the Jacobi field J as in (ii).
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3.12 Corollary. M \ C(p) is diffeomorphic to the slice
D" = {z € R | ] < 1},
where n = dim M.

Proof. There is only to show that Dy (p) is diffeomorphic to D™. We leave this as an exercise. O

3.13 Theorem. If M is compact, then C(p) is a strong deformation retraction of M \ {p}, i.e. there
is a continuous map H : (M \ {p}) x [0,1] — M \ {p} satisfying H(q,0) = ¢ for all ¢ € M \ {p},
H(q,s) =qfor all ¢ € C(p) and s € [0,1] and H(g,1) € C(p) for all ¢ € M.

Proof. Exercise. O

3.14 Remark. The function d(p, ) = +/(2f) is smooth on M without p and C(p) and there its
gradient has unit length (c.f. chapter 1).
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4 Injectivity Radius and Curvature Bounds from above

4.1 Definition (Injectivity radius). For any p € M we call
i(p) == min{to(v) | v € S,M} = min{[|w]| | w € Cr(p)} = min{d(p, q) | ¢ € C(p)} €]0, =]
the injectivity radius of M in p. We call
i(M) :=inf{i(p) | p € M} = inf{to(v) | v € SM}

the injectivity radius of M.
By Remark 3.7 and Lemma 3.6 the number i(p) is the maximal radius r > 0, such that

exp, : B;(0,) = By (p)
is a diffeomorphism. Notice that the shape of Dr(p) may be very different from B;,)(0p).

4.2 Lemma. The injectivity radius is a continuous function i : M —]0,00]. In particular for any
compact manifold M
0 <i(M) < diam M.

Proof. By Lemma 3.9 the function ¢y : SM —]0,00] is continuous. Let p € M, U be an open
neighbourhood near p, such that there exists a smooth ON frame Fjy,..., E, over U. This defines a
continuous function f : U x S*~1 —]0, oc] by

(q,6) — fo(zn:EiEﬂq)
=1

and
i(q) = min{f(q,&)|¢ € S" '}

Thus ¢ is a composition of continous functions and hence continuous. This also implies the second
statment. Ul

4.3 Theorem. Let ¢ € C(p) such that d(p,q) = i(M). Then one of the following is true:
(i) g is conjugate to p along a minimizing geodesic.

(ii) There are precisely two unit speed minimizing geodesics ¢, ¢ from p to ¢ and
é(to) = —c(to),
where to = d(p, q) = i(p).

Proof. Assume the first statement does not hold. By Lemma 3.6 there exist two unit speed geodesics
from p to q. The second statement follows, provided that we can show ¢(tg) = —¢(tg) for any two such
unit speed minimizing geodesics ¢ and c.
STEP 1: Suppose to the contrary that vy := ¢(tg) # —c(tg) =: —ve. Then there exists a vector
w € T, M such that

<w’ é(t0)>’ <wv E(t0)> <0.
This can be seen as follows: By hypothesis ||v1]] = ||v2]] = 1 and consequently the Cauchy/Schwarz
inequality implies

(v, v2)| < floalflo2] = 1.

Sremind that to is continuous by 3.9
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Since equality holds if and only if vy, vy are linear dependent, which in our case holds if and only if
= twy, strict inequality holds. Define w := —(v1 + v2) # 0. Then

(v1,w) = —(v1,v1) — (v1,v2) = =1 — (v1,v2) <0

and similar (ve, w) < 0.

STEP 2: Now let o :] — e,e[— M be a smooth curve satisfying ¢(0) = ¢, 6(0) = w. Since ¢ is not
conjugate to p along ¢ and ¢, exp,, is locally invertible in ¢o¢(0) and toc(to). Thus there exists 0 < § < e
and smooth curves v, v :] — 6, §[— T, M, such that

Vs €] — 6,0[: exp,(v(s)) = exp,(v(s)) = a(s).

By construction v(0) = to¢(0) and ©(0) = to¢(0). We define geodesic variations H, H :] — §,5[x[0,1] —
M by

H{(s,t) := exp,(tv(s)) H(s,t) := exp,,(tv(s)).
By definition
H(0,t) = exp,(tv(0)) = exp,(tt0¢(0)) = ciye0)(1) = ce(o0) (tto) = c(tto)

and similar H(0,t) = &(ttp).
STEP 3: We claim, that the first variation formula implies

L(H(s, _)) < L(H(0,_)) L(H(s, _) < L(H(0, _))

for any s > 0 sufficiently small. Since H is a variation of the geodesic ¢(ttp) and since the variation is
constant at the left, all terms in the variation formula vanish except

OsL(H (s, _))|s=0 = (0sH(s,1)|s=0, 0y (c(tt0))]t=1)) = (9s(expy(v(s)))]s=0, ¢(to)to)
= t0(6(0), ¢(to)) = to(w, ¢(to)) < 0.

Here the last inequality holds by construction of w. Thus s — L(H(s, _)) is strictly decreasing in a
neighbourhood of 0. Analogously this also holds for H.

Furthermore
1 1 1
) = / 10,H(0, 1)l dt = / 10 (c(tto)) || dt = / le(tto)tolldt = to
0 0 0

)= [ lorespy il = [ Wcu Ml = [ Ioreny @it = (o)

and by the same token L(H (s, )) = ||o(s)||.
Alltogether this implies

and

lo(s)ll = L(H(s, _)) < L(H(0, _)) = to = i(p)

and similar for [|9(s)||. But exp,(v(s)) = exp,(v(s)), so exp,, is not injective on the ball with radius
i(p). Contradiction! O

4.4 Corollary. Let p # q € M such that d(p,q) = diam(M). Then one of the following is true:

(i) q is conjugate to p along a minimizing geodesic;
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(ii) There exists a closed unit speed geodesic ¢ through p and ¢ satisfying ¢(0) = ¢(2tg) = p, c(to) = q.
We have ¢(2t9) = ¢(0) by definition.

These statements motivate to look for bounds for the first conjugate locus along geodesics from below.
We will show, that curvature bounds from above yield those estimates.

4.5 Lemma. Let c¢: [0,b] — M be a unit speed geodesic, let x : [0,0] — R be continuous and for all
t € [0,0] and all tangential 2-planes o € Ty M satisfying ¢(t) € o let

K(o) < k(t).
Let 0 # J € T(ct) be a Jacobi field and let f : [0,b] — R satisfy
ff+rf=0 f(0) =70 F10) = [171'(0) := ) 171 ).

If f > 0 on ]O’a/]a a S b, then fOI“ a,ny t 6]07 a]
. JI J’Jl f
@ ||||J|||| (1) = <<J,J)> (t) > fT(t)-
) For sy 0 << 4109 < Bl

(iii) ||| > f(t), so there are no conjugate points on c|jg -

Proof. First assume, that J has no zeros |0, t[.
STEP 1: Then we may calculate

"o <J,7J> ,_ 1 " VA _<J/7J>2
= (5557) = e (- + o - S50

1 . . .
=TI —Rm(J, &, ¢, NI+ | TIPIIIP = (T 02 | > =K (T Aa|T| = ]

>0 ,C.S.

Thus we obtain on |0, ]
(IS = NI = WTWf + W = NI = NI = W f + sl TILf = 0.
So || J]'f = ||7||f’ is monotonously increasing on ]0,¢[ and [|.J||'(0)f(0) — ||J(0)||f'(0) = 0. We have

shown

11 f = 11T11f =0
on [0, t].
STEP 2: This implies

JIN N =117
<HfH> _ HfofH [y
[B]

and therefore 7" is monotonously increasing on [0, ].

STEP 3: Since J # 0 by hypothesis one of the two following cases must hold.

CASE 1: If J(0) # 0, there is a small neighbourhood [0, ], & > 0, on which J has no zeros. Consequently
all steps above hold on [0, ¢] and since

1710) _ 170 _
ONECI

Step 2 implies ||J|| > f on [0,e]. But now this inequality holds on ]0,¢[ for all ¢ such that J has no
zeros on )0, t[. Meaning if ||J||(¢t) = 0, this implies f(¢) < 0 and therefore ¢t > a, which cannot happen
by hypothesis. Alltogether this implies that J has no zeros on |0, a] and all the steps above imply the
statement.

1.
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CaAsE 2: If J(0) = 0, this implies J'(0) # 0, since we are assuming J # 0. By Corollary A.12 we may
write J(t) = tX (¢) where J'(0) = X (0) # 0. Therefore

O e e e OT@) X + X, 1X(0)
17ROy =H WO =88 =51 =8 Jexl
—tiny O OO o)) = 1 0)) (a1)

Thus we may use ’'Hopital’s rule to calculate

o 1) W) 1)
S0 J6) S fl) PO

Now we may argue as in the first case.

O

4.6 Remark. If equality holds in (i) or (iii) for some ¢ > 0 or in (ii) for some pair 0 < s < ¢, then
J = fE on [0,t], where E is parallel along c¢ satisfying E L ¢, ||[E|| =1 and K(E A ¢) = k.

The case xk = const is of particular importance.

4.7 Theorem. Employing the same notation and hypothesis of the preceeding Theorem 4.5, we obtain
for any x = const (c.f. 2.6 and 2.7):
(i) Rauch’s comparison theorem for the curvature bounded from above: If J(0) = 0, J'(0) L ¢(0)
and ||J'(0)|| = 1, then
Vt €]0, Ry [: [|J(t)]| > sng(t).

(ii) Berger’s comparison theorem for the curvature bounded from above: If J(0) L ¢(0), [|J(0)|| =1
and J'(0) = 0, then
vt €]0, Lyl [J@)] = csn(t)-

Proof. This is a direct consequence of Theorem 4.5 and Lemma 2.7 since f = sn, resp. f =cs,. O

4.8 Corollary. Let all the sectional curvatures K of M satisfy K < k = const and let p € M. Then
for any w, X € T,M, 0 < ||w|| < Ry, we obtain

X Lw= [(expy)ew(0)] > 2ol ey

[l

Proof. If X =0, the statement is trivial. If X # 0, we apply Lemma A.8 to Y := ”X—” and obtain

<wmmumzmmmmwww

where J is the Jacobi field through p satisfying J(0) = 0 and J'(0) = Y. So the conclusion follows
from comparison theorem 4.7,(i), since ||J/'(0)|| = 1. O

4.9 Remark. In case K = k the Jacobi fields may be computed explicitly (c.f. [2, 10.8]) and one may
check that in that case equality holds.

This corollary shows, that manifolds with K < x are "larger” in a certain sense, than manifolds with
K = k. We will make this intuition more precise in the following theorem.
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4.10 Theorem (Volume comparison). Let My be a complete Riemannian manifold having constant
sectional curvature x and let M be complete having sectional curvature K < k. Let pg € My, p € M
and ¢ €]0, B[ sufficiently small such that exp, : B:(0y,) — B:(po) C Mo and exp, : B:(0,) — Bc(p)
are both diffeomorphisms. Let I : Tj,, Mo — T,,M be a linear isometry and let

F := exp, ol oexp,, |E;51(p0) : Be(po) — Be(p)-

Let ¢ € B:(po) and X € T,;My. Then
[EX] = || X

In particular if € < i(p), then vol(B:(pp)) < vol(Bg(p)) and equality implies, that F' is an isometry. In
that case K = k on B:(p).

If we compare volumes, we assume, that ¢ is sufficiently small, such that My and M are oriented on these
small balls and that I preserves orientation. These hypothesis simplify working with integration.

Proof.
STEP 1 (Representation by Jacobi fields): By construction F' is a diffeomorphism, so
Jw € B:(0p,) C Tpo Mo : ¢ = expy, (w) and Y € Ty, Mo : X = (expp, )«|w(Y)-
We denote w = [Jw||v mit ||v]] = 1. Then (c.f. A.8)
1
X = (exppq )«|w(Y) = m«fo(!\wll),

where Jy is the Jacobi field along ¢, satisfying Jy(0) = 0 and J}(0) =Y. By the same token

(exy)s 1wy (IY) = H;Hﬂuwu»

where J is the Jacobi field along ¢y, in M satisfying J(0) = 0 and J'(0) = I'Y. Alltogether
- 1
Pua(X) = (€50,)+ 010 (€xDy 51+ (©505)-1a¥) = (x0y): 10 (1Y) = 1o ().

STEP 2 (Estimate on the norm): If w = 0, we have Fy|, = I and the conclusion follows.
STEP 2.1: If w # 0 and Y = Aw € Ling(w) C T, Mo, Gauss’ Lemma (c.f. A.10) implies

[Elg (X = llexpy, 1) (LY = [Alllexpy, [1¢w) (I (w))

A.10
= [Alllexpp,, fuw (W) = llexpy,  |uw(Aw) || = | X[ = [ X]].

A.10
=" A ()] = ][]

STEP 2.2: Next we consider the case Y L w, w,Y #0 (if Y = 0 & X = 0 again the statement is
trivial). Let E be a unit length parallel vector field along ¢, satisfying E(0) = ﬁ Then

Jo = sn, |V E,
since My has constant sectional curvature k. So sny ||Y||E is a Jacobi field (c.f. |2, 10.8]) satisfying
the initial conditions

sn(0)[Y]E(0) = 0 = Jo(0) Dy(sny [[Y[|E)(0) = stk (0) Y] E(0) =Y = D¢ Jo(0)
by construction. Thus

1 1 s ([[wl])

IX1| = llexpyy , lw(Y)Il = mHJo(HwH)H = WH sug ([wDIY I E({lwlDIF = WHYH-

Alltogether we obtain (with J as obove), that

S _ L snallwll) ) —
[Elg (X = Hw”HJ(HwII)H = [l(expy)«l 1) T = Tl IV = (1
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STEP 2.3: In the general case we may orthogonally decompose Y by
Y =Y7 + Y+ € Ling(w) ® wt,
which corresponds to an orthogonal decomposition of X (again by Gauss’ Lemma A.10)
X =X"+ X" =exp, oY) +exp,,_|u(Y).
Alltogether this implies
IE LGOI = 1 Eelg(XT) + Felg(X 2 = [1Felo(X)T + Fulg(X) 1P = | XT12 + | X4 = | X

. . . —1 o —1 o
STEP 3: Provided ¢ < i(p), the maps exp,, ‘BE(OP()) = xo and exp, OI‘BE(Opo) = x are charts on
Uy = Be(po) rsp. U = B:(p). With respect to these charts and the first part

det(F(q)) > det(q),
g g0

where gg and g are the fundamental forms of the metrics with respect to these coordinates.
O

4.11 Theorem. Let pe M, k e R, 0<r < R< R,, U C (M\ (C(p)U{p})) N Br(p) and K < k on
U. Let Sy(p) :=={q € M |d(p,q) =7} and q € S,(p) "U. We denote by ¢, the unit speed minimizing
geodesic from p to ¢ and by h the scalar second fundamental from of S, w.r.t. —¢4(r). Then

VX € T,S,(p) : h(X, X) > ct,o(r)]| X||.

Proof. Let ¢ = exp,(rv) and X = (exp,)«|r,(Y) such that v, Y € T, M, ||v|]| = 1 and assume [|Y|| = 1
(otherwise one has to replace Y by ﬁ in the following). By Gauss’ Lemma A.10 Y L v. Define a
geodesic variation H : R x [0,7] — M of ¢, by

H(s,t) := exp,(t(cos(s)v + sin(s)Y))

Then 9;H(s,r) is the outward pointing unit normal to H(s,r) € S,(p). In particular H(0,r) = ¢,
O¢H(0,t)|t=r = ¢q(r) and 0sH|s=o =: J is a variation field of a variation through geodesics. Conse-
quently J is a Jacobi field along H(0, ) = ¢, satisfying J(0) = 0.

D J(0) = D;0s expp(t(cos(s)v +sin(s)Y))|s=olt=0 = Ds0; expp(t(cos(s)v + sin(s)Y))]i=0]s=0
= Dg(cos(s)v +sin(s)Y)|s=0 = Y.

Thus ||J(0)|| = 0 and ||D;J(0)]| = ||Y|| = 1. We may apply Lemma 4.5,(i) to f = sn,, and obtain using
Lemma 2.7, that
f'(r)

f(r)

(J(r), DiJ (1))
(J(r), J(r))

> = cty(r).
Notice that

J(r) = 0sH(s,7)|s=0 = Os(exp,(r(cos(s)v +sin(s)Y)) = exp, [r(Y) =X
and ¢4(r) = 0.H(0,1)|t=r. Alltogether we obtain

WX, X) = =(=Vxé(r), X) = (DsO:H (s, 1) |i=r|s=0, J (r)) = (D05 H (s,7)|s=0lt=r, J (1))
= (J'(r), J(r)) > ctu(r)l|J(r)]*.
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4.12 Corollary. We assume the same hyothesis as in Theorem 4.11. Then the geodesic spheres S, (p)
are level sets of the distance function f = d, = d(p, _) and we obtain

Hess dp(X, X) = h(X, X) > ctu(r)|| X%,
where 7 := dp(q) and X L ¢4(r). Furthermore
VX € TyM : Hessdy(X,¢4(r)) = 0.

Proof. By Example 1.2 f is a distance function and we obtain grad f|; = ¢4(r). Thus the claim
follows from Theorem 1.5 and 4.11. O

Calculating Hess d), using this case differentiation is a bit inconvenient. We will apply "Karcher’s Trick”,
a modification of d,, in order to obtain a uniform estimate.

4.13 Lemma. For any x € R we define m,, : R - R

,
my(r) == / sny (t)dt.
0
(i) We have the explicit formulae

(r)) k#0

k=10

S~
[CRN
|
Q
wn
BN

3
X
©
I
—

NOI= X =

and
! 1
m, = shy m, = CSy .

(ii) The function m, is monotonously increasing on [0, Ry].
(iii) We obtain the identity
csx +rkm, = 1.
Proof.
(i) If k # 0, we have sn, = —1 cs, by Lemma 2.7 and thus the statement follows from the funda-
mental theorem of calculus. The case k = 0 follows similiarly; here sn,(t) = t. By differentiating
again, we obtain the other equalities.

(ii) This is a direct consequence of Lemma 2.7 since sn, > 0 on [0, R,].

(iii) If k # 0, we obtain according to (i)
CSk +my, = ¢S, +1 — cs, = 1.

In case k = 0 by Lemma 2.7
CSk +KMy = CS,, = 1.

O

4.14 Lemma (Karcher’s Trick). Let K € R, ¢ : I — U C M be a unit speed geodesic in U, p € M
and dp, : M — R, ¢ — d(p,q). Define r,e: I - Rand l: M — R by

r:=dyoc e:=mygor [ :==my odp.

Then
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(i) We always obtain the identity
e’ + Ke = (cs, or){grad dp|c, ¢)? + (sn, or) Hess dp(é, ¢)
(ii) In case we additionally assume the hypothesis of Theorem 4.11, we obtain the estimate

e + ke > 1.

(iii) We obtain the uniform estimate
Vg€ M :¥X € T,M : Hessl(X,X) > (1 — sl)|| X
Proof.
(i) Differentiation yields

1 (1) 1

" = (m! o 7“)7"'2 + (ml or)-r" = (csk 07“)7"'2 + (snyor) - .

" = ((mlyor) 1)

By definition
r'(t) = (dp o c)'(t) = (grad dp|c(r), ¢(t))
and
r"(t) = (grad dp|cr), (1)) = (Dy grad dple(ry, ¢(t)) = (Ve grad dplegr), ¢(t))
= Hess d,,(¢(t), é(t)).

(ii) In that case we may continue by

4.12
r"'(t) = Hess dy(é(1), é(t)) = (ctwor)(®)]e(t) 1%,

where ¢+ is the component of ¢ perpendicular to grad d, and thus tangential to the corresponding
geodesic sphere near p. Denoting by ¢! the component tangential to grad d,, we obtain alltogether

e > (csy or)(grad dp|c,c'>2 + (sng or) - (cty or)”c’LH2 = (csy; or)({grad dp|c,c'>2 + Hc’lH2)
= (espor)(lE7[] + [|¢-[1?) = (esx or)||é]|* = (esy or).
Thus the claim follows by

4.13,(iif)

e +ke>cspor+Kk-myor = 1.
(iii) The inequality is invariant under scaling of X, so we may assume that | X| = 1. Let ¢ :] —¢,e[—
M be a unit speed geodesic satisfying ¢(0) = ¢, ¢(0) = X. By definition (where the r is taken

w.r.t. this ¢):
loc=mgod,oc=myor=c.

So by definition
e(t) = dl| () (¢(t)) = (grad e, (1))

and
e"(0) = (gradl| (), ¢(t))'(0) = (D grad l].;)(0), X) = (Vx grad |y, X) = Hess (X, X).

Thus by (ii)
Hess (X, X) = €"(0) > 1 — ke(0) = 1 — &l(q).
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4.1 Inverse Theorem of Toponogov

4.15 Definition (geodesic triangle). A geodesic triangle A = (c1,c2,c3) consists of three geodesic
segments c¢1 : [a1,b1] — M, co : [ag,be] — M, c3 : [as, bs] — M, such that

ci(a1) = c2(az), c1(b1) = cs(as), ca(b2) = c3(bs).
If A is a geodesic triangle in M and A is a geodesic triangle in M, then A is a comparison triangle, if
Vi=1,2,3: L(CZ) = L(Ez)

Two triangles in M are congruent , if there exists an isometry of M such that one triangle is mapped
to the second.

4.16 Definition (model spaces). Endow R™ with the euclidian metric. For any R > 0 let
k= {z e R""!||lz| = R}

be the sphere of radius R endowed with the restriction of the Euclidean metric of R®*!. Furthermore
denote by
Hp = {(zo,...,7n) e R™M| fx3+x%+...+xi = —R?*}

the hyperbolic space of radius R endowed with the restriction of the Minkowski metric of R™*!.
For any x € R the Riemannian manifold

Sn(ﬁ) = S’% CR™™ k>0
M, =< R" k=0
H"(k) == H", k<0

VeT

is the n-dimensional model space with constant curvature k. (They are unique in a sense elaborated
later, c.f. 11.15.)

4.17 Lemma. Let A = (c1,c9,c3) be a triangle in M having side lengths I; := L(¢;) and let k € R.
Let

l1+1s+ 13 < Ry, li+lj2lk7

where (4, 7, k) runs through all permutations of (1,2,3). Then there exists a comparison trianlge A in
M? for A, which is unique up to congruence.

4.18 Theorem ("inverse Toponogov’s Theorem”). Let p € M, k € R, K < k and R < i(p), Rx. Let
A = (c1, ¢, ¢) be a geodesic triangle in Br(p) consisting of unit speed geodesics ¢1, ¢2 and ¢, such that
c1(0) = 2(0) = p, c1(l1) = ¢(0) =: q1, c2(l2) = ¢(l) =: g and I + 2 + 1 < Ry.

Then

L+l>1, L +1>1,, lo+1>1,

and the comparison triangle A in M? satisfies

(i) d(p, c(t)) < d(p, e(t)),
(i) a; < @y, i = 1,2, where a; rsp. @; is the angle in A rsp. A at ¢; 1sp. G.

Proof. Since ¢y, cg are both geodesics in Br(p) starting at p, we obtain 1, ls < R < i(p). Consequently
c1,co are minimizing in M, which implies Iy <1413, lo <[+ 1;.
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CAsE 1: First we will prove the claims (i) und (ii) under the additional hypothesis
1<l +1s.

By Lemma 4.17 there exists a comparison triangle A = (¢1, &, ¢) in M? which is unique up to congru-
ence. Let &€ = m, o d(p,¢) be the modified distance function around p = &;(0), i = 1,2, along ¢ in M?
and again e = my o d(p, ¢). We obtain:

e(0) = my(l1) = my(ly) = €(0) e(l) = my(l2) = my(la) = e(l).
Consequently f := & — e satisfies f(0) = f(I) = 0 and by Karcher’s trick 4.14, we obtain 7

F+rf=(E+re)—(é—re) <0.
=1 >1

This implies f > 0 by Lemma 4.21. Since m, is monotonous, we have shown (i).

Claim (ii) is a consequence of the first energy variation formula: Denote by ~; : [0,1] — Bg(p) the
radial geodesic from p to c(t) and by 7; the corresponding geodesic in M?2. Then for any t € [0, 1]

(4)

1
B0 =5 [ us)lPds = 5L00° = 520 £ 5330 = BG)

N |

and E(y0) = E(50). Thus 0:E(70)|i=0 < 0:E(50)|t=0 as well. By the first variation formula (admitting
non-proper variations)

O E(70)li=0 = (07t (1)|t=0, 07 c1(l1)) = (85 ¢(0), 8; e1(lh)) =

and analogously for as and &y, i = 1, 2.

CASE 2: In case [ > [y + Iy define I’ := Iy + Iz, ¢’ := |y and let ¢; be the minimizing radial
geodesic from p to ¢(I’). The comparison triangle for A’ = (c1,c,c/) in M? is degenerate, because
=11 +13 < R,. By (i) the triangle A’ is itself degenerate and thus [ = I’. We have reduced this case
to the first case.

O

4.19 Remark (omitting the proof). Denote by |A| the region bounded by A. Equality in (i) for some
t €]0,![ or equality in (ii) for some 7 implies, that there exists a totally geodesic isometric immersion
F: M2 > |A| — Br(p) such that Foé=cand Foé¢ =c¢;,i=1,2.

4.20 Corollary. Let M be simpliy connected having sectional curvature K < 0. The sum of all angles
in a geodesic triangle A is less or equal to w. Equality implies, that there is a totally geodesic isometric
imersion F : |A| C R? — M such that F(|A]) = |A|.

Proof. By the theorem of Hadamard-Cartan M is diffeomorphic to R™. Thus i(p) = oo for any p € M.
So the first part follows from 4.18 and the second from Remark 4.19 (which we have not proven here).
Furthermore we are using the face, that the sum of the interior angles of a triangle in M2 is always
< 7 provided x < 0 (this is a consequence of the Gauss-Bonnet Theorem). O

4.21 Lemma. Let x € R and f : [0,{] — R be a solution of
f4+rf<0

satisfying f(0) = f(I) =0, ! < R,. Then f > 0. If

"Actually the identity & + x& = 1 is not really proven there. One may either check by hand, that if K =  in 4.14 one
obtains not only € + k& > 1, but = 1. Alternatively one may anticipatory use Lemma 7.2, which states that in case
K > k one obtains € + k€ < 1, which alltogether shows, that if K < K < k we obtain é + xké = 1.
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(i) 3t €]0,1[:
(i) f'(0) =0
(i) (1) =0,
then f =0.

f(t)=0or
0

T

Proof.
STEP 1: Choose € > 0 such that | < Ry4.. There exists a positive solution g of

Jg+(k+e)g=0

on [0,], e.g. g = Sx4e(t + 0) for sufficiently small 6 > 0. We define h := g :[0,{] — R, remark that of
course f = gh, and so the hypothesis implies

0> f+kf=(gh+gh) +rkgh = jh+ 24h + kgh = (§ + kg)h + 2gh + gh = —egh + 24h + gh.

Suppose there exists ¢ €]0,[ such that f(f) < 0. Then h(tf) < 0 as well (since g > 0), so h has
a negative minimum at some ty €]0,[ (since [0,]] is compact and f(0) = f(I) = 0). This implies
h(to) < 0, h(tg) = 0 and h(tg) > 0, which contradicts the estimate above. This proves the first
statement.
STEP 2: We discuss the various cases
STEP 2.1 (f’(0) = 0): By what we have proven so far f > 0. Assume there exists o €]0,1[, such that
f(to) > 0. Let k be a solution of

k+rk=0

satisfying k£(0) = 0, k(to) = f(to), i.e. k= Sr{iii())) sn,. Then

(f=k)"+k(f—k)=f+rf—(k+rk)<0

and thus f — k > 0 on [0,%g] by what we have proven so far. Thus f(0) > k(0) = Sf(:fo)) > 0 as well.
This contradicts our choice of . "

STEP 2.2 (f'(I) = 0): We proceed in a similar fashion: Assume there exists to €]0,[[, such that
f(to) > 0. Again let k be the solution of k + kk = 0, but now satisfying k(to) = f(to) and k(l) = 0,

ie. k(t) = Snf((;g)to) sng(l —t). In a similar fashion £ — f > 0 on [to,!]. This implies f —k < 0 on [to, (]

and (f —k)(I) = 0. Thus f(I) < k(l) = —Snf((;g)to) sn/.(0) < 0. Contradiction!

STEP 2.3 (f(t) = 0): If f(t) =0, then f(t) = 0 as well since f has a minimum at ¢. By what we have
proven so far, we obtain on the one hand f|[0’ﬂ = 0 and on the other hand f|[t,l} =0, thus f =0.

O
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5 Growth of Fundamental Group and Volume
In this section M is a compact connected Riemannian manifold and 7 : M — M is a universal
Riemannian covering (,which implies that both are complete).

5.1 Definition. Let G be a finitely generated group and let S C G be a finite generating system. For
any g € G, g # e, define

lglls := min{m >0|3s1,...,s;m € S:g=si'...5:'} €N.

For the neutral element e € G we will employ the convention |e| g := 0.
For any R > 0 define

Ns(R) == #{g € G||lglls < R}.

5.2 Lemma. Let G be a finitely generated group and let S,T C G be two finite generating systems.
Then there exists a constant k& > 1 such that

1
VgeG: %HgHT < llglls < Ellgllz.

Furthermore for any R > 0

NT<%> < Ns(R) < Np(kR).

Proof. First of all we remark, that for any g, h € G we always have
lghlls < llglls + lIhlls
(in general equality does not hold). Define
k := max { max{||s|7|s € S}, max{||t||s |t € T}}.

Let ||g|]|s = m and

_ ol +1
g=57 ...S,

be a representation of g as a product of (maybe inverse) elements of S. Now any s;, 1 <i < m can be
written as a product of at most k (maybe inverse) elements of T'. Therefore

+ + + +
lgllr = lIst sl < llsi - s e < km = Kllglls.

The other inequality is obtained by interchanging the roles of S and T
This implies the second statement via

R R
lgllr = = lglls < kllglr < k- =R

lglls < B == llgllr < kllglls < kR.

5.3 Definition (Growth of a function). Let f: Ry — R be a function. We say f has
(i) exponential growth, if

e
hmmfﬁln(f(R)) > 0,

R—o0

(ii) at least polynomial growth of degree n, if

lim inf 1 (1)
R—o0 n

> 0,
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(iii) at most polynomial growth of degree n, if

. f(R)
|
R R

< oQ.

5.4 Definition (Growth of a group). Let G be a finitely generated group and let S C G be a finite
generating systems. Then G has exponential growth rsp. at least polynomial growth of degree n rsp. at
most polynomial growth of degree n, if the function f := Ng has these growth properties.

5.5 Remark. By Lemma 5.2 these properties are independent of the choice of generators and thus
growth is a well-defined property of the group. By the way, it is shown in [5, 1-7], that % In(Ng(R))
converges as R — o0.

Our aim in this section is to establish a relationship between the growth of the fundamental group of
M and the growth of the volume in M. Before we start, we remind you of the following result from
Differential Geometry I:

5.6 Lemma. Let p € M and r < i(p). Then for any p,G € 7 (p)
B,(5) N B.(3) = 0

and 7 : B.(p) — B,(p) is an isometric diffeomorphism.

In addition to that, we remind the following classical result from Topology

5.7 Theorem. Let 7 : X — X be a covering, z € X, & € 77 1(x) and let A, be the group of
covering transformations of. Then the map ¥ : N (W#(m(f( ,2)) — Ay, sending a homotopy class
(] € N(my(m(X,#)) € m(X,) to the unique covering transformation D € A, which sends the
point Z to [c].&, is well-defined and surjective with kernel my (m1 (X, &)).

Here N is the normalisator and [c].Z is the monodromy action. You can find more about this theorem
in [4, 11.30].

In our case ™ : M — M, the base space M is simply connected and therefore for any fixed p € M,
p € 7 1(p) the map ¥ : m(M,p) — G, G := A,, is an isomorphism. Its inverse is given by
® : G — m (M, p), which is defined as follows: For any g € G we obtain a point § := g(p) € 7~ 1(p).
Since M is simply connected, there exists a path ¢ from p to ¢ which is unique up to homotopy. In
this situation ®(g) = [ o é].

Provided ¢ is piecewise smooth, L(¢) = L(w o ¢) since 7 is a local isometry.

5.8 Lemma. In our situation 7 : M — M we denote for any g € G and p € M
g9l == d(p, 9(P))-

Then for any g,h € G
lghlls < llglls + lI2ll5-

Proof. Since g is an isometry of M, we obtain

lghlls = d(p, ghp) < d(p, gp) + d(gp, gh) = d(p, gp) + d(p. hp) = |95 + I|hl5-

O

We may think of ||g||; as the length of the shortest geodesic loop in the homotopy class of loops based
at p, which are determined by g.
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5.9 Theorem (Growth of deck transformations). Remind that M is compact, 7 : M — M is a
universal covering and p € M. For any r > 0 define

Sr=5:(p) :=={g € G|llglls <7}
and d := diam M. Then
(i) Soq4 is a finite generating system of G.
(i) For S = Sy and g € G we obtain d(glls — 1) < llglls < 3dlglls.

Proof.
STEP 1 (Finiteness): By Lemma 5.6 the set
X={gp) g Gt=1"(p)

is discrete in M. Thus for any r > 0 the set X N B,.(p) is discrete and compact, hence finite. Since
g € S.(p) < g(p) C Br(p), we obtain that

[Sk(D)| = |X N B, (p)l

is finite as well. It remains to show, that Sy generates G.
STEP 2 (Premilinaries): Let ¢ € M be arbitary. We claim, there exists g € G such that

d(q,9(p)) < d.

This can be seen as follows: Define ¢ := 7(g). Since M is complete, there exists a minimizing geodesic
c:[0,1] — M satisfying ¢(0) = ¢, ¢(1) = p. Thus

L(c) < d(q,p) < diam(M) = d.
Let ¢ be the lift of ¢ at §. Then L(¢) = L(c) and 7(&(1)) = ¢(1) = p, thus &(1) € 7! (p). Consequently
there exists g € G such that ¢(1) = g(p). Alltogether we obtain

d(q,9(p)) < L(¢) = L(c) < d.

STEP 3 (Generating system): Let g € G be arbitrary, r := d(p, g(p)) and ¢ : [0,7] — M be a unit speed
minimizing geodesic from p to g(p). Let € > 0 be arbitrary and let k € N, such that ke <r < (k+ 1)e.
For any 1 <1 < k there exists g; € GG such that

d(c(ie), 9:(p)) < d
by step 1. Thus
911l = d(p, 91(p)) < d(p, é(e)) + d(c(e), 91(p))) < & +d.
For any 2 < i < k we obtain
lg: v 9ills = d(B, 9;4,9i(P)) = d(gi-1(P), 9:(P))
< d(gi-1(p), €((i — 1)) + d(e(i — 1)e, é(ie)) + d(c(ie), 9i(p)) < d +e+d =2d +e,

since g;—1 is an isometry. Furthermore

lgx ' glls = d(B, 9 '9(P)) = d(gr(B), 9(P)) < d(gr(P), c(ke)) + d(c(ke),g(P)) < d + &,
by choice of r. Alltogether we obtain
9=91(97 9297 93 G 1 9K) 9 9
and
-1 —1 -1 -1
91,91 92,92 935> 9p_19k: 9 9 € S2d+e-

Thus Saqie is a generating system of G, where ¢ > 0 was arbitrary. By step 1 |S.(p)| = |X N B,(p)].
Thus if ¢ is sufficiently small Soq = So44.. This proves (i).
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STEP 4 (Estimate): Again let é: [0,7] — M be as in step 2 and let k € N, such that
kd <r < (k+1)d.

Again by step 1 choose g; € G, 1 < i < k, such that
d(&id), gi(5)) < d

and as in step 3 (replacing ¢ with d) obtain analogously

lgill, llgr g2l - - Nlgrtvgwll, lgx tgll < 3d.

Thus if S = S34, we obtain
1
lglls < k+1< ~llgl+1

by choice of k and r = ||g||3. This establishes the left inequality.
To prove the right one we remark, that by (i) applied to S = Ss4 there exsits a representation g =
gfl .. .glﬂ, with g; € S and [ minimal. This implies

+ +
gl =g - g 5 < llgalls + -+ lgalls < 3dl = 3d||g]|s-

O

We would like formulate step 2 of the preceeding proof as a corollary.

5.10 Corollary. For any p,§ € M ther exists g € G, such that

d(q,9(p)) < d.
5.11 Corollary. We assume the same hypothesis as in the preceeding Theorem 5.9 and define
Ni(R) := #{g € G| llglls < R} = |S&l,
where R > 0 and S := S34. Then
Ng (?Z) < N;3(R) < Ng <§ + 1) :
In particular the growth of Ng equals the growth of Nj.
Proof. By Theorem 5.9 we have the implications
lolls < 5o = lolls <3dlgls <R llgls < R=> lglls < Tlglls +1< 2+ +1.

O

We are now able to compare the growth of Nj with the volume in M.

5.12 Theorem (Volume comparison). Remind that M is compact, 7 : M — M is a universal covering,
and let d := diam(M), p € M, r = i(p), v := vol(B,(p)) = vol(B,(p)), V := vol(Bg(p)). Then

1 _ 1 -
vol(Bris(7) 2 Ny(R) = o vol(Br_a(p)).
where we require R > 0 for the left inequality and R > d > 0 for the right one.

Proof.

32



STEP 1: For any g # h € G we have g(p) # g(h) and by Lemma 5.6 B,(g(p)) N By (h(p)) = 0. Since
7|, (5) is an isometry, we obtain vol(B,(g(p))) = vol(B,(p)). Provided [|g||z < R, we obtain

q € Br(9(p)) = d(q,9(p)) <r = d(q,p) < d(q,9(p)) + d(9(p),p) <r+ R = q§ € Bryr(p)

thus B,(g(p)) C Br4r(p). So we obtain

vol(Brr(p)) = vol [ | Bl = Nj(R) vol(B(p)),
9gESR(D)

since the balls are pairwise disjoint. This proves the left inequality.

Conversely by Corollary 5.10 for any § € M there exists g € G, such that d(q, g (p)) <d. IfGg€ Br_q(p),
we even have

lglls = d(p,9(p)) < d(p,q) +d(q,9(p)) < R—d+d=R=gc Sg.

Thus B
Bra(p) C |J Balg(®)),
9ESR(P)

which imlies

vol(Br_a(f)) < Na(R) vol(Ba(p)).

5.13 Theorem. Let M be compact and denote by K the sectional curvatures. Then
(i) If K < —a?, a > 0, then 71 (M) grows exponentially.
(ii) If K <0, then 71(M) has at least polynomial growth.

Proof.

(i) We may assume a = 1, since otherwise we may rescale the metric (c.f. Theorem A.15).® By
Theorem 5.7 the fundmental group (M) is isomorphic to G, where G is the group of covering
transformations on the universal Riemannian covering 7 : M — M. By Theorem 5.9 the set
S := S34, where d := diam M, is a finite generating system for G. By Corllary 5.10 the growth
of Ng equals the growth of Nj. By Theorem 5.12 the growth of Nj equals the growth of Br(p).
By Theorem 4.10, we obtain

vol(Br(5)) = vol( Br(p)),

where p € M™, is a point in hyperbolic n space with constant curvature —1. Finally these
volumes will be analysed in more detail in the following chapter and we will show in Corollary
6.8 that Br(p) growths exponentially.

(ii) This follows by the same token and the well known growth of volume in Euclidean space.

8This causes no problem since the conclusion of the theorem does not invole the metric explicitely. The topology of M
is merely required to admit a metric of such curvature.
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6 Volume and Ricci Curvature

In this section let M be a connected complete Riemannian manifold of dimension m.

6.1 Definition (measure zero). A set A C M is a set of measure zero, if there exists and index set
I = N and charts ¢; : Uy — Uj, such that A C |J,c; Us, and for any i € I: ¢;(ANU;) C R™ is a set of
measure zero w.r.t. the Lebesgue measure.

We remark, that the following results from classical calculus also hold on manifolds:

6.2 Lemma. Let N be a manifold and let F': M — N be smooth. If A C M is a set of measure zero,
then F(A) C N is a set of measure zero as well. If f : M — R is integrable and A C M is a set of

measure zZero
/ = 7
M M\A

6.3 Corollary. Let p € M. Then Cr(p) C T,M and C(p) = exp,(Cr(p)) C M are sets of measure
zero. Define

U:=Up:={(v,t) e S;M xR |0 <t <ty(v)} Vi=M\ ({ptUC(p)).
Then F': U — V, F(v,t) := exp,(tv), is a diffeomorphism and

vol(Bg(p)) = vol(Bgr(p) N'V).

We want to calculate The later using F'.

Proof. The first statement is a direct consequence of Lemma 6.2 above, since exp is smooth and Cr(p)
is a set of measure zero. By Theorem 3.11 F' is a diffeomorphism. The equality of the volumes is also
a consequence of the Lemma above. O

We enlist some general remarks concerning the tranformation of integrals.

6.4 Definition. Let X1,...,X,, € T,M be a basis. We denote by

m
XiN...ANXn Z:{ZtiXi|t1,...,tm€[0,1]}
=1

the parallelepiped spanned by X1, ..., Xp.
Let M and N be Riemannian manifolds, /' : M — N be a diffeomorphism and p € M. Then

VOl(Fy[p(Xilp) A - A Filp(Ximlp))
vol(Xilp Ao A Xinlp)

Jac F(p) :=

is the Jacobian of F.

6.5 Lemma. Under this hypothesis

vol(X1 AL A Xy,) = /det(( X5, X))

and Jac(p) does not depend on the choice of basis X = (X1,..., Xp).

34



Proof. Since for any permutation o € Sy,
Xa(l) /\.../\Xa(m) =Xi1N...NX,

as equality of sets, we may assume that the map defined by X; — e;, 1 < j < m, is an orientation-
preserving isomorphism ¢ : T,M — R™ and a global chart of the Riemannian manifold (7),M, g). Let
P=XiAN...ANXpand Q :=e1 A... ANey CR™. By definition of the Riemannian metric on T, M

vol(Xl...Xm):VOI(P):/PldV:/P\/det(gij)dgoi/\.../\dgp
:/Q(cp1)*(w/det(gij)dapi/\.../\dgpm):/Q\/det((Xi,Xﬁ)dx: det ((X4, X;)).

This implies the second statement: If Y = (Y7,...,Y},) is another basis of T,M, there exists an auto-
morphism A of T,M, X; — AX; :=Y;. Denote by cx(A) its coordinate matrix as an endomorphism
w.r.t. the basis X. The matrices cy(g) := ((¥3,Y;)) and cx(g) := ((X;, X)) are the coordinate
matrices of g, which transform by elementary linear algebra as

det(cy (9)) = det(cx (4)'ex(9)ex (4)) = det(cx (4))? det(ex(g)).

A similar result holds for the bases F, X and F,Y: The automorphism F,AF, Lof TF(p)N transforms
F.(X;) into F.(Y;) and therefore

FAFY(F.X;) = (ZAUX) =3 AyF(X)
i=1
i.e. cp,x(FyAF; 1) = cx(A). The factor det(cy(A))? cancels in the fraction of Jac F. O

6.6 Theorem (Transformation theorem for Riemannian manifolds). Let M, N be Riemannian mani-
folds, F': M — N be a diffeomorphism and let f : N — R be integrabel. Then (foF)-JacF : M — R

is integrabel and
/ (foF)JacF:/ f.
M N

Proof. Let ¢ : V. — V' C R"™ be a chart for N. Since F is a diffeomorhpism, U := F~Y(V) C M is
open and ¢ := o F : U — U’ = V' is a chart for M. In these charts F' is represented by id : V! — V/,
ie.
YpoFop!t=id.

Let dp;, 01, 1 < i < n, be the corresponding coordinate frame on U rsp. V. Then Fy(dy;) = 0
since by construction

Vg € N :Va € C¥(N) : (Fi(0¢i))lq(a) = Filp-1(4)(09i)) () = 0p|p-1(g) (a0 F)

=0i(aoFo ()0_1>‘(800F71)(q) =0ij(aoFo Flo ¢_1)’w(q) = 0i|q(a).

Let B C U be measurable (i.e. ¢(B) C R™ is measurable). Then
/ (foF)JacF = / (foFop Y JacFop ty/detg;jop tds™
B <p(B)

det ( i j
:/ (fow \/ e 880 (890]» 090 \/det 69027890]»090 1d$n
o(B) \/det ((Opi, 0p;)) o p~

— [ eu et (@000 o Foylag
©(B)

= ot~ )\ /det ((Onhs, D)) 0 o 1d.L™ = :
/MF((B))(f U Jdet (00, 00y)) 0 v [ i

F(B)
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Thus the transformation rule holds for any measurable subset, which is contained in a single coordinate
domain. Now the general case follows directly from the definition of the integral. O

6.7 Theorem. Let R > 0,p € M, v € S,M and let ¢, be the geodesic through p with initial velocity
v. Let Ja,...,Jn € T(cljo(v))) be the Jacobi fields along c, satisfying J;(0) = 0 and J;(0) = E;,
2 < i <n, where Fy :=wv, FEs,...,E, is a parallel ON frame along ¢,. If we define

Jv 1 [0,t0(v)] — R, Ju(t) = vol(Ja(t) A ... A Jp(t)),

then
min(R,to(v
vol(Bgr(p / / o(t)dtdv. (6.1)
SpM

Proof. The set U, from 6.3 is open in the Riemannian product SyM x R and F' : U — V (as in
Corollary 6.3) is a diffeomorphism. Thus by Theorem 6.6

to(v min(R,to(v
vol(Bg(p /S / Xjo,r[(t) Jac F'(v, t)dtdv —/S / Jac F(v,t)dtdv.
M p M

So we have to calculate Jac F'(v,t). Now S,M is the round sphere with radius 1 in T,M, i.e.
Yo € S,M:T,S, = {X € T,M | X Lu}.
We have
T(v,t)U = TvSpM e TR

and this sum is orthogonal (w.r.t. the product metric). ® We analyse F, on both summands: For any
aeC>®(V):
Fel ) (0s)(a) = ds(ao F)|p) = Os(a o expp(sv))|s= = éu(t)(a)

thus Fil(y4)(0s) = ¢u(t). For any X € To,S,M C T{, U we have analogously
Eil (o) (X) = Os(exp,, (t(v + sX)))|s=0 =: J (1),

where J is the Jacobi field along ¢, satisfying J(0) =0 and J'(0) = X.

Now let Fy := v, Es,...,E, be an ONB of T,M. Then 0;, Fs,...,E, is an ONB of T(M)U) and

consequently

VOl(FyOs(t) A FxEa(t) A\ ... N FuE, (1))
vol(Oy N Ex(t) A ... N En(t))

where J;(t) if the Jacobi field along ¢, satisfying J;(0) = 0, J/(0) = E;. By Lemma A.9 the fields
Ja, ..., J, are perpendicular to ¢,(t) and in addition ¢é,(¢) has unit length. Thus

Jac F(v,t) = = vol(éy(t) A Ja(t) A ... A Jy(t)),

Jac F(v,t) = vol(Ja(t) A ... A Jp(t)) = Ju(t),

where this volume is the one of an (n — 1)-dimenisonal parallelepiped. Thus alltogether

min(R,to(v
vol(BRr(p / / »(t)dtdv.
SpM

9We always employ the following convention: Let (Mi,g1), (Mz, g2) be two Riemannian manifolds. Then M; x My is
canonically a manifold and we identify T{,, p.)(M1 x Ma) = Ty, My @Tp, Ma. We obtain a product metric g := g1 @ ga
by

O

VX = Xl + XQ,Y = 5/1 + YQ S Tlel &) Tp2M2 : g(X, Y) = g1(X1,Y1) —|—gg(X2,Y2).
In this metric Ty, My L T, Mo.
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6.8 Corollary. Let M have constant curvature x and let £ = ¢, Eo, ..., By be a parallel ONB along
cy. Then J;(t) = sn.(t)E;i(t), so j,(t) = sn?~1(¢). In particular, we obtain for our model spaces M
and R < Ry, that

R
vol(Br(p)) = vol(S™1) /0 s (1)1 d.

In particular if kK = —1, then

Jim % In(vol(Br(p))) = n — 1.
Proof. To prove the first statement we use Theorem 6.7 above and the characterization of Jacobi
fields on manifolds of constant curvature (c.f. [2, 10.8]). In addition using the representation of the
metric on constant curvature manifolds (c.f. [2, 19.9]), we see, that the g-volume of the g-unit-sphere
Sp C T, M is indeed the same as the Euclidean volume of the Euclidean unit sphere.

If Kk = —1, then sn, = sinh by Lemma 2.7. So by the first part:

R
Jim. %ln(vol(BR(p))) = Jim. %ln(vol(Sn_l) /O sinh(r)"~"dt) (6.2)
L I(vol(S™h) 1 R
—RIEI;O— +R1£20Rln(/0 sinh(¢) dt)
1 R
~ lim Em( /0 sinh(t)"—ldt).

Now notice, that

1 1 1
Vt € R>g : sinh(t) = i(et - e_t) < iet, tg € R>g : Vt > tp : sinh(t) > zet
and for any A, t; € Ryg
1 R 1 1 R 1 R
dim g () 0y ar) = gim i (07 ] = i (R0 - 07

(6.3)
= lim %ln <6R(”_1) — ,u>.

R—o00

Clearly there exists Ry € Rsq such that for all R > Ry : efiln=1) _ > efin=1)  Thus

1
2

1 1 1 1
n—1= lim Eln(ieR(”_l)) < lim = In <6R(”_1) - ,u) < lim = In(e1y =n —1.

R—o0 R—oo R—o0
Therefore we may continue (6.3) by limpg_ % In <6R(”_1) — etl("—1)> =n — 1. By the same token we
may now estimate (6.2) to prove the claim. O
6.1 Bishop-Gromov Inequality

In this section we will discuss the celebrated Bishop-Gromov Inequality. Before we start let’s discuss
some preleminaries.

6.9 Convention. In the following we will assume a bounded Ricci curvature and employ the notation

Ricys > (n— 1)k 1= YV € T(M) : Ricy (V,V) > (n — 1)k|V|?
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Under this assumption one may we calculate for u, = ﬁ In(j,)’, that
ul, < —u’ — K (6.4)

see 2.3. Equality in this equation implies, that the second fundamental form U,(t) of the geodesic
sphere of radius ¢ around p with respect to the inward pointing unit normal —¢,, satisfies

(U(02) =~ (x(U,(0)>

Since U, is symmetric, this implies
Uy(t) = u(t) Ls(t), (6.5)
where I, (t) is the identity on ¢(¢)*. The comparison theory (c.f. Lemma 2.9) states that
u < cty, (6.6)

since if B, = ¢, Fo, ..., E, is a parallel ON frame along ¢, and J;, 2 < i < n, are the Jacobi fields
along ¢, satisfying J;(0) = 0,.J/(0) = E;, we obtain

Ji(t) = tEi(t) + 2 X4(t), (6.7)

where the X; are smooth along ¢, (one can reduce this to the corresponding statement of basic calculus
by expressing the J; as a linear combination of the Fj). This implies

Jo(t) = "1+ p(t)t", (6.8)
where ¢ is smooth. Therefore
g n—1
In(4,)'(t) = J—” =(n—1uy, ~ ,t— 0. (6.9)
Furthermore we obtain
(¢
lim 220 _ (6.10)

uniformly in v. Now let’s get back to (6.1). Define

Jo(®) 0<t<tylv
Flo.t) = 3@ o)
0 ,t > to(v)

and obtain for any p € M, that

R
Vp(R) := vol(Br(p)) :/S /0 f(v,t)sn™ 1 (t)dtdv. (6.11)

6.10 Theorem (Bishop-Gromov Inequality). Let M be complete, connected, p € M, Ricpyr > (n—1)k,
ke€R,0<r<R<R,, Vp(R) :=vol(Bgr(p)), and let V,,(R) be the volume of a ball with radius R in
M. Then

and equality for one pair 0 < r < R < R, implies, that B,(R) is isometric to a ball of radius R in M;".
Furthermore

Vu(R)
R0 Vo(R)
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6.11 Remark. Equality implies in particular that the sectional curvature on Br(p) is constant and
equal to k.

Proof. Let j, as in Theorem 6.7. We obtain:

Vp(R) fSpM fo (v,t) sn, (¢)"dtdv

(6.12)
Ve(R)  vol(sn1) [ sn, (t)—1dt
STEP 1 (Inequality): We start with
In < Jv )l _ SHZ ! ]1/) Sn ! (n — 1) SHZ_Q CSk Ju _ l (uv(n — 1)jv) s1 n—l (n — 1) Sn2_2 Jv CSk,
sny ! Ju snz(n_l) Ju sne— 1
-1 n—1 -1 n—2 (6.6)
_ uy(n — 1) sn} n(rlz ) snjl "% cs, — (= 1)y —cty) < 0.
Sny
Thus ln( e 1) is monotonously decreasing. Since In is strictly monotonously increasing , {;’ T 1S

monotonously decreasing as well. Thus the function ¢ — f(v,t) is monotonously decreasing on }O to( )[-
Since the integral is monotonous as well, we obtain

R R
/ F(0, R) s (t)" Lt < / Fo,1) s (8)" L. (6.13)
0 0
Thus
(fo (v,t) sng( )”_1dt> _ f(v, R)sn.(R)"dt fOR sn, ()" Ldt — sn(R)" lfo (v,t) sn ()" Ldt
Jo snx(t)yn=1dt (5 s t)"*%it)

SHH(R) </ f(v, R)sn ()"~ 1alt—/ f(v,t)sng(t)"™ 1dt> (6%3) 0.
(fo sn, (t)"~ 1dt

Substituting this back into (6.12), we obtain

Vo(R) 1 f (v,t) sn,(t)"~tdt
0 ( P ) z/ 0 dv <0
2\ V(@) = S p vl " S sn, (1)Lt
Vp(R)
V. (R)

STEP 2 (Limit): Choose an antiderivative F of f(v, )sn.( )"! and an antiderivative G of sn( )
By de I'Hospital:

and thus the function R +— is monotonously decreasing.

n—1

o Jo S s F(R) — F(O) | F(R)
o fo () (d R GR) — G(0) Rl GI(R)
o ) snge)" Tt (6.10)

= }121{10 NPT }lZII\IlDf(U,t) =1

STEP 3 (Equality): The hypothesis implies f(v,t) = 1 for any v € S,M and 0 < ¢ < R, thus u = ct,
for any v € S, (on ]0, R[) and to(v) > R. This implies U, = u,I, as pointed out in (6.5). Now I}, = 0
and therefore

R(_,é))ép = Ul — U2 = —(u, + u>)I, = KI,.

Thus the curvature tensor along ¢, is the same as the curvature tensor in the case of constant curvature
k. If E is a parallel unit normal field along c¢,. then sn, E is a Jacobi field along ¢,. This holds for
any v € S,. Thus for any ¢ € M}?, the map

exp,, oA o exp;1 : BR(C]) — BR(P)a

where A : T, M — T, M is an isometry, is a Riemannian isometry.
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0
6.12 Corollary. Let M be complete, connected and let Ricys > (n — 1)k, £ > 0. Then vol(M) <
vol(M?). If vol(M) = vol(M}[), then M is isometric to M.

Proof. Remember that R, := 7/\/k.
STEP 1 (Inequality): By the (strong) Theorem of Bonnet-Myers diam(M) < R,. Therefore

M = Bp(R,{)
and we obtain

vol(M) = RH/HI%H vol(Bp(R)).

The same holds for M?. Now R +— “;: ((Z; is monotonously decreasing by 6.10 and < 1. Thus

vol(M) L Vy(R)
vol(MP)  R—R. Vi(R)

<1

This shows the first statement.
STEP 2 (Preliminaries): Now let vol(M) = vol(M;}). Then

Vie(Ry) = vol(M) = vol(M) = vol(By,(Ryx) = Vp(Rs)

and thus for any 0 < r < Ry

V(Re) _ Valr)
AT A

Consequently for any 0 < R < R, the ball Br(p) C M is isometric to Br(q) C M} by Theorem 6.10.
An isometry is given by exp, oA ocexp, ' : M D Br(q) — Br(p) C M (as in the proof of 6.10), where
A :TyM — T,M is an isometry.

STEP 3 (Constructing the isometry): We would like to show, that for reasons of continuity this map
extends to a map F : Bg, (q) = M — M = Bp,_(,), which preserves distances and is an isometry on
the open ball of radius R. First of all

Br.(q) = |J Brla),

R<Ry

thus F' is well-defined and isometric on Bg,(¢). In addition M \ Bg, (q) = {q}, where ¢ is antipodal
to ¢ ist (since we are assuming x > 0 M} is a sphere of radius 1/y/k). For any ¢qi1,¢2 € Bg,(q) the
number d(q1, ¢2) equals the infimum of all lengths of paths from ¢; to g2, that are contained in Bg,_ (q).
Since F' is isometric there, is preserves these lengths and therefore

d(F(q1), F(g2)) < d(q1,q2),

since the infimum of all lenghts of paths in M connecting F'(¢1) and F'(g2) is less or equal to the infimum
of all lengths of paths, which connect F'(q;) and F(g2) in the image of F. Thus F is continuous on
Bg,.(q) with Lipschitz constant = 1. Of course Bg, (q) C Br,(q) is dense, thus we may extend F to a
continuous map F: M} — M.

STEP 4 (Surjectivity): We will now show that M \ Bg,.(p) = {p} for some point p € M and that
F(q) = p. For any v € SyM we have to(v) > R, by what we have proven so far (due to the isometry
of the open balls). Since k > 0 we have ty(v) < R, anyway (since the first conjugate point certainly
occurs there) and thus ty(v) = R, for any v € SyM. Thus d(p, C(p)) = R and

Cp)={pe€ M |dp,p) = R}
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Now let p € C(p). Then there is a unit speed minimizing geodesic ¢ from p to p. Let v := ¢(0),
thus ¢ = ¢,. Then c][o, R,[ 1s the image under F of a unit speed geodesic ¢, starting at g with velocity

¢(0) = A=, Thus

therefore F' surjective and M \ Bg, (q) = {p} as claimed.

STEP 5 (Global isometry): Thus F' not only has Lipschitz constant = 1, but also preserves distances:
For py,p2 € M\ {p} one may calculate d(p1,p2) as the infimum of all lengths of paths from p; to pa,
which do not touch p.

STEP 6 (Smoothness): All unit speed geodesics ¢y, ¢ starting from ¢ satisfy

Vi=1,2:F(ci(Re)) = F(q) =p

and

(Foct) (Re), (Foc)(Ri)) = (é1(Re), é2(Re))

since F o¢;, i = 1,2, is a geodesic on [0, R,] (since it is minimizing hence in particular smooth), so:

[(Foer) (Re) — (Foca)(Re)l = RH/HI%N d(F(Cl(g:)LF;CQ(R))) - Rh/HI%K W
= |lé1(Re) — c2(Ry) |l

Thus F' is smooth in ¢ with push-forward Fi(¢;(Rx)) = (F o ¢) (Ry).
O

6.13 Theorem (Cheng). Let M be an n-dimensional, complete, connected manifold with curvature
Ricpyr > (n — 1)k, £ > 0. If diam M = R,;, then M is isometric to M.

Proof. By the Theorem of Myers [2, 11.8] M is compact. The continuous function M x M — R,

™

(p,q) — d(p, q) attains its supremum. So let p,q € M, such that d(p,q) = == R,.. By Theorem 6.10

V(R _ V(Re/2)  V(Re) _ ValRe)
Ve(Re) = Ve(Ru/2)  Vo(Bnf2) = Va(Rnf2) (6.14)

where the last equality holds since M} is a round sphere of radius 1/4/k and the volume of a hemisphere
is exactly half the volume of a sphere. Of course the same holds for ¢:

‘m <9 (6.15)

Now V,(Ry) = V4(Rs) = vol(M), so together with the first two inequalities above:
1
Vp(Br/2) + Vo(Rie/2)) 2 5 (Vp(B)) + Vo(Ry)) = vol(M)
On the other hand we have by construction By,(R/2)) N By(Ry/2)) = 0, thus
Vo(Re/2) + Vy(Re/2)) = vol(M).
We have archieved:

V(Raf2) > Svol(M)  Vy(Re/2) > Svol(M)  Vy(Re/2) + Vy(Re/2) = vol(M)

1
2
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This implies
1
Vo(Ra/2) = 5 vol(M) = V(R /2) (6.16)

Substituting this into the very first inequality, we obtain

vol(M) < vol(M}!) 1

TR T (R

thus equality. Therefore the equality statement of the Bishop-Gromov inequality 6.10 implies that the
open balls are isometric. Since their boundary is a set of measure zero, this implies vol(M) = vol(M}?).
Now the statement follows from Corollary 6.12. OJ
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7 Toponogov’'s Theorem

The Theorem of Alexandrov-Toponogov compares triangles in a manifold, whose sectional curvature is
bounded from below by a constant x, with triangles in M?2. It is a counterpart of Theorem 4.18, which
requires the sectional curvature to be bounded from above. There is another important difference:
Theorem 4.18 is a statement concerning “small” triangles, where Toponogov’s Theorem concerns the
global geometry of M.

7.1 Preparation

7.1 Remark. In this section M is a Riemannian manifold, which is complete, connected and has
sectional curvatures K > k, k € R.

We will need some preparation, before we can start. Let p € M and for any v € S,M let ¢, be the
geodesic satisfying ¢,(0) = v and let Uy(t), 0 < t < to(v), be the second fundamental form of the
geodesic sphere of radius ¢ around p at ¢,(t) with respect to the inward pointing unit normal —é,(t) .
Let J be a Jacobi field along ¢, satisfying J(0) =0, J L é,. Then J' = U,J on ]0,ty(v)| (see section
1). Thus

(J', J) = (U, J) < U1 (7.1)

and therefore estimates on U, yield estimates on J. Now let E be a parallel unit normal field long ¢, and
let J be the Jacobi field along ¢, satisfying J(0) = 0, J'(0) = E(0). This implies J(t) = tE(t) + o(t),
t — 0. Furthermore

(', J)

lim =L — ||J|"(0) = |J(0)| =1,
lim <= = 1@ = 170

(this was discussed in another context already, c.f. (4.1)). By Lemma 2.2 and Lemma 2.9, we obtain

(UyE,E) < ct,, on]0,to(v)]. (7.2)
This implies
T _
%{%t A (t) = 211\r"%t<UvE, E)=1 (7.3)
and
{(J', J)
) < cty on |0, to(v)][. (7.4)

7.2 Lemma. Let ¢ be a unit speed geodesic in U := M \ ({p} U C(p)). Define r := d(p,c(_)) and
e :=myor. Then
e’ + ke < 1.

Proof. Using the definition of m, and 4.13, we calculate
" =(ml or)-r') =(mlo r)(r')2 + (ml or)-r" = (csy or)(r')2 + (sny or)r”.

Now
r'(t) = (é(t), grad dp|eq)),
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where d,, := d(p, ). Denote by ¢; the unit speed minimizing geodesic from p to c(t) and by ¢+ the
component of ¢(t) perpendicular to ¢ = grad dp|.,(r( ). We calculate
.. . 1.4 . .
() = (€(t), grad dp|o(r)) + (6(t), Veq) grad dyleqy) = Hess dp(é(t), ¢(t))
L5 ) ) 2, p.140] ) .
= Hess dy(¢(1), ¢ (1) 7 = (Usy0)(65(1)), &5(1)) = (J'(r(1)), J(r(2))),

where J is the normal Jacobi field along ¢; from p to c(t) satisfying J(0) = 0, J(r(t)) = ¢ (t) (existence
is guaranteed by [2, Exc. 10.2]). This implies

(' Dleqey < (@))%
Alltogether we obtain
¢"(t) < (es or)(&(t), grad dp|om)? + (sns or) (et or) (B)[|E- ()P = (cspor) (B)[e()]| = (cs or)(2).

This implies
e"—I—,‘@'eScs,.gor—i—ff-m,.gorllé3 1.
OJ
7.3 Lemma. Let ¢; : [0,1;] — M? and ¢0,1] — M2 be unit speed geodesics satisfying ¢ (I;) = ¢(0) =:
p1 and let & be their angle in p;. Let [;,] < R, and define f(a;) := d(¢1(0)é(l)). Then f, seen as a
function of & on [0, 7] satisfies

my(f(ar)) = my(|ln = 1) 4 s, (1) sn, (1) (1 = cos(an)),
is strictly monotonously increasing and
f0)=|l; =] f(m) = min{l; + ,2R, — (I1 + 12).}
Proof. Applying the law of cosines (c.f. Theorem A.13) in this situation, we obtain

csk(f(a1)) = csk(lh) esk(l) + msng(ly) sng (1) cos(aq).

By Lemma 4.13 cs,;, +xkm, = 1 and therefore we may restate this formula as

1 — kmy(f(ar)) = csw(lr) cse(l) + ksny (1) sng (1) cos(a)
e my(fla)) = % - %csn(ll) csy (1) — sng(1h) sng(1) cos(ay)

Using die angle sum identity (c.f. Theorem A.14) we obtain
1

m(ly — 1) = = (1 —csk(ly — 1))
K

= %(1 — (esk(ly) esk(l) + rsng(ly) sng(l)))
1 1

= sk (l1) esi(l) — sn(ly) snk (1)

and since this is symmetric in [,/ the same holds for m, (I — [1) and thus for m,(|l; —|). Alltogether
we obtain

my (|11 —1|) + sng(l1) sng(1)(1 — cos(aq))

L %csﬂ(ll) csk(l) —sng(ly) sng (1) + snk(l1) sng (1) (1 — cos(a))

K
1 1
= csk(l1) esk(l) — snk(ly) sng(l) cos(ar) = my(f(@r)).
The other statements follow from the monotonicity of m, and this representation. O
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7.2 Statement and Proof

7.4 Theorem (Alexandrov-Toponogov). Let M be a complete connected n-manifold with sectional
curvatures K > k, k € R. In case k > 0 let M not be isometric to S”(1/4/k). Then the following
equivalent statements hold:

(i)

(iii)

Let A = (c1, c2, ¢) be a geodesic triangle consisting of unit speed minimizing geodesics ¢; : [0, ;] —
M, i=1,2, ¢;(0) = c2(0) =: p and a unit speed geodesic ¢ : [0,]] — M, ¢(0) = c1(l1) =: p1,
c(l) = ca(la) =:p2. Let [ <1y + 1z and in case K > 0 let | < R,. Then l; +Ils +1 < 2R,; and the
corresponding comparison triangle A in M? satisfies

d(p, c(t)) < d(p, c(t))-

Let A be as in 2 and denote by «; the angle of A in p;, i = 1,2. Then Iy + I3 +1 < 2R, and the
comparison triangle A in M? satisfies

a; <o ,1=1,2.

Let ¢1 : [0,l1] — M and ¢ : [0,I] — M be unit speed geodesics where ¢; is minimizing, [ < R,
¢(0) = c1(l1) =: p1 and let a1 be the angle between ¢; and ¢ in p;. Let ¢, ¢ be corresponding
geodesics in M2 with angle a; := a1 in p; = ¢ (l1) = &(0). Then

d(c1(0), c(l)) < d(e1(0), e(D))-

7.5 Remark.

(i)

We will prove the first statement and then show, that it implies the second, which implies the
third. We leave it as an exercise to close the circle.

In the first and in the second statement existence and uniqueness (up to congruence) of A is at
first only clear in case k < 0: Since ¢; and ¢ are minimizing {1 <[+ 1[s and lo <[y + . But then
in case k > 0 the inequality I1 + I + | < 2R, implies existence of A.

In case k > 0, we obtain [1,ly < diam M < R, (by Cheng’s Theorem 6.13) since M is required not
to be isometric to S"(1/4/k). This implies uniqueness (up to congruence) of A by Lemma 7.3. The
somewhat strange hypothesis that M shall not be isometric to S"(1/y/k) avoids complications
in the formulation of the theorem.
Let ¢ : [0,11] — M, ¢ : [0,l2] — M be unit speed minimizing geodesics satisfying ¢1(0) =
c2(0) =: p and let ¢ : [0,]] — M be a unit speed geodesic satisfying ¢(0) = c1(l1), c(l) = ca(l2
and | = R, = 7/\/k, kK > 0. Then
i+ 1s < R,.

This can be seen as follows: Suppose to the contrary that 1 +lo = 1 + d(p,c(l)) > R, = 1. By
Bonnet/Myer’s Theorem |2, 11.7] 11,12 < R, and by Cheng’s Theorem 6.13 and by hypothesis
l1,lo < Ry. Consider the continuous function [0,!] — R, t — [; + d(p,c(t)) + t. Evauluated at
t = 0 we obtain

L+ d(p,c(0)) + 0 =2l; < 2R,

and evaluated at t = [ we obtain by hypothesis
L+dp,cl)+1>R,+1=2R,.

Thus by the intermediate value theorem there exists a smallest ¢ > 0 such that ¢t < = R, and
l1 +d(p,c(t)) +t = 2R,. Denote by ¢; a unit speed minimizing geodesic from p to ¢(t). Since
t <l = Ry, we obtain

li +d(p,c(t)) =2Rx —t >R, =1>t

and therefore the triangle A = (c1, ¢4, ¢|[0, t]) satisfies the hypothesis of the first statement. This
is a contradiction since the perimeter of A is 2R.
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Proof.

STEP 1: By Remark 7.5,(iii) we obtain ly,ly < R,. We first assume [ + I3 + 1 < 2R,. By Lemma 7.3
there exists a comparison triangle A in M2, which is unique up to congruence.

The case 1 + o = [ is trivial: In that case A is degenerate and

L—t ,0<t<l
< d(p,c(t)),
t—10 L <t<l

d(p, c(t)) = {

where in the last step we used the triangle inequality. Therefore we will assume 1 + lo > [ in the
following. This implies p ¢ imc.
STEP 2: In case ¢ does not intersect the cut locus of p, we may argue completely analogously as in the
proof of 4.18: Define r := d(p,c(_)), e := m, o r and analogously 7, &. We obtain € + k7 = 1 and by
Lemma 7.2

e + ke < 1.

Define f := e — e, we obtain

f"+rf<0 f(0) = f(1) =0,

thus f > 0 on [0,{] by Lemma 4.21 and thus the statement.

STEP 3: If ¢ intersects the cut locus of p we cannot derive € + ke < 1 like this, because grad d,, is not
well-defined in the cut locus. Nevertheless define r and e as above and suppose to the contrary, that
f has a negative minimum in ]0,/[. Since [ < 0 there exists a > 0 such that [ < R.1,. There exists a
fuction j : [0,]] — R such that

j>0 "+ (k5 +a)j =0, (7.5)

for example take j = sn,y(d + ) for a sufficiently small § > 0. Define

o
g.—j.[O,l] R,

i.e. f=gj. Then g has a negative minimum in some ¢y €]0, [].

Let o be a unit speed minimizing geodesic from p = o(0) to ¢(tg). For sufficiently small n > 0 the
point ¢(tg) is not a cut point of o(n) along o since otherwise o(n) were a cut point of c(tg) along o~
and o~ ! could not be a minimizing geodesic from ¢(¢y) to p. That obviously contradicts the fact that
0 is a minimizing geodesic from p to c(ty). Define

rpi=n+d(o(n),c()):[0,]] =R (7.6)

and observe, that
r(t) = d(p,c(t)) < d(p,o(n)) + d(a(n),ct)) =n+d(o(n),ct)) =ry(t) (7.7)
ry(to) =1+ d(a(n), c(to)) = d(p, c(to)) = 7(to), (7.8)

since ¢ is minimizing. Now define

ep:=mygory:[0,]] =R (7.9)
fni=ey—e:[0,]] =R (7.10)

fn=eg—eze—e=/f, (7.11)

fn(to) = ey(to) = e(to) = mx(ry(to)) — e(to) =" mx(r(to)) — e(to) = f(to)- (7.12)
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Therefore the function

9n ::f—v:[O,l]—ﬁR

J

has a negative minimum in ¢g and we obtain

fn(tO) _ f(to)
J(to)  J(to)

We may now modify 4.13 used in the proof of 4.18 in order to obtain

gy(to) = = g(to) < 0.

1";7 = (¢, gradda(n)>

iy = Hess dy ) (¢, ¢) < ctp(my —n)|et?
and again
B2 )P = P = 1= e =12
In particular we obtain
()2 =1—et|? <1 <l

Therfore the derivatives satisfy:

7.
en & (my o) = (mil 0 1) () + 1l 0 1y
413 (csk OT,])(T,:])Q + sy, ory, - 7";7/
(7.15) /92 12
< (esgory)(ry)” + sny oy - ety (ry — n)|[e ||
(7.16

= (e 0y (r)? + smc oy - cti(ry = ) (1 = (1))%)
= ¢y, oy + (Csi O?“n)((T%)Q — 1) +sn, ory - cty(ry —n)(1 — (7“;7)2)
= sy oy + (s 0m) (1 = (17, )3 (cty(ry — 1) — (cty ory))

S g o my + (s org) (1= (7)) (tu(ry — 1) — (¢t ory)

We would like to bound this expression at tg and therefore choose a small € > 0, such that

Vit € 10,1] : d(p,c(t)) > 2¢
YVt € [0,1] : d(p,c(t)) + e < Ry
n<e

where the last condition is assured by shrinking n if necessary. This implies

VEe[0,1] 25 £ dip,elt) < dp,o(n) +d(o(n),t) = 1+ d(o(n), ) P r,
< 04 d(o(n), ) + dip.elt) < 20 + puas dp.e(s)) < max d(p,e(s)) + 25
Define:
my = max(sn(6) | 0 < ¢ < max d(p.cls) + 2¢)
my = ma{ctl (t) | € < ¢ < max d(p,c(s)) +2¢)
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Equation (7.22) together with definition (7.23) implies that

Vt €[0,1] : (sn,ory)(t) < my. (7.25)
By the mean value theorem and definition (7.24)

cty(ry — 1) — cte(ry) < man. (7.26)
Therefore we can bound (7.18) by

ep < 1—rmgory+ (sncory) (1- (7“7,7)2) (ct(ry —m) — (ctxory)) < 1=K my oy +miman.
—_———

<ma by (7.25) <1 by, (7.17) <man ,by (7.26)
(7.27)

We obtain

g (t0)j(to) + 2 gy (to) ' (to) + gy (to)" (to) + Kgy(to)j(to) = (gJ + gni") (to) + Kgy(to)i(to)

——
=0
. . 7.13 7.10
= (993)" (to) + Kgy(to)j(to) 729 ) (t0) + K fy (to) ey (e — €")(to) + Key(to) — rey(to)
(7.27)

= ep(to) + rey(to) — (" — rey)(to) < 1 — Km0 ry(to) +maman + key(to) — 1
—_———

=1
= miman

and therefore

) ) . 75 )
gn(to)jo(to) < miman — gy(to) (5" (to) + j(to)) ) gy + agn(to)i(to)
7.13 7.12
(71 miman + a fy(to) 12 miman + af(to).

This implies gy (o) < 0 for small > 0, which contradicts the hypothesis that g has a minimum in #o.
This proves the first statement under the hypothesis l; +1s +1 < 2R, and thus in particular for k < 0.
STEP 4: In case k > 0 remember the hypothesis I; + lo > [. Define

to :=sup{t € [0,1] | l1 +d(p,c(t)) +t <2R.} >0

and for any ¢ €]0,to[ let ¢; : [0,d(p, c(t))] — M be a minimizing geodesic from p to ¢(t). The triangle
Ay = (e1, ¢, ][0, t]) satisfies the hypothesis of the first statement and we obtain

i+l +t<2R,.
by definition of t3. Now ¢t <1 < R, and thus

}52) 0202t d(p,(3)) = B

Thus diam(M) = R, and so M is isometric to S”(1/+/k) by Cheng’s Theorem 6.13. Contradiction!
STEP 5 ("(i)=(ii)”): Choose a variation H of o(t) = ¢;(l3¢), 0 < ¢t < 1, such that H(s,0) = p and
H(s,1) =c(s), s > 0. We obtain

— cos(ar) = (é1(0),é(0)) = DB (H(s, ))lso-

Choose a corresponding variation H ind M?2, where H(s, ) is the unique minimizing geodesic from p
to ¢(s) (notic that ¢(s) is not antipodal to p since l; + l2 + 1 < 2R,;). We obtain

—cos(an) = (é(h), &(0)) = OsE(H (s, _))ls=o-
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By (i) and since H(s, ) as constant speed, we obtain

B(H(s, 1)) = 3 L(A(s, ) = 3d(.e(s)) < 5d(p(5))? < 5 L(H(s, ) < B(H(s, ),

1

5 S _

thus cos(ay) < cos(@y) and therefore (ii).

STEP 6 ("(ii)=(iii)"): First assume [ < R,. Since l; < R, the curves ¢ and ¢ are minimal in M2.
Die inequality is a direct consequence of the triangle inequality provided d(c1(0),¢(l)) <1 —1;. In
case l(a1) = d(c1(0),¢(l)) > 1 — 1y apply (ii) to the triangle (c1,c2,c), where ¢z : [0,{(c1)] — M is a
minimizing geodesic from ¢;(0) = p to ¢(). By (ii) we obtain a; < «; for the corresponding comparison
triangle. By definition [(c;) = f(«;) and thus the statement follows from Lemma 7.3. We have proven
(iii) in case | < Ry. The case | = Ry, follows by taking limits.

O

7.3 Application: Gromov's Theorem

We would like to discuss an application of Toponogov’s Theorem to the Fundamental Group. Therefore
it is necessary to introduce the concept of a short basis. As usual let M be a complete connected
Riemannian n-manifold and denote by = : M — M a universal covering. Choose any p € M and
define p := w(p) € M. As usual we identify m (M, p) with the group G of deck transformations of .
Remember (c.f. 5.6), that

X ={gp|gcG}

is a discrete set. In case 0 < € < i(p) we obtain
B.(dp) N B:(hp) # 0 = g = h.
Also remember (c.f. 5.8), that ||g||5 = d(p, gp) and

lglls = llg~" 115 lghlls < llgllz + lIAll5-

7.6 Definition (short basis). Define subsets B; C G, i € N, inductively defined as follows:
(i) Define go :=e, By :={g0}-
(ii) Assume B; = {go,...,gi} has been defined. Denote by G; C G the subgroup generated by B;.
We distinguish two cases:
CASE 1 (G; # GQ): Define X; :={gp | g € G;}. The set X \ X is discrete and not empty. Thus
there exists at least one element ¢ € X \ X; having minimal distance to p (notice that ¢ does not
have to be unique). There exists a unique g;+1 € G such that g;+1p = ¢. Notice that

gi+1ll5 = ,Lain, lgll5-
Define B; 11 := B; U {gi_,_l}.
CASE 2 (Gz = G) Define Bi—l—l = B,.
Any
B = U B, CG
€N

obtained in that way is a short basis of G. We call the procedure above the short basis algorithm.

7.7 Lemma (Properties of a short basis). Let B = {go, 91,92, ...} be a short basis of G.
(i) For any i < j
~1
lgills < llgslls < llg" gl
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(ii) B is a finite or at least countable generating system for G.

(iii) Let M be compact and d := diam M. Then any g; € B satisfies ||g;|| < 2d and furthermore
|B| < o0.

Proof.
(i) The first inequality holds by construction. To see the second, notice that ¢ < j implies

gi € Gj1 gj ¢ Gj—1.

Together this implies gz-_lgj ¢ G_1, since otherwise there exists h € Gj_; such that gi_lgj =h,
which implies g; = g;h € G;_1. So by construction

lgills < llg; " g;ll5-

(ii) If in the definition of a short basis the case 2 occurs one time, then B is a finite generating system
of G by definition. If this does not happen, B is at least a countable set. Let g € G be arbitrary.
Clearly there exists R > 0 such that ||g||; < R. The set

X N Br(p)
is compact and discrete, hence finite. Thus the short basis algorithm treats g after finitely many

steps: Either there exists some ¢ such that g = g; or g € G;.

(iii) We have shown in Theorem 5.9, (i), that the elements g € G satisfying ||g[|; < 2d already generate
G. Since X N Byy(p) is again finite, the statement follows.

O

7.8 Theorem (Gromov). Let M be a complete connected Riemannian n-manifold.

(i) If all the sectional curvatures K of M satisfy K > 0, then 71 (M) has a finite generating system
B, such that
|B| < 5%.

(ii) If M is compact and if all the sectional curvatures K of M satisfy K > —\? for some A € R,
then 71 (M) has a finite generating system B, such that

|B| < (34 2cosh(2A\d)) 2,
where d := diam M.

Proof.

(i) Choose a universal Riemannian covering 7 : M — M, p e M, and let B be a short basis of M
(we employ all the notation from Definition 7.6). Denote by v; € SM the unit vector pointing
in the direction of g;p, i.e. exp;(|gillzvi) = gip-

STEP 1: We claim, that for any 7 < j, we obtain
7r
Qi 1= K(’U@,Uj) > g
This can be seen as follows: Consider the triangle in M obtained by joining p, g¢;p, g;p by
minimizing geodesics. We would like to apply Toponogov’s Theorem 7.4,(ii) to this triangle and

compare it with a triangle in Euclidean space. Therefore we remark that its geodesics have
lengths d(p, g;p) = ||9ills, d(P, 9;0) = ||g;]| and since g; is an isometry of M

5.8
d(g:ip, 9;P) = d(B, 9; " 9;P) = llg; g5 ll5 < g7 Mllz + lgills = llgslls + 1lg;ll5-
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(if)

So we may apply 7.4,(ii) and obtain

Qi 2 Qg
where @;; is the corresponding angle in the comparison triangle in Euclidean space. By Lemma
7.7 the side with length |g; g;|| is the longest. By basic Euclidean geometry, the angle in the
vertex opposite to the longest side is a;; > 3.
STEP 2: This shows, that the various By /s(v;) C Bg/2(05) C T;M are all disjoint. Denoting by
wy, the volume of the n-dimensional unit sphere, we calculate:

. 1 37l
vol ( U Bl/g(vi)) < vol(Bya(05)) = |Blzrwn < Srwn = |B| < 3"
0<i<|B|-1

STEP 3: This is almost the statement we want to prove. The bound can be sharpened by us-
ing both of the following optimizations: First denote by w; € SﬁM the unit vector poining in
direction g, 15. By the same reasoning as in the previous step L(wi, wj) > 5,1 < J, so the
various B1(w;) are disjoint from one another as well. By replacing g; with g; I we obtain, that
L(w;,vj) 22 5,1 < j, as well.
Second we may replace the fulls balls By /y(v;) by their inner halfs B, s2(vi). These satisfy
31/2(vi) C B\/E/Q(Oﬁ). Now we obtain:

s S 1,1 53 n
vol ( U Bl/Q(Uz‘) U U B1/2(wi)) S VOI(B\/5/2(017)) =2 §’B|2—nwn S 2700” = ’B| S 52,

0<i<|B|-1 0<i<|B|-1

We may assume A > 0.

STEP 1: Again consider the triangle of the geodesics joining the points p, ¢g;p, g;p. These geodesics
have lengths I; := ||gillz, I; == llg;ll5, lij := ll9; *g;ll5 Again we may compare the angle a;; to an
angle @;; in a corresponding comparison triangle but now in M2, and obtain cos(«;) < cos(@;;).
In M?,, the law of cosines (c.f. A.13 and 2.7) takes the form

cosh(Al;;) = cosh(Al;) cosh(Al;) + sinh(Al;) sinh(Al;) cos(a;).
Alltogether we obtain

cosh(Al;) cosh(Al;) — cosh(Al;;)
sinh(Al;) sinh(Al;)

cos(a;j) < cos(ayj) =

STEP 2: We claim, that the expression on the right hand side is monotonously increasing in I;
on |0, 2d] and therefore define a := cosh(Al;), b := cosh(Al;;), ¢ := sinh(Al;) and calculate

(cosh()ﬂf)a - b)’ _ acAsinh(At) sinh(At) — ¢\ cosh(At)(cosh(At)a — b)

sinh(At)c sinh(At)2¢?

acAsinh(\t)? — acA cosh(\t)? + bed cosh(At)
- sinh(At)2¢?

acAsinh(At)? — acA(1 + sinh(\t)?) + be) cosh(\t) —ac + be cosh(At)
- sinh(\t)2¢? - sinh(\t)2c?

We have to show that the last expression is > 0. Therefore it suffices to show, that —ac +
becosh(At) > 0. We assume ¢ > 0 (= ¢ # 0) and transform:

— ac + becosh(At) > 0 <= becosh(At) > ac <= beosh(M\t) > a
Finally, to show that the last inequality holds, consider:
bcosh(At) = cosh(Al;;) cosh(At) > cosh(Al;)
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STEP 3: Since [; < 1; <[;; < 2d by Lemma 7.7, the monotonicity and cosh? — sinh? = 1 implies:

cosh(Al;)? — cosh(\;;) < cosh(Al;)? — cosh(Al;) _ cosh(Al;)% — cosh(\l;)
sinh(\l;)? - sinh(Al;)? cosh(\l;)% — 12

_ cosh(Alj)(cosh(Al;) —1)  cosh(Aly) (i) cosh(2\d)

~ (cosh(Al;) — 1)(cosh(Al;) +1)  cosh(Al;) +1 ~ cosh(2A\d) + 1’

cos(aj) <

where the last inequality (1) is due to the fact, that the expression in monotonously increasing
in [; as can be seen via

( cosh(At) )’ _ Asinh(At)(cosh(At) 4+ 1) — Asinh(At) cosh(At) 1

cosh(At) + 1 (cosh(At) 4 1)2 ~ (cosh(M) + 1)2 > 0.

STEP 4: Define
cosh(2\d)
) < gj

T areeos (cosh(2)\d) +1

and proceed as in the proof of the first statement: Now the By (a/2)(vi) C T,;M are pairwise
disjont. Notice that cos(2a) = cos(a)? — sin(a)? = 1 — 2sin(a)? and therefore by definition of a

1 cosh(2Ad)
sin (3>2: 1—cos(a) _ 1~ cosh@d)T _ 1
2 2 2 2 cosh(2\d) +2°

Now we obtain C; := Bsin(a/g)(vi) C B\/W(Oﬁ) and therefore

IB| < (1+sin(e/2)*)3 — ( 1 )2>§ = (1+2cos(2\d) +2))2 = (3 + 2cos(2Ad)))?.

sin(a/2)" sin(a/2

O
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8 Synge's Theorem

Before we discuss further applications of Toponogovs theorem, let’s discuss Synge’s theorem first. Its
proof motivates an estimate on the injectivity radius by Klingenberg.

First of all we discuss some basic facts regarding parallel transport and orientations and remind some
elementary concepts from homotopy theory.

8.1 Theorem. Let M be an oriented Riemannian manifold and let ¢ : [a,b] — M be a piecewise
smooth curve. Let P : Ty M — T3 M be the parallel transport along c. Then F. is orientation-
preserving.

Proof. Since composing paths corresponds to composing parallel transports, we may assume, that ¢
is smooth and that ime C U, where ¢ : U — U’ C R" is a chart for M. Let P, a <t < b, be the
parallel transport along c|[a, t]. Denote by X; the parallel translates of dp; along ¢, i.e.

Xz(a) = agpi’c(a) Pt(890i|c(a)) = Xz(t)

We may expand X; = A{ Opj. Then the Az are solutions of an ODE satisfying Ag (a) = (55 and hence
smooth in ¢. The matrix (Az (t)) is a coordinate representation of P; with respect to the dy;, 1 <i <mn,
and P, is invertible. This implies det(A7(t)) # 0 for all ¢ € [a,b]. Since det(A47(a)) = 1 this implies
det(AZ(t)) > 0 for all . O

8.2 Definition (free homotopy classes). Let ¢ : [0,1] — M be a continuous curve. Then c is a loop,
if ¢(0) = ¢(1). A free homotopy between two loops ¢ and ¢ is a continuos map H : [0,1] x [0,1] — M
such that

vt €10,1] : H(0,t) = c(t) vVt € [0,1]: H(1,t) = (t) Vs €10,1]: H(s,0) = H(s,1).

In that case ¢ and ¢ are freely homotopic. The free homotopy class of ¢ is denoted by [c]z. The set of
all free homotopy classes of curves in M is denoted by Z(M).

8.3 Remark. Notice that this concept is weaker than path homopy. If ¢ and ¢ are two loops based
at a certain point p € M, i.e. ¢(0) = ¢(1) = p = ¢(0) = (1), then ¢ and ¢ are path homotopic, if
there exists path homotopy, i.e. a free homotopy H : [0,1] x [0,1] — M which additionally satisfies
Vs € [0,1] : H(s,0) = p. The path homotopy class of ¢ is denoted by [c].

8.4 Lemma. Any two path homotopic loops in M based at any point p € M are freely homotopic.
The canonical inclusion f : m(M,p) — Z(M) is surjective and in addition

Viclr, [d]r € m(M,p) : f([c]x) = f([d]x) <= [c]r is conjugate to [']x in 71 (M, p)

Proof.

STEP 1 (Surjectivity): Let [¢]z € Z(M) be arbitrary. Since M is path connected there exists a path
o :[0,1] — M such that ¢(0) = p and o(1) = ¢(0) = ¢(1). Clearly the composite o * ¢ x 0! is a loop
based at p, so [0 * ¢ * 01| € w1 (M, p). Furthermore f([o * c* 07 !];) = [¢]z. A free homotopy can
be constructed as follows: For s € [0,1] let H(s, ) be the path from o(s) to o(1) (traversing o at
threefold speed), then from o(1) = ¢(0) traversing ¢ at threefold speed to ¢(1) = o(1) and then from
o(1) again at threefold speed back to o(s).

STEP 2 (Conjugacy):

O

8.5 Corollary (null-homotopy). A loop ¢ is null-homotopic in 71 (M, p) if and only if it is freely
null-homotopic.
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Proof.

"=" Follows directly from the fact that every path homotopy is a free homotopy.

"«<" By the Lemma 8.4 above, [c|z = [cp|z (Where ¢, is the constant curve at p) implies, that there
exists [o] € m (M, p) such that

[c]x = [a]ﬂ[cp]ﬂ[a];l = [epln-

O

8.6 Lemma. Let M be compact and let ¢y : [0,1] — M be a loop in M, which is not freely null-
homotopic. Then

Lo :=inf{L(c) | ¢ :[0,1] — M is freely homotopic to cp} > 0
and there exists a closed geodesic ¢ : [0,1] — M, which is freely homotopic to ¢y and has length L.

Proof.

STEP 1 (Existence of ¢): Let (¢,) be a sequence of loops freely homotopic to ¢y such that L(c,) — Lo
as n — 00. Since reparametrization changes neither the homotopy class nor the length, we may assume,
that all the ¢, have constant speed parametrizations. ' Since every convergent sequence is bounded,
we may assume L(c,) < Lo+ 1. We calculate for any n € N and any ¢, ¢’ € [0,1]

d(cn(t), en(t)) < Lienl[t, t']) = /t lén(®)lldt = L(en)lt —t'| < (Lo + 1)|t — /|

and thus ¢, is Lipschitz continuous with Lipschitz constant Lip(¢,) < Lo + 1 independent of n. Con-
sequently the theorem of Arzeld-Ascoli implies, that there exists a subsequence converging uniformly
to a loop ¢ : [0,1] — M. We assume that this sequence is ¢, itself and claim that this loop has the
desired properties.

STEP 2 (free homotopy): Let i(M) > ¢ > 0 (this is possible due to the compactness of M). Uniform
convergence implies in particular

IneN:Vte[0,1]:d(en(t),c(t)) <e.

Denote by ¢; : [0,1] — M the unique geodesic from ¢, (¢) to ¢(t),0 < ¢ < 1. Then H : [0,1]x[0,1] — M,
(s,t) — ci(s) is a free homotopy from ¢, to ¢ (smoothness follows from the smoothness of exp and the
hypothesis € < i(M)). Consequently c is freely homotopic to ¢, and thus to co.

STEP 3 (Length): By definition and step 2 we have L(c) > Lg. For any € > 0 there exists N € N such

that for all n > N the curve ¢, also has Lipschitz constant Lip(c,) < Lo + 5. Since ¢, — ¢ uniformly,
there exists N’ > N such that d(c,,c) < §. Thus

V[t t'] € 10,1] : d(c(t), c(t')) < d(c(t), cn(t)) + den(t), cn(t')) + d(cn(t'), c(t’)) < Lo+ e

which implies Lip(c) < Lg. In particular since ¢ has constant speed as well

/\ e = ooy = Jig A < iy FPO <

t t\O -

Alltogether, this implies L(c) = Ly and therefore ¢ has constant speed Ly.
Since c is freely homotopic to ¢y and ¢g is not null-homotopic, ¢ is not null-homotopic as well and in
particular not itself a constant map. Thus Ly = L(c) > 0.

"These can be obtained by first reparametrzing the curves by arclength and then scaling them back to [0,1] by a
constant factor. This factor equals the length of the curve.
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STEP 4 (Geodesic): Suppose to the contrary, that c¢ is not a closed geodesic. Then there exists a
to € [0, 1], such that for arbitrariliy small ¢y > ¢ > 0 the curve ¢|[tg — &, to + €] is not minimizing from
c(to — €) to c(tg +¢) . If we replace this segment by a minimizing segment, we obtain a closed curve
¢ which is freely homotopic to ¢ (and thus to ¢p) having length < Lg. Contradiction!

O

8.7 Theorem (Synge). Let M be a compact connected orientable Riemannian manifold of even
dimension. If M has strictly positive sectional curvature everywhere, then M is simply connected.

Proof. Suppose 71 (M) # 0. Then there exists a non-trivial path homotopy class [c] € w1 (M).
By Corollary 8.5 this class is also not freely null-homotopic. By Lemma 8.6 it has a representative
¢:[0,1] — M, which is a non-trivial closed geodesic minimizing the length over its own free homotopy
class.

By Lemma 8.9 proven below there exists a periodic parallel unit length vector field X along c. Define
H ] —e,e[x[0,1] — M by (s,t) — expg)(sX(t)). Then ¢ := H(s, _) is freely homotopic to ¢ (since
H itself is a free homotopy). Now consider the index form (c.f. |2, 10.14] along ¢ and calculate

O2(L(cs))|s=0 = I(X, X) = /DtXJrRm(chX /KXc)dt<0

by hypothesis. This contradicts the fact, that ¢ is length minimizing (c.f. [2, 10.13]). O

8.8 Remark. With a similar argumentation one can show a converse: If M is compact, connected of
odd dimension and has strictly positive sectional curvature, then M is orientable. Argueing as in 8.1
one shows, that it does not depend on the free homotopy class of the closed curve ¢ whether or not P,
preserves the orientation. If M is not orientable, there exists a geodesic ¢ as in the proof of 8.7, such
that P. does not preserve the orientation.

8.9 Lemma. Let M be oriented and of even dimension. Let ¢ be a nontrivial closed geodesic in M.
Then there exists a periodic unit length parallel normal vector field along c.

Proof. We may assume c : [0, 1] — M has constant speed. Denote by P, : T,M — T,M, p := ¢(0),
the parallel transport along c¢. By Theorem 8.1 P, is orientation-preserving, i.e. det(FP.) > 0. Since ¢
is a closed geodesic P.(¢(0)) = ¢(1) = ¢(0) by uniqueness of geodesics (the parallel translate of ¢(0) is
¢(t)). This implies alltogether, that P, restricts to an orientation-perserving isometry on V := ¢(0)*.
By hypothesis dim V' is odd. Basic linear algebra 2 implies the existence of a unit vector Xy € V
satisfying P.(Xo) = Xo. Let X be the parallel translate of Xy along ¢ satisfying X (0) = Xy. Then

X(1) = Pe(Xo) = Xo = X(0).

"1n case to € {0,1} one may periodically extend ¢ to all of R.

2More precisely: By choosing any positive ONB, we may consider a coordinate representation A of P. acting as an
isometry on R™. Since n is odd, there exists at least one real eigenvalue \. Since A is an isometry, for any unit
eigenvector v

Al = [AlJo] = [Av] = [Av] = [v] = 1,

thus A = +1. It may be possible, that A is not diagonalizable over R and may have complex eigenvalues. But for
a complex eigenvalue p, its conjugate [ is also a zero of the characteristic polynomial. So the number of complex
eigenvalues is even and its product is positive since pji = |u|?>. Therefore the product of real eigenvalues must also
equal 1, since otherwise the determinant of A was negative, which contradicts our assumption, that A is orientation
preserving. Therefore at least one real eigenvalue A must equal +1.
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9 The Sphere Theorem

The Sphere Theorem by Rauch, Klingenberg and Berger is one of the most celebrated theorems in
global Riemannian geometry (aside from the theorem of Gauss-Bonnet for surfaces).

9.1 Theorem (Sphere Theorem). Let M be an n-dimensional compact simply connected manifold.
If there exists a § € R such that all sectional curvatures K of M satisfy

1
1<5§K§1,

then M is homeomorphic to S™.

9.2 Remark.

(i) The bounds for the curvature are optimal, i.e. the theorem is wrong for 6 = %. Up to normaliza-
tion the standard metric on C P" is a counterexample (c.f. chapter 10). This is the reason why
C P" is sometimes called "the roundest space which is not a sphere”.

(ii) The question wether or not M is also diffeomorphic to S™ had been subject to much research
for a long time. The problem was the existence of exotic spheres proven by Milnor. These are
spaces which equal S™ topologically, but have a different smooth structure. In 2007 Brendle and
Schoen were able to prove, that M is in fact always diffeomorphic to S™ with its standard smooth
structure. Their result is known as the “Differentiable Sphere Theorem” and uses the Ricci flow.

Before we are able to prove this theorem we require some preparation.

9.3 Lemma. Let M be compact with sectional curvature K < x, k € R. Then
. . l
i(M) > min{ R, 5},

where [ is the length of a shortest non-trivial geodesic in M.

Proof. Since M is compact, there exists p € M and v € S,M such that

Define q := exp,,(to(v)v). By Corollary 4.4 there are two possibilities:
CASE 1: If p is conjugate to ¢ along a minimizing geodesic, there exists a Jacobi field J along ¢ such
that J(0) = 0 = J(to(v)). By Theorem 4.7, this implies to(v) > Rj.
CASE 2: If there exists a closed geodesic ¢ through p and ¢ such that ¢(0) = ¢(2to(v)) = p, c(to(v)) = q,
then L(c) = 2ty(v).

O

9.4 Lemma (Klingenberg, even dimensional). Let M be compact, oriented, of even dimension and
let all the sectional curvatures K satisfy 0 < K < k. Then

i(M) > R,

Proof. Suppose to the contrary that i(M) < R,. By Lemma 9.3 there exists a shortest closed geodesic
con M with length | = 2i(M) < 2R,,. By Lemma 8.9 there exist a periodic parallel normal unit length
vector field X along ¢. The map | —¢,¢[x[0,1] — M

(5,8) = ¢5(t) := expeqy (s X (1))
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is a free homotopy and a smooth variation of the geodesic ¢. As in the proof of Synge’s Theorem 8.7,
the hypothesis K > 0 implies, that I(X, X) < 0 and therefore s — L(cs) as a local maximum at s = 0.
So for small s > 0

L(cs) < L(c) =1=2i(M) < 2R,

and

d(cs(t),cs(0)) < =L(cs) < i(M),

N |

since ¢ is a closed curve. Thus there exists a unique minimizing geodesic o5, : [0,1] — M joining
cs(0) and cs(t), 0 <t < 1. The map [0,1]3 — M, (s,t,7) — 054(r) is smooth. For any fixed s there
exists ¢(s) such that V¢ € [0,1] : L(0,4(s)) > L(0s:) due to the compactness of [0, 1]. By construction
¢ is not a trivial one-point curve. Hence ¢ is non trivial, so by construction o, () is nontrivial, thus
0 < t(s) < 1. Now fix s and define the variation H : [0,1]2 — M, (t,7) — os(r). The length of this
variation has a maximum at ¢ = ¢(s) by definition and thus the first variation formula implies

0 = Oy L(Hy)|i—t(s) = (OeH (t, 1) |s=t(s)> T () (1)) = (FeCs(t)s=t(s)> Ts,1(5) (1))

and therefore
Gs,1(s) (1) L és(t(s))-
Since c¢ is a closed geodesic Vt € [0,1] : d(c(0), c(t)) = min{t,1 — ¢} and therefore

1
lim t(s) = 7

Any accumulation point of (o (s))s as s — 0 is a minimizing geodesic o : [0, 1] — M joining ¢(0) and

c(1) which satisfies

1
a(l) Le(2).
2
So we have found three different minimizing geodesics joining p := ¢(0) and ¢ := c(%) By Theorem
4.3 p and ¢ are conjugate, which contradicts d(p, q) < Rj. O

9.5 Lemma (Klingenberg). Let M be a compact simply connected manifold with sectional curvatures
K satisfying

1

- <K<1.

1 <
Then

i(M) > .

9.6 Remark. The proof of this lemma is rather extensive. In odd dimensions it requires Morse theory,
which is beyond the scope of this script to cover and we will therefore go without it.
In even dimensions we argue, that Lemma 9.4 for k = 1 implies

i(M)ZRH:%:ﬂ.
9.7 Lemma (Berger). Let M be complete and connected, p € M. Let the function d, := d(p, _) have
a local maximum in g. Then for every v € T,M, v # 0, there exists a minimizing geodesic ¢ from ¢ to
p such that

£(e(0),0) < 3.

Proof. Let o be the geodesic through ¢ with initial velocity v and let ||v]| = 1. We distinguish two
cases.
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CASE 1: There exists a sequence of reals ¢; \ 0 corresponding to a sequence ¢; of minimizing geodesics
from o(t;) to p such that

£(¢(0),0(t:)) <

We may identify the sequence ¢; with a sequence in T'M by ¢; — ¢;(0). This sequence is contained in a
compact subset and therefore has an accumulation point, which corresponds to a minimizing geodesic
¢ from ¢ to p satisfying

wm

£(¢(0),v) <

o 3

CASE 2: Since M is complete the only way how this can fail is, that there exists € > 0, such that for
all ¢ €]0, [ all minimizing geodesics (there exists at least one such geodesic ¢;) from o(t) to p satisfy

£(64(0),6(t)) > g

We may assume that ¢; has a constant speed parametrization ¢; : [0,1] — M and remark that (¢,7) —
¢(r) is eventually discontinuous in ¢. Nevertheless for any fixed ¢ we may choose a smooth variation
H :] —0,0[x[0,1] — M, (s,7) +— cs(r), satisfying ¢;(0) = o(t — s) and ¢ 5(1) = p. By the first
variation formula
Os(Lets)|s=0 = —(0sH (8, 7)|(s,r)=(0,0), ¢4(0)) = —(9s0(t — 8)[s=0, ¢:(0))

= (0(1),¢(0)) = [la(@®)]l[l¢¢ (0] cos(£L(a(2), ¢:(0))) <0
by hypothesis. Thus for small s > 0, we obtain L(cs) < L(c¢). But this implies for such s

d(p,o(t —s)) < Llct,s) < L(ct) = d(p, o (s))

so d(p,o(t)) is monotonously decreasing as ¢ \, 0. This is absurd since d,, has a local maximum in g.

O

In the following we will explain Bergers construction of a homeomorphism S” — M if M satisfies the
hypothesis of the sphere theorem.

9.8 Lemma (Existence of hemispheres). Let M be compact, connected, let all the sectional curvatures
K satisfy K > § > 0 and let diam(M) > 7 Let p,q € M such that d(p,q) = diam(M). Then
= (P

)UB_=_(q) = M.

Proof. We may assume 6 = 1 (since otherwise we may scale the metric, c.f. A.15). Let x € M
and assume x ¢ Bz (q), i.e. d(z,q) > 5. Let ¢; be a minimizing geodesic from ¢ to x. By Berger’s
Lemma 9.7 there exists a minimizing geodesic ¢ from ¢ to p such that o := £(¢(0),¢1(0)) < 5. Now
the statement follows from Toponogov’s Theorem 7.4,(iii): If M is isometric to a sphere the statement
is trivial anyway. By the Theorem of Bonnet/Myers we obtain [ := L(c),l; := L(c1) < w. Therefore

Toponogov’s Theorem is applicable and we obtain

d(p,z) < d(e(l),er(ly)).

Now ¢, ¢, are geodesics in the sphere S having lengths [,/;. Connecting the points ¢(1), ¢1(l1) with a
minimizing geodesic ¢y of length I we obtain a spherical triangle and therefore by the law of cosines

(cf. A.13)
cos(l2) = cos(l) cos(l1) + sin(l) sin(ly) cos(ar) > 0,

since [,l; > § by construction. Alltogether

d(p7 l’) < d(é(l)aél(ll)) = l2 <
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9.9 Lemma (Existence of an equator). Let M be compact, connected and simply connected and let
all the sectional curvatures K of M satisfy % < < K < 1. Then diam(M) > w. If p,q € M such
that d(p,q) = diam(M), for any unit speed minimizing geodesic ¢ starting at p there exists a unique

t €]0, 2\”/3] such that d(p, c(t)) = d(q, c(t)).

Proof. By Klingenberg’s Lemma we obtain

9.5
diam(M) > i(M) > .

Now let p,q € M such that d(p, q) = diam(M ) and define ¢5 := QWW'
STEP 1 (Existence of t): Define f : [0,t5] — R by

t— d(p,c(t)) — d(g, c(t)).

It is clear, that this function is continuous. We obtain

f(0) = d(p, c(0)) — d(q,c(0)) = —d(q,p) < 0.

Since t5 < m, we obtain that c|[0,¢5] is minimizing and therefore x := c(t5) € 0By, (p).

We claim that @ € By,(q): Otherwise x ¢ By, (q), so there exists an open neighbourhood U near z such
that U N By, (q) = 0. But by construction x € dB,(p) and so by Lemma 9.8 and the definition of the
topological boundary U N By, (q) # (), which is a contradiction.

Thus we obtain

f(ts) = d(p, c(ts)) — d(q, c(ts)) = ts — t5 = 0.
By the intermediate value theorem there exists t €]0,¢5] such that f(t) = 0.
STEP 2 (Uniqueness): Assume there are 0 < ty < t; < t5 < 7 with the desired property, i.e.

to = d(pv C(to)) = d(Qa C(tO))a b1 = d(pv C(tl)) = d(pa C(tl))'

Let ¢o be a unit speed minimizing geodesic from ¢ to ¢(¢p). The composite curve o := cq * c|[to, t1] has
length
L(O‘) = L(Co) + L(CHto,tl]) =ty + (t1 - t(]) =1

and joins ¢ and c¢(t1). By hypothesis ¢ is minimizing and therefore a geodesic. Thus o is smooth and
therefore ¢y(tg) = ¢é(tg). Since co(to) = ¢(to) by construction the geodesics ¢ and ¢ are equal on their
common domain of definition. In particular

p=c(0) = cp(0) =g,

which implies diam(M) = d(p, q) = 0 < 7. Contradiction!
O

9.10 Remark. The uniqueness of ¢ in the previous Theorem 9.9 implies, that we can interpret this
as a continuous function t : S,M —]0, 2L\/3] Since the roles of p and ¢ may be interchanged, we also

obtain a continuous function ¢ : S;M —]0, 2%/5]
Proof. (of the Sphere Theorem) Following Berger we construct a homeomorphism h : S — M.
STEP 1 (Construction of h): Since M is compact there exist p,q € M such that

9.5
d(p,q) = diam(M) > i(M) > .
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With t defined as in the Remark 9.10 above, define f : T,M \ {0} — BQL\/S (0p) C TyM by

v\ v
V= t(m) m
For any « > 0, this function satisfies f(av) = f(v) and
d(epr(f(U)),p) = d(expp(f(v)), q)

by construction. Choose an isometry I : T5S™ — T, M, for some p € S". Denote by q := —p the
antipodal point of p. Define h : S — M by

P =P

exp, (452 - (f o Toexp; ) ()  d@.p) <3
xXr +— d(z.d _ — — uy

equ 7(:}75) . (equ 1 O expp Of O I e} eXij 1)(1:)) Y d(x’ Q) S 5

q =

STEP 2 (Continuity of h): Define M+ := B;Tg(p) and M~ := Bﬁg (q). First of all notice, that if
x = p obviously d(z,p) = 0 and therefore the two upper cases in the definition of h agree and define a
continuous function h* : H* — M™ C M from the upper hemisphere of S” to an upper hemisphere of
M. Analogously the lower two cases define a continuous function h= : H~ — B;W(q) C M. On the
equator HT N H~, we have d(z,p) = d(z,q) = 7/2 and therefore h*| g+ = b~ |g+np- and thus h
is continuous.

STEP 3: Careful analysis of the definition of h reveals that it is injective and surjective. Since S" is
compact and M is hausdorff, this automatically implies, that h~! is continuous (c.f. [4, 4.25]) and thus
h is a homeomorphism.

O

60



10 Complex Projective Space

10.1 Preliminaries

10.1 Remark. We denote by { , ), :C*"xC" — C

n
(u,v)p = Z w; U;
i=1

the canonical hermitian form on C™. Since C” is canonically isomorphic to R?”, we can also use the
Euclidean scalar product (_, ). — R:R"™ x R"

n
(. y)e =) wiyi
i=1

for 2n, i.e.
Yu,v € C™ : (u,v)e := (Re(u), Re(v))e + (Im(u), Im(v))e.

For any u,v € C™ remember the following relations from Linear Algebra:

(i) {(u,v)n = (Re(u), Re(v))e + (Im(u), Im(v)). + i((Im(u), Re(v))e — (Re(w), Im(v)).)

(11) Re(“a U>h = <u’v>e

(i) u Lpv=ulewv

(iv) u Levand u Le v = u Ly, v.

(v)
We will constantly index expressions with e resp. h to indicate dependence on the euclidean or
hermitian form unless it is clear that the expression is independent on that index. For example if

U C R?" is a complex subspace and x € R?", we denote & L U to express, that x is perpendicular to
U,sincex 1., U< x 1, U.

lull := llulle = {luln-

10.2 Definition (Complex projective space). The n-dimensional complex projective space is the set
of all lines in C™*1 i.e.

CP":={zeC"\{0}}/ ~,
where 21 ~ 29 : & IN € C : 29 = Az7.

We may also write C P" = §?"*1/ ~ where 21 ~ 23 :< Ir € S! € C : 25 = rz;. In both cases the
equivalence class of a point (zp,...,2,) € C""! is denoted by [20 : ... : 2,].

10.3 Remark (Complex structure). Remember that CP" is a manifold in a canonical way: For
any 0 < ¢ < n + 1 define U; := {[z0,...,2n]|z # 0} (this is well-defined) and ¢; : U; — C™,
(20, ..y 2n] — (Zii(zo, cevyZiy. .., 2p)) (this is also well-defined). These maps determine an atlas: Define
Y :C" = U, (21,...,2n) — [20:...: 1:...: z,] (where the 1 is at position i). We obtain:

20 1 Zn

1/%’(%([20:---¢Zn])):¢i(zli(20a-~a2i,-~7zn)):[Zi ....:Z—i:...:z—i]:[zo:...:zn]

(Pi(wi(zlau-vzn)) :wi([zl Pl Zn]) = (217'”7271)
thus v; = 30;1. If i # j, then the transition map on ¢;(U;) is given by
1 .
cpj(wi(zl,...,zn)):goj([zl:...:1:...:zn]):;(zl,...,zj,...,1,...,zn)
J

This is biholomorphic, so we have defined a complex structure on C P*. In particular C P" is a real
manifold and dimg C P" = 2dim¢ C P"* = 2n. Throughout this chapter we will usually think of C P™
as S?"*1/ ~ and as a real manifold.
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10.4 Definition (Hopf circles). The projection 7 : S?"*1 — C P" is called Hopf map. Its fibres are
called Hopf circles, i.e. for any p € CP"™ we call 7—1(p) a Hopf circle. Since 7 is surjective, we may
also think of C P™ as the set of all Hopf circles.

10.5 Lemma. For any x € S?"*! let H(x) be the Hopf circle through z, i.e. H(z) := 7~ !({n(x)}).
Then

H(z) = {e%z | p € R} T.H(x) = Riz.

Proof. The first equation holds by definition. Notice that R — H(x), ¢ — H(z)(p) := e¥¥x is a curve
in H(z) through z. We have .
H(x)(0) =iz #0

and since H(x) is a 1-dimensional manifold, we obtain the statement concerning the tangential space.
O
10.6 Lemma. The Hopf map 7 : S***1 — C P" is a smooth submersion. For any z € S"
ker my|, 2 Ca =: L,.

Consequently the restriction of .|, to any complement of L, is an isomorphism.

Proof. By construction 7 is smooth. Let ¢ : I — S?"*! be a smooth curve such that ¢(0) = z. In case
c(I) C H(x), the curve 7o ¢ is constant and therefore

0= (moc)(0) = mz(¢(0)) = ¢(0) € ker 7y

So Ty H (z) C ker 7|, and dim ker 7, |, > 1.
On the other hand, there exists 0 < i < n such that z; # 0, where we think here of x as z € S+ C
Cn™*+!. By composing with the chart we obtain

1 .
gpiowoc:;(CO,...,ci,...,cn).
(3

If we set ¢; := x; we still have n complex parameters left which generate 2n real linear independent
vectors. So dimim .|, = 2n and now the statement follows for dimensional reasons. O

10.7 Definition (distance). We define a distance on C P" by

d(p,q) := inf{ds(z,y)|z € p,y € q},
where ds is the distance on S?**1.

10.8 Lemma. This distance has the following properties:
(i) The infimum is allways attained, i.e. there exist x € p, y € ¢ such that d(p, q) = ds(z,y).
(ii) The value ds(zx,y) is the angle between z and y.
(iii) The distance satisfies d(p, q) < 7, so in particular

diam C P"* < g

Proof.
(i) This is a direct consequence of the compactness of 7~1(p) x 7~1(q) C S?"*+1.

(ii) Since z,y are contained in a plane, we can apply a suitable rotation and may as well assume that
z,y € S! C C and that = 1. In that case the curve ¢ : [0, arg(y)] — S!, t > €%, is a minimizing
geodesic joining = and y. Therefore ds(x,y) = L(c) = arg(y) = arccos((z,y)) = L(z,y).
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(iii) This is due to the simple fact, that x € p implies —x € p by definition.

We would like to construct a Riemannian metric on C P", such that the induced distance is d.

10.9 Lemma. Let ¢ : I — S**! be a geodesic, i.e. a great circle traversed with constant speed. If
there exists ¢ty € I, such that ¢ is perpendicular to H(c(tp)) in ¢(to), then for all ¢ € I, ¢ is perpendicular
to H(c(t)) in c(t).

Proof. We may write ¢ as ¢(t) = cos(t)x + sin(t)v, where z,v € S, Thus é(t) = —c(t) and we
obtain

Oy (ic(t), &(t))n = (ic(t), e(t))n + (ic(t), ét))n = ille(t)]] — ille(t)|] = O.

Thus t — (ic(t), ¢(t))e = Re(ic(t), ¢(t))n is constant, zero at one point, and hence identically zero. [

10.10 Lemma. Let p,g € CP" and =z € p, y € ¢ such that ds(z,y) = d(p,q) =: § > 0. Let
c:[0,6] — S**! the unique (§ < 7/2) unit speed geodesic from z to y . Then c is perpendicular to
the Hopf circles, i.e.

vt € [0,0] : e(t) L TepH(c(t)).

Proof. Let c, : [0,6] — S**! be the minimizing geodesic from z to e?y, —e < ¢ < e. Since
§ < =i(S*) the map H : [—¢,¢] x [0,8] — S*" 1, (s,t) — c,(t) is smooth in ¢ und ¢ (since we
could express this in terms of the exponential map). By the first variation formula and our choice of
x € p and y € g, we obtain (since €% € q):

0= 9y L(cy)lp—0 = (&(0), DpH (0, 0)|p=0)e = (¢(8), (ie"?y)|p—0)e = (¢(0), iy)e

Thus ¢(9) L. iy and therefore it is perpendicular to Riy = T),H (y). Using Lemma 10.9, we obtain the
statement. 0

10.11 Remark. The curve R — S?"t1 o i ¢%¢, is a geodesic of length & from ez € p to e¥?y.
Together with Lemma 10.10 we have reason to strongly suspect, that 7 o ¢ will be a geodesic in C P™
w.r.t. the Riemannian metric we have yet to construct.

Before we construct this Riemannian metric on C P", we can already guess the cut locus.

10.12 Lemma. Let pe CP", z € p, y,z L Cuz, ||z|| = ||y|| = 1, and let ¢,7 € R. Define the curves
c1,¢9 : R — S+ by

c1(s) := e™¥(cos(s)x + sin(s)y) ca(t) := cos(t)e™x + sin(t)z.

Then 7 o ¢1,m o ¢ are both curves in CP" starting at p. If there exists 0 < sg,tg < § such that

c1(s0) = ca(tp), we obtain sy = to and ey = z. In case sg,tg < 5, we have eV = . (If s, tg = /2,
there exists no additional condition for 1.)

Proof. By definition 7(c;(0)) = 7(e?¥z) = p = €z = ¢2(0). Analysing

cos(so)eVx +sin(sg)e™y = ¢1(s0) = calto) = cos(to)e™¥x + sin(ty)z
—_———

——
cCz e(Cax)+ eCux e(Ca)+
we deduce
cos(sg)eVxz = cos(to)ex sin(sg)e™Vy = sin(t)z.
Since sg,tg > 0 and |e™| = ||y|| = ||z]| = 1 the second equality implies sy = to. In case so,ts < 5, we
obtain cos(sg), cos(tg) # 0 and thus the first equality implies ™ = e/, O
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10.2 Fubini-Study Metric
Now we will construct the Riemannian metric on C P".
10.13 Definition. Let
H(n):={AeC™"| A" = A},

(n+1)n
2

where A* = A!. This is an R vector space (of dimension 2 —n = n?), which we now endow with

the scalar product '3

((A, B)) := fRetr AB) fRe Z aijbij.

i,j=1
If er,...,e, € C™is a hermitian basis w.r.t. (_, ), (i.e. (e, ej)n = 6;5), then (since A* = A):
1.« 1.«
<<A,B>> = 5 Re; <AB€i,€i>h = 2Re; <B€i,A€i>h.

10.14 Definition. Define the map U : §?"*! — H(n + 1) by

z = (_,z)ne,

where we think of x as an element of C™*! and of ( ,z),z as the matrix of this map w.r.t. the
canonical basis of C"1.

10.15 Lemma. The map U has the following properties.
(i) Written as a system of columns the matrix U(z) is given by (Zox,. .., Znx).
(ii) We have indeed U(x) € H(n+ 1).
(iii) For any z € S?"*! the map U(x) is the (_, )j-orthogonal projection C"*! — Cz.
(iv) U is smooth.
(v) We have Vo € S :Vp € R: U(e?z) = U(x).

Proof.
(i) By definition

(ii) We calculate

(iii) By definition.
(iv) Follows from (i).
(v) For any z € C"™H1:

U(ez)(2) = (2, %) pe'Px = e (2, x)pePx = U(x)(2).
O

10.16 Definition (Veronese map). The map V : CP" — H(n + 1), V(p) := U(z), where = € p is
arbitrary, is called Veronese map.

10.17 Lemma. The Veronese map has the following properties.
(i) V is well-defined.

"“Notice that tr(AB) = tr(BA) and tr(AA) = (AA)] = AjAY =3, ALAL =32, AL
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(ii) V is smooth.
(ili) For any p € CP" we have ||V (p)||*> = 4. The image of V (=image of U) is contained in the
sphere S™"2)(1/y/2) € H(n + 1).

Proof. The first two properties follow immediately from 10.15.

To see (iii), first notice that V(p) is an orthogonal projection onto a subspce of (complex) dimension
one. So V(p) has eigenvalue 1 with onefold multiplicity and the eigenvalue 0 whith n-fold multiplicity.
By the spectral theorem there exists a hermitian ONB wy, ..., v, of eigenvector to these eigenvalues

and therefore .

1 1
VI = {V(p), V(D) = 5382 (V(p)(vi), Vp)(vi)) = 5.
i=0
O
10.18 Lemma. Let r e p€ CP" and y L Cx.
(i) The push-forward is given by
U*’J:(y) = <_7y>hx + <_7 $>hy
and in particular ||Us|z(y)| = |ly]|.
(ii) The map 7|y : Ly — T,C P", L, := (Cx)*, is an isomorphism.
(iii) The map Vi|r(z) = Usl: is of maximal rank 2n.
(iv) We have
(Ve ) = i(U):
Proof.
(i) Let ¢ : R — S?"*! be the geodesic satisfying ¢(0) = =z, ¢(0) = y. Then for all z € C™*! we
obtain
(Uslz())(2) = 0:(U(c(8))(2)li=0 = Oe(z, c(£))nc(t) =0 = (2, y)nw + (2, 2)ny-
Let eg,...,e, be an hermitian ONB of C"*!. Since y 1. Cx and (x,z)), = 1, we obtain
o _ 1 -
0L = 5 Re (D (less yhne + fessahugs (eis whne + (eis 2)ay)n)
=0
L e (S (e g Te . RS N V1) o SNINE
=5 Re (ei yanlei yhn + (e, Dhnlezinly, y)n ) = 5 > giyi+ S >z =yl
i=0 i=0 i=0
(ii) By construction of C P", c.f. Lemma 10.6.
(iii) Follows from dim C P" = 2n < dim H(n + 1).
(iv) By definition of V.
O

10.19 Definition (Fubini-Study metric). We consider H(n+1) as a Riemannian manifold. The metric
on C P" obtained by pulling back this metric along V' : CP" — H(n + 1) is the Fubini-Study metric.
From now on we will assume, that C P" is endowed with this Riemannian metric.

10.20 Remark. Notice, that the tensor field obtained by pulling back the metric in H(n + 1) along
V is indeed a Riemannian metric, because V has full rank by Lemma 10.18. With this additional
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structure we may now state, that 7 : S?»*! — C P" is a Riemannian submersion'* (c.f. Lemma 10.18)
and V : CP" — H(n + 1) is Riemannian immersion, i.e. an isometric immersion.

In fact V is a bit more: First of all, it is a an injective immersion since if z, 2’ € S?"*1 c C™*! there
exists 0 < ¢ < n such x; # 0. Therefore

Ulz) = U(e') = Ziw = Ta' = & = 22! = n(x) = 7(2').
Z;

Since S?"*1 is compact and 7 is smooth, C P" = 7(S?"*!) is compact as well. This implies altogether

that V is a smooth embedding with closed image (c.f. [3, 7.4]).

10.21 Remark. Unwinding all the definitions and canonical identifications, the situation is the fol-
lowing;:

gant1 Y H(n+1)

s
CP"—Y Hn+1)
One should bear in mind that V is an isometry onto its image and by definition a vector space isometry
H(n+1) — H(n+ 1) is an isometry as a map between Riemannian manifolds.
Let z € p € C P™. The situation at the tangent spaces is the following:

Usle

R#+2 5 (Re)te —= 82+ —= Ty H(n +1) —— H(n + 1) ¢ C+)x(n+D)

| e |

R¥1 5 (Cx)tr —== T,CP" —5 Ty H(n+1) —— H(n+ 1) c C +)x(0+1)

10.22 Theorem. Let ¢ : R — S?"*! be a unit speed geodesic, which is perpendicular to the Hopf
circles. Then ¢ := 7o ¢ is a geodesic in C P".

Proof. First consider the cutve Voé=Vomroc=Uoc:R — H(n+1) C RMHD* | Its ordinary
acceleration is given by:

(U 0¢)"(t) = B(Uslogy(6(1))) "E° 0p({_, é(t)nelt) + {_, e(£))né(t))
= (86 nelt) + () net) + (_, et)nét) + (_ e()né(t) = —2(_, e(t)ne(t) + 2(_, e(t))né(t),

where in the last step, we have used ¢(t) = —c(t) (which follows from the fact that c is a great circle).
Now we compute the part tangential to U(S?*"*!) = V(C P") C H(n + 1). To that end let e, ..., en
be a hermitian ONB of C™™, x := ¢(t), y := ¢(t) and z € (Cx)t = T,y CP". So (x,2), = 0 by
construction and (z,y), = 0, since on the one hand (z,y). = (c(t), é(t))e = 0 by construction of the
tangent bundle and (y,iz). = 0, since ¢ is perpendicular to the Hopf circles. Thus

<<(UOC)”( ) U |3§' *RGZ elv hx+2<€’n )hy7 <€2',Z>h33+ <€i7$>hz>h
= Rez e’Lv >h<x .I'>h + <e’Lv y>h<ei7 x>h<y7 Z>h = Re(<_x7 Z>h + <y7x>h<y7 Z>h> =0.
Since V is an isometry onto its image, this implies that ¢ is an isometry in C P". O

“4Reminder: A submersion f : (M,g) — (N,h) is a Riemannian submersion, provided f. : (ker f.)* — TN is an
isometry.

66



10.23 Theorem. The geodesics of C P" satisfy:

(i) All geodesics in C P" are of type 7 o ¢, where c is a geodesic in S?”*!, which is perpendicular to
the Hopf circles.

(ii) The metric d from 10.7 is the distance induced by the Fubini-Study metric.
(iii) All geodesics in C P™ having length < 7/2 are minimizing.
(iv) Diameter and injectivity radius satisfy

diam(C P") = i(C P*) = g
Proof.
(i) Let z € p € CP" and let ¢ : I — CP" be a geodesic. Then ¢(0) € T,C P". Since 7., : Ly —
Tr(z)C P" is an isomorphism, there exists a unique geodesic ¢ : I — St satisfying ¢(0) = z,
¢(0) € Ly, m|2(¢(0)) = ¢(0). This geodesic is perpendicular to the Hopf circle through = at x
and therefore by Lemma 10.9 it is perpendicular to the Hopf circles everywhere. By the previous
Theorem 10.22 7 o ¢ is a geodesic in C P" and therefore ¢ = 7w o €.

(ii) Denote by dy the metric induced by the Fubini-Study metric on CP" for a moment. Since
cPpP® = W(SMH) is compact, it is complete in particular. So for any p,q € CP" there exists
a geodesic ¢ : [0,1] — CP" joining p and ¢ such that d4(p,q) = L(¢). Now take z € p, y € ¢
such that d(p, q) = ds(x,y) and a geodesic ¢ : [0,1] — R joining x and y. By Lemma 10.10 this
geodesic is perpendicular to the Hopf circles. Consequently 7 o ¢ is a geodesic in C P" joining
p and ¢. On the other hand let ¢ : [0,1] — S?"*! be the unique geodesic lift of ¢. Since 7 is a
Riemannian submersion and the length of a geodesic from [0, 1] equals the length of its initial
velocity, we obtain

L(¢) < L(mroc) = L(c) < L(¢) = L(c)

and thus alltogether L(¢) = L(7 o ¢). Therefore
dg(p7 q) = L(E) = L(7T o C) = L(C) - dg(l‘,y) - d(p7 q)

(iii) This follows from (i), (ii) and Lemma 10.12.

(iv) Follows from what we have proven so far.

10.3 Isometries
We denote by

Um):={CeC™|Ct=C"
the unitary group.

10.24 Theorem (Isometries).

(i) The conjugation U(n +1) x H(n +1) — H(n + 1), (C,A) — CAC~! is a well-defined group
action of U(n + 1) on H(n + 1) by isometries.

(ii) The group U(n+1) acts as U(n+ 1) x CP" — CP", (C,p) — C(p) on CP" by isometries.

(iii) Let eg,...,e, be a hermitian ONB of C™*!. Then complex conjugation on C"*! w.r.t. that
basis induces an isometry on C P".

Proof.
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(i)

(iif)

Let A,Be H(n+1), C € U(n+1). On the one hand
(CAC™H* = (C~HtAlC = cAC™!
and thus CAC™! € H(n +1). On the other hand
1 1
(cAC~t,cBCTY) = 5 Re tr(CACT'CBC™1) = 5 Retr(AB) = ({4, B)).

First of all
VC € U(n+1): Vo € S ||Cx|? = (Cx, Cx)y, = (C'Cx, )y = (x,2)), = ||z

and thus C restricts to a map S?"! — §?+1 If y = ¢z € S?"*! | we have (since C is C-linear),
that C(y) = €¥C(z). Thus C induces a well-defined map C P" — C P". The differential of C
(as a map C"! — C"™*1) is O itself and we claim, that

Vpe CP": CV(p)C~! =V (C(p)).

By (i) and the definition of the Fubini-Study metric, this shows that C' is an isometry of C P".
To show this claim, notice that by definition of V' it suffices to verify the equation CU(z)C~! =
U(C(x)) for one = € p. Since this implies that the right arrow in the commutative diagram

CP'—5 H(n+1)
Lo,
cPr—S Hn+1)
is the conjugation with C', which is an isometry by (i). By hypothesis C' € U(n + 1) and thus
(CU(x)C™ )y = (CU(x)C")yy = (CU(2));,(CY)} = CjU (2)},(CY} = CU (2);.C4
= Cjz 7, C] = C}71,.Clz; = Cx;(Cx); = U(C(x))y
(we always sum over all indices but ¢ and j).

We proceed in a similar fashion. First we verify that complex conjugation with respect to the
canonical basis is an isometry. Therefore we will show, that

CP' Y= H(n+1),
CP*—— H(n+1)
i.e. V(p) = V(p). Choose x € p and calculate
V(p) =U(z) = (xo, T, . ..,2,%) = (Tox,...,Tnx) = U(x) = V(p).
Clearly any two matrices A, B € H(n + 1) satisfy

(A, B)) = %Re tr(AB) = %Re t(AB) = (A, B)).

and therefore complex conjugation is an isometry.

If B= (bg,...,b,) is any other hermitian basis of C"*! and cp(z) is the coordinate vector of x
w.r.t. B, we obtain x = Bcg(z). Denote by Up : C" — C™*! the complex conjugation wr.t.
B. Then

Up(z) = Bep(xr) = BB~Y(z) = BBz = BB'z.
Since B € U(n + 1), we obtain C := BB' € U(n + 1) as well and therefore
V(¥5(p) =CV(p)C™!

and the statement follows from (ii) and what we have proven so far.
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10.4 Curvature

10.25 Lemma. Let t e p€ CP" and Y, Z € T,CP", Y = m.|4(y), Z = m|2(2), where y,z € L, =

(i)

(if)

Proof.

(i)

(Ca)*, IV = 1.
If z € (Cy)*, then
R(Z,)Y)Y = Z.
If z € Riy, then
R(Z)Y)Y =4Z.
(If z € Ry, then R(Z,Y)Y =0.)
In that case we may choose an hermitian ONB eq = z,e1 = v, es = 2,€e3...,¢e, of C"". Then
R := Ling(eq,...,e,) is a real subspace of dimension n 4+ 1 and we obtain an inclusion of

its unit sphere S™ < S?"*1. Obviously this S™ is totally geodesic in S?"*1: A great circle in
S27+1 tangential to S™ at one point is contained in S™. We claim iR"t! 1. R"*!: Since for any
0 <k,l <neither k #£1, i.e. iex L} e, = iep Lc e or k=1, in which case

(teg, er)e = (Re(ier), Re(ex))e + (Im(ieg ), Im(eg))e = —(Im(eg), Re(ex))e + (Re(eg), Im(ex))e = 0.

Thus the great circles of this S™ are perpendicular to the Hopf circles of S?**! since for any
r € S" we have T,8" c R""!' 1, iR"™ O T,H(x). So the restriction 7 : S — CP" is
an isometric immersion and together with 10.22 we obtain, that 7 induces a totally geodesic
isometric embedding RP™ — C P", where RP™ = S™/ ~,  ~ —x here. We assume that RP"
is endowed with the canonical metric obtained from S™. ' By hypothesis the vectors Y, Z are
tangential in p = 7(x) to that RP™. Thus we may calculate the curvature inside RP™ and use
the formulas for its metric of constant sectional curvature +1 to obtain (c.f. [2, 8.10])

R(ZY)Y) = (Y,Y)Z —(Z,Y)Y = Z.

Now we consider the case Z = .|, (iy). Foreq, ..., e, asin (i), we now obtain C? := Ling (e1, ep) =
C? c C"*!. As above the corresponding CP' C C P" is totally geodesic and isometrically em-
bedded. Now for any p, ¢ € C P! there exists an isometry mapping p to ¢ (take one from U (2) for
example), thus the surface C P! has constant sectional curvature (since the curvature tensor is
natural). Since C'P! is diffeomorphic to S?, the curvature has to be positive (otherwise we could
pull back the metric of CP! to S? and we would have constructed a metric of nonpositive sec-
tional curvature on S?, which would imply that S? would be diffeomorphic to R? by the Theorem
of Cartan-Hadamard, which is obviously impossible). Since diam(C P') = Z, the curvature is 4.
(This can be seen by comparing the pullback metric from C P! on S? with the standard metric
using Theorem A.15.) Therfore (again c.f. [2, 8.10]), we obtain

R(Z,Y)(Y) = 4Z.

O

10.26 Theorem. Let p € CP" be arbitrary. The endomorphism I, : T,C P" — T,CP", L,(Y) :=
T«|z(iy), where z € p and y € L, such that 7|;(y) =Y is well-defined and Ig = —idg,cpr-

158ince R P" is obtained from S™ by factoring out the antipodal action, the projection S* — R P" is a local diffeomor-
phism, which we declare to be a local isometry. With respect to this metric R P" has constant sectional curvature
+1 exactly like S™.
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In the canonical coordinates of C P™ the tensor field I corresponds to the multiplication with 7. Allto-
gether we obtain:
RZ,Y)Y)=(Y,'Y\Z - (Z)Y)Y +3(Z,IY)IY

RX, V) 2Z2)=Y,2)X + (1Y, 2)IX — (X, 2)Y —(IX,Z)IY + 2(X,IY)IZ
This completely determines the curvature tensor. For the sectional curvature K we obtain
1<K <A4

Both bounds are sharp for n > 2.

We have identified two types of totally geodesic submanifolds. Somewhat more general one can show:

10.27 Theorem (totally geodesic submanifolds). If L C C™*! is a totally real subspace, i.e. iL L. L,
of dimension k < n + 1, then w(L N S?"*1) is a totally geodesic R P*~! with canonical metric.

If L C C™*!is a complex subspace with complex dimension k, then 7(L N $?"*1) is a totally geodesic
C P*! with Fubini-Study metric.

10.28 Theorem (symmetric space). CP" endowed with Fubini-Study metric is a symmetric space:
For every p € C P" there exists an isometry S, the reflection at p, such that S,(p) = p and Sp«|, = —id.

Proof. Let x € p and L, = (Cx)*. Let C € U(n + 1) be a matrix satisfying Cz = z and C|, =
—idg,. Then the isometry induced by C has the desired properties: First of all C' € U(n + 1), since
any vector in C"*1 has a unique representation Az +u € (Cx) @ (Cz)* and for any two such vectors

(CAz+u),CNe+u)), = (ANCx + Cu, NCx + Cu')p, = Az —u, Now —u'),
= \\(u,u ), = o +u, No + ),

Thus C' acts as an isometry by 10.24 and has the desired properties. O
10.29 Theorem. We have

VY e T,CP":VC € U(n+1): Cilp(L,Y) = Lo Ci(Y),
where C is identified with its action as an isometry on C P".
10.30 Theorem. Furthermore

VY, Z € T,CP" : Cilp(DI)p(Y, Z) = (D)) (CY, CiZ)
DI(Y,Z):= DyI(Z) — I(Dyz)
If we substitute the isometry S, for C, we obtain

~(DL)(Y, 2) = (DD)y(~Y,~Z) = (DD),(Y, Z)

thus DI = 0. The tensor field I is parallel and therefore C P" is a Kdhler manifold. One can also show
DR =0, c.f. next section.
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11 Locally symmetric Spaces

11.1 Remark. Remember that for any v € T,M, ¢, denotes the geodesic satisfying ¢,(0) = p and
¢y(0) = v. Also remember that the curvature tensor R = R, along ¢, is defined by

R, (X) = R(X,¢éy)éy
and is a smooth field of endomorphisms along c,.

11.2 Lemma. The covariant derivative R] of the curvature tensor along ¢, vanishes if and only if for
all parallel vector fields X, Y € 7 (¢,), the map (X,Y) — (R(X),Y) is constant.

Proof. Since R) is a tensor field it vanishes if and only if it vanishes on a parallel ONB. Notice, that
for parallel vector fields X, Y

O (R(X),Y) = (Di(R(X)),Y) + (R(X), DY) = (D:R)(X),Y) + (R(D:X),Y) = (D R)(X),Y).
This implies the statement. O

11.3 Definition (locally symmetric space). Let M be a connected Riemannian manifold. Then M is
a locally symmetric space, provided that for any p € M there exists a neighbourhood U near p and an
isometry S, : U — U, such that

Sp(p) =p (Sp)*|p = - idT,,M-

We say M is a symmetric space , in case we may choose U = M for all p € M. We call S, the geodesic
reflection .

11.4 Remark.

(i) Isometries map geodesics to geodesics. Therefore S, reflects the geodesics through p to geodesics
through p in the opposite direction. Therefore S, is called the geodesic reflection.

(ii) By shrinking U if necessary we may always assume U = B.(p) for a sufficiently small € > 0.

(iii) Geodesic reflections are unique, if they exist (c.f. |2, 5-7]). Therefore the notion of a (globally)
symmetric space is well-defined and does not depend on a particular choice of geodesic reflection,
since there is only one.

11.5 Theorem (Characterization of locally symmetric spaces). Let M be a connected Riemannian
manifold. The following are equivalent.

(i) M is a locally symmetric space.
(ii) The covariant differential VR of the Riemannian curvature R satisfies VR = 0.
(iii) For all v € SM: R] = 0.

Proof.
"(i)=(ii)”: Since S, is a local isometry and the connection as well as the curvature respect local
isometries, we obtain

— VRW,X,Y, Z)|p = (Sp)«p(VR(W, X, Y, Z)) = VR((Sp)«[pW, (Sp)«|pX;, (Sp)+pY, (Sp)+lp, Z)
=VR(-W,-X,-Y,-Z)|,=VRW,X,Y,Z)|,

and therefore VR(W, XY, Z) = 0.
7(ii)=(iil)”: This is clear since R, (X) = VR(X, ¢y, ¢y, ¢y) (c.f. Lemma A5 and A.7).
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”(iii)=(1)”: This direction will require Lemma 11.6 below, the proof of which is done seperately after-
wards.
Let p € M and ¢ <'i(p). Then exp, : B:(0,) — Be(p) is a diffeomorphism. Define S}, : B-(0) :— Bc(p)

q — exp,(—exp, ' (q))-

Obviously S, is a diffeomorphism satisfying S,(p) = p and (Sp)«|p = —idz, -

The decicive point is to show, that S, is an isometry. To that end we will describe its differential
using Jacobi fields (c.f. Lemma A.8). Let p # q € B:(p), 0 < r =d(p,q) < e, v € SyM, such that
q = exp,(rv) (the case p = ¢ is trivial). Let X € T;M be arbitrary and let J be the Jacobi field along
¢, satisfying

J(0)=0 J(r) = X.
(c.f. [2, Exc. 10.2]). Since
r
X = epr*‘rv (7"; eXPyp 1*|q(X))

this implies
1 _
(expy )xlg(X)

) =~

by uniqueness of Jacobi fields and again A.8. In a similiar fashion, we obtain

_ o P =
(Sp)«la(X) = (expy, | v © Lulro 0 expy, M) (X) = expy, | ro(r—=exp, ™t |o(X)) = J(r),

where .J is the Jacobi field along along c_, satisfying

J(0) =0 7(0) = —%expgl*\q(X) — _J(0)

and [ := —idg, . Since t +— J(—t) is a Jacobi field as well, this implies J(r) = J(—r). Thus all that
remains to show is ||J(—r)|| = [|J(r)]|, since this implies

1(Sp)lg N = 1T (r)]l = 17 (=) | = [T ()| = [IX]|.

In order to prove ||J(—r)| = ||J(r)||, we finally use Lemma 11.6 to represent J as stated there. Since
J(0) =0, we obtain a; =0 and V2 <i <n:b =0. Thus

n
1T ()1 = b3r? + D af sna,(r)® = [|J(=r)]|
i=2
as one can see using the antisymmetry of sn,, proven in Lemma 2.7,(iii). O

11.6 Lemma. Let M be a Riemannian manifold, such that for all p € M, v € S,M, we have R), = 0.
Then there exists a parallel ONB E; = ¢, Fo, ..., Ey, along ¢, satisfying

(RoEs, Ej) = 0350,

where a; € R and a7 = 0. With respect to this basis the Jacobi fields along ¢, are given as linear
combinations

n
J = (a1 + bit)éy + Z (a; sng, +bi csq, ) Ei,
=2

where a;,b; € R and sn,,, cso,; are as in Definition 2.6.
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Proof.
STEP 1: Start with an arbitrary parallel ONB Sei E| = é,, B, ..., E, along ¢,. By Lemma 11.2 we
obtain

(Ry(E;), Ej) = const =: 145,

where R,(E;) = 0. Now vt C T,M and f : v+ — vt X — R(X,v)v is a symmetric endomorphism
as can be seen immediately using the symmetries of the curvature tensor (c.f. [2, 7.6]), i.e.

(R(X,v)v,v) = Rm(X,v,v,v) =0= f(X) € vt
and

(f(X),Y)=(R(X,v)v,Y) = Rm(X,v,v,Y) = Rm(v,Y, X,v)
= Rm(Y,v,v,X) = (R(Y, U)U7X> = (X, f(Y))

By the spectral theorem there exists an ONB E;(0) = E;(0) = v, E3(0),..., E,(0) consisting of
eigenvectors to eigenvalues a; = 0, g, . .., of f, which we may extend by parallel translation along
¢y to a parallel orthonormal frame {E;}. This frame satisfies

(Ro(E;), Ej) = a;dij

and thus we have proven the first statement.
STEP 2: To see the second statement we first remarkt, that the fields in question span a space of
dimension 2n. It therefore suffices to verify that they are all Jacobi fields. We just calculate

n n

R(J,éu)éy = Y (5800, +b; csa, ) Ro(Ei) = Y (a5 sna, +b; csa, )0y By
j=2 j=2

and on the other hand

n
J = biéy + Z (a;shg, + bicsa,; ) E;
=2
n n
"= (aisha, + bicsa,) By = — Y ai(a;sna, +b; csa,) Ei.
=2 =2

O

11.7 Example. Any connected space of constant sectional curvature x is a locally symmetric space.
Thus all considerations in this chapter apply in particular to the model spaces M. To see this, we
remind, that in this case the curvature tensor is given by R(X,Y)Z = k((Y,2)X — (X, 2)Y), cf. [2,
8.10]. Thus the covariant derivative satisfies:

(VR)(X.Y,Z,W) = (VwR)(X,Y,Z) = Vi(R(X,Y, Z)) - R(NwX,Y,Z) — R(X,Y,VyZ)
= k((VwY, 2)X + (Y, VwZ)X + (Y, Z)VwX — (Vw X, 2)Y — (X,VwZ)Y — (X, Z)VwY
— Y, Z)VwX + (VwX,2)Y — (VwY, 2)X + (X, Z)VwY — (Y, Vw2)X + (X, Vi Z)Y)
=0.

11.8 Lemma (Parallel transport). Let ¢ : [a,b] — M be a piecewise smooth curve and denote by P
the parallel translation along c. If M is a locally symmetric space, then P commutes with R, i.e.

P(R(X,Y)Z) = R(PX,PY)(PZ).
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Proof. We simply verify, that for parallel vector fields X,Y, Z € 7 (c) the condition VR = 0 ensures,

that
— Vo(R(X,Y, Z)) — R(V:X,Y,Z) — R(X,V:Y,Z) — R(X,Y,VeZ) = Va(R(X,Y, Z))
and therefore R(X,Y, 7) is parallel as well. O]

11.9 Theorerr_l. Let M, M be locally symmetric spaces of dimension n. Let p € M, p € M and let
I:T,M — T5;M be an isometry such that

VXY, Z € T,M : I(R(X,Y)(Z)) = RUX,IY)(1Z). (11.1)

Let ¢ > 0, such that exp, : B:(0,) — Bc(p) is a diffeomorphism and B:(05) C &,. Then the map
F :=exp;ol o exp;]L : B(p) — Be(p) is a local isometry satisfying F'(p) = p und Fi|, = I.

Proof. By hypothesis the map F' is well defined and satisfies

F(p) = (expy(I(exp,* (p) = expp((1(0) =5 Filp = (expp)ilo o Lifo o (exp,)s ' p = I.

Thus all that remains to show is that for any ¢ € B.(p) the map F.|, is an isometry. For ¢ = p this
holds by hypothesis since Fi|, = I. So let ¢ = exp,(rv), [|[v|| = 1 and 0 < r = d(p,q) < e. For any
X € T;M there exists a unique Jacobi field J along ¢, satisfying

J(0)=0 J(r) = X.

As is the proof of Theorem 11.5 we may apply Lemma A.8 to conclude J'(0) = %(exp;1*|q)(X). This

implies

Ful(X) = (@507): i) © Tolr © (ex0,)5 o (X) = expp o) (rTC-(exp,) 71y (X)) ) = (),

where J is the Jacobi field along cj, satisfying
- - 1 _
J(0)=0 J'(0) ZI(;(GXPP)*llq(X)) = 1(J(0)).
By Lemma 11.6 there exists a parallel ONB along ¢, such that
(Ry(Ei), Ej) = dijeui,

where a3 = 0. The parallel translates E; of I(E;(0)) are a parallel ONB along cy,. Denoting by R,
the curvature tensor along cr, in M, we obtain
= = =112 ,5 & =
(Rro(Ei), Ej) = (Rro(Ei(0)), E5(0)) = (R(I(E;i(0)), Iv)(1v), 1(E;(0)))

Y U R(E(0), 0)0). I(E,(0) = (REE0), v)v, E;(0)) = (Ru(E:(0)), E;(0)) = audiy

Thus if we represent J as a linear combination of the {E;} as in Lemma 11.6, the representation of J
with respect to the {E;} is the same. Thus

[Fulg O = 1T ()]} = 1 ()| = [ X]
and therefore F' is an isometry. O

11.10 Remark. In case M and M are complete £ = T;M and the condition for € reads 0 < ¢ < i(p).
In case € < i(p) as well, F' is a global isometry.
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11.11 Theorem (Cartan). Let M, M be complete locally symmetric spaces of dimension n and let
M be simply connected. Let p € M, p € M and I : T,M — T;M be an isometry satisfying

VX,Y,Z € T,M : I(R(X,Y)(Z)) = RUX,IY)(IZ). (11.2)
Then there exists a local isometry F : M — M satisfying F(p) = p and F|, = I.

Proof.
STEP 1 (Strategy): In general the cut locus of M is not empty, i.e. i(p) < oo and we cannot argue
that directly as in 11.9. Instead of the exponential map exp,, we will consider broken geodesics starting
at p. On the space €2 of these curves we will construct a map ® : 2 — M and show how this induces
the local isometry F : M — M.
STEP 2 (Concerning broken geodesics): Let ¢ : [a,b] — M be a broken geodesic. By definition there
exists a subdivision

a=th<ti<...<txy=05>

of [a,b], such that c|[t;—1,t;], 1 < i < k, is a geodesic. We call this a geodesic subdivision. Define
X; := P71 (¢T (), where P; = Plojitot) * Te(ayM — ToyM, 0 < i < k — 1, is the parallel transport
along ¢|[to, t;]. We call the X; the directions of c. Obviously c is uniquely determined by its directions
X0y Xg—1 € Tpq)M and the subdivision ty < ... < {, i.e. for a given geodesic subdivision and
vectors Xo, ..., Xg—1 € Tyq)M there exists precisely one broken geodesic ¢ : [a,b] — M with these
data.

STEP 3 (Definition of ®): Now we consider our locally symmetric space M and define
Q:={c:[0,1] = M | ¢(0) = p, cis a broken geodesic}.

Let ce Qand let 0 =tg < t1 < ... <t =1 be a geodesic subdivision for ¢. As in step 2, we obtain
vectors
Xo = ¢t (t), X1, ..., X1 € T,M.

Define ¢ : [0,1] — M to be the broken geodesic with respect to the same subdivision 0 = ¢y < #; <
... < tr = 1 satisfying ¢(0) = p and having the directions

Define ® : Q — M by

®(c) :=¢(1).
Obviously @ is well-defined since ¢ does not depend on the geodesic subdivision (any two such subdi-
visions have a common refinement.)
STEP 4: If ¢ : [0,1] — [0,1] is a piecewise affine linear and globally continuous function satisfying
©(0) =0 und (1) =1, then cop € Q and cop(1) = &(1).
This is due to the fact, that we may assume the subdivision where ¢ is piecewise affine linear to be a
geodesic subdivision for ¢. Then ¢ just reparametrizes the various geodesics c|[t;—1, t;].
STEP 5 (Main step): We will show the following: Let cg,c; € Q and 0 = tg < ... <ty = 1 be a
geodesic subdivision for ¢y and c¢1. Assume there exists an ¢ < k — 2, such that

cO|[O,ti] =C [O,tz‘] and cU|[ti+2,tk] =C ’[ti+2,tk}’
Define the points
q:=co(t;) = c1(ts) qo == co(ti+1) q1 = c1(tiv1) q2 := co(tiy2) = c1(tiz2)
q:=co(t;) = c1(ts) Jo = Co(tiy1) q1 = c1(tiy1) G2 := Co(tit2) = C1(tiy2),

assume that 0 < e <i(q),i(q) and that co|[t;, tiy2] and c1][t;, tiy2] are both contained in B.(g). Then
co(1) = ¢ (1).

We prove this in two substeps.
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STEP 5.1: To simplify notation let ¢ := ¢¢|[0, ;] and let ¢ be the broken geodesic starting from p with
geodesic subdivision 0 = ¢y < t1... < t; and directions Xy, ..., X;_1, i.e. ¢ = ¢&l[0,¢;] = 1[0, ;).
Denote by P.,P: the parallel translation along ¢, ¢ and define

I.:=P:oloP ' T,M — T; M,

which is an isometry by construction. By Lemma 11.8 and (11.2) it satisfies

I(R(X,Y)(Z)) = RUI.X,1.Y)(I.Z).

By Theorem 11.9 there exists an isometry F, : B.(q) — B.(q) satisfying F.(¢) = ¢ and (F¢)«|q = e
By definition of ¢, 7 = 0,1,
& (ti) = Le(&f (1)) = (Fo)slq(&] (1)),

Now ¢j|[t;, ti+1] is a geodesic and F is an isometry. Thus

Ci|[tis tiyr] = Fe o (cj|[ti, tiv]). (11.3)
STEP 5.2: Now we calculate
1 ] 1
Péjl[ovti+1] olo PC]' [O,tiJrﬂ = Paj‘[ti7ti+1] °© IC © PCj[ti,t¢+1] = Péjl[tivtiJrl] © (FC)*|q © ch [ti,tiJrl]

™) _

= (FC)*|‘1j ° (PCj[ti,iH_l]) o (PCthi,tH_ﬂ) ! = (FC)*|Qj‘

(*): This commutativity holds due to the fact, that F, is an isometry and the Riemannian connection
is natural (c.f. [2, 5.6]). In particular the push-forward of an isometry preservers parallelity.

As above we conclude for j =0, 1

& (tiv1) = (Fo)ulg, (€ (tiv1)) Cjllti+1, tiva] = Fe o ¢jl[tiva, tital.
Repeating this procedure for the indices 7 + 1,i + 2, we obtain
P5j|[0»tz‘+2] OIOID_1 (FC)*‘%

cjl[0tiga] —
and therefore we obtain alltogether ¢ol[ti+2, tx] = ¢1|[tite, tx].

This implies ¢y(1) = ¢ (1) and proves this step.
STEP 6: Next we will show, that for any cg,c; €

Co(l) = 01(1) — 50(1) = 51(1).

By hypothesis M is simply connected. Thus there exists a path homotopy H : [0, 1] x [0,1] — M from
co to ¢1. The idea is to successively homotop c; to cs in a way such that the previous step guarantees,
that the curves in between are mapped to the same point under .

Since H ([0, 1] x [0,1]) C M is compact, there exists € such that

{i(g)lg e imH} > ¢ > 0.

For a sufficiently large k the image of squares in [0, 1] x [0, 1] with edge length % under H is contained
in balls with radius § centered at the vertices of the squares. By increasing k further if necessary,
we may assume, that dass cj|[%, %] is a geodesic for any 1 < i <k, 7 =0,1. Let 0 < m < k? and
0 <1 <k, such that [k < m < (I + 1)k. Define a sequence of points zo, ...,z € [0,1] x [0,1] as
follows: Let z¢ := (0,0), move [ steps to the top til (0, %), then to the right til (1 — m%lk, é), one step
to the top again til (1 — m%lk, HTl), then to the right til (1, H'Tl) and then to the top until 29k := (1,1).

Now let o, the broken geodesic joining successively the points H(z;—1) and H(z;). Then

B {CO(Qt):H(OJt) 0
00( ) 1
2
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which equals the curve ¢y up to reparametrization. Now step 4 implies, that g¢(1) = ¢o(1) (since
H(s,1) = const). Using step 5 we obtain &p,—1(1) = G, (1), 1 < m < k2. Finally

vty = {020 = H(20) 0<t<
g a@t—1)=H(1,2t—1) ,1<i<

which equals ¢; up to reparametrization thus by step 4 G;2(1) = ¢1(1) (since H(s,0) = const). The
step is proven.

STEP 7 (Construction of F): We claim that ® induces a local isometry F' : M — M satisfying F'(p) = p
and Fy|, = I.

This can be seen as follows: Let ¢ € M and let ¢ € ) be a broken geodesic from p to ¢ and ¢ € 2 be a
broken geodesic from p to q. Define

By step 6 the map F' is well-defined.
We have to show, that it is a local isometry: Let ¢ := F'(¢), 0 < ¢ < i(q),i(q). For any r € B.(q) let
¢qr + [0,1] — B:(q) be the unique minimizing geodesic from g to r. Defining

et 0<t<d
erlt) = 2%—1) L<t<i
cqr(2t ) 5 <t <

we obtain F(r) = ¢.(1). Denote by F. : B:(q) — B:(gq) the isometry satisfying F.(q) = ¢ and
(F¢)«lq = I. As in step 5 we see, that

thus F|B:(q) = F.. Therefore F' is a local isometry.
OJ

11.12 Remark. In case M is simply connected as well, we may interchange the roles of M and M:
We obtain a local isometry F : M — M satisfying F(p) = p and Fi|; = I"!. Thus F o F is a local
isometry from M to M satisfying (F o F)(p) = p and (F o F),|, = idg,a. Thus F o F =idy (cf. [2,
5-7| and analogously F' o F' = id;. Thus F is a diffeomorphism, hence a global isometry.

11.13 Remark. F is a Riemannian universal covering (c.f. [2, 11.6]).

11.14 Corollary. Let M be complete, simply connected with constant sectional curvature x > 0.
Then M is isometric to S™(1//k), n = dim M.

11.15 Remark. The corresponding statement in case x < 0 is already a consequence of Theorem
11.9. This subsequently justifies the notation M} from Definition 4.16: Any other model space would
be isometric to the spaces we have defined there and would be universally covered by them.
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12 Symmetric Spaces

Remember the Definition 11.3 of a symmetric space: A connected Riemannian manifold M is a sym-
metric space (or just "symmetric”), if for any p € M there exists an isometry S, of M, called geodesic
reflection, such that Sp(p) = p and S, [, = —idr,a. There are some easy consequences, we may
directly obtain from this definition. As usual M is a connected Riemannian n-manifold.

12.1 Lemma. If M is symmetric, then M is homogenous. If M is homogenous, then M is complete.
Thus any symmetric space is complete.

Proof.

(i) Let M be symmetric and p,q € M be arbitrary. Since M is connected there exists a broken
geodesic ¢ : [0,1] — M joining p and q. Let 0 =ty < ... < ¢} be a geodesic subdivision of ¢ and
define F; := Sc(tﬁti,l), 1 <i<k. Then Fj(c(ti—1)) = c(t;). Consequently

2
(FxoFp_10...0F)(p) =q.

Thus M is homogenous.

(ii) Let M be homogenous and suppose to the contrary that M is not complete. Then there exists
a maximal unit speed geodesic ¢ : I — M such that I # R. We may assume that 0 € I and
to :=supl < oo. Let p := ¢(0) and 0 < ¢ < i(p). Then t; := tg — 5§ € I and ¢ := c(t1) is
well-defined. Since M is homogenous there exists an isometry F': M — M such that F(p) = q.
Thus i(q) = i(p) > €. Therefore the unit speed geodesic ¢y through ¢ is defined on at least [0, ].
Thus o : [0, +¢] = M

c(t) ,0 <t <ty
t—
C[)(t—tl) ,t1—€§t§t1+€

is well-defined and extends the maximal geodesic ¢. Contradiction!
O

12.2 Definition (Transvection). Let M be symmetric and ¢ : R — M be a geodesic. For any t € R

the isometry
Tt = SC(t/Q) @) SC(O) M —- M

is a transvection. The (T%);cr are a one-parameter subgroup of isometries of M, which translate c.

Notice that for any s,t € R
Suqp(els)) = €2t — 5).
12.3 Theorem (Properties of transvections). For any s,t € R the transvections defined above satisfy
(i) T'(c(s)) = e(s +1),
(i) TYloes) : To(s)M — Ti(osyM is the parallel translation along ¢|[s, s 4 ],
(iii) Tt o T® = T3,

Proof.
(i) By definition

T*(c(3)) = Se(t/2)(Se(0)(c(5))) = Se(ry2) (e(=s)) = c(t/2 + (t/2 = (=3))) = c(t + 5).
(ii) Apply the isometry S(s/2) and notice that

Se(s/2)(c(s)) = ¢(0) Se(s2)(c(s +1)) = c(=1).
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Since isometries preserve parallelity, it suffices to show that Tf|c(0)TC(0)M — Tp—pyM is the
parallel translation. So let X € 7 (c) be parallel. Define Y € T (c) by 7+ T}|¢0)(X(0)). By
definition

so both fields argee at 0. Furthermore
T e(0)(€(0)) = 0p(T" 0. ¢)(0) = 0 (c(0 + 1)) = é(r).
Thus we obtain alltogether
Y(r) = Ve I 60y (X (0)) = Vi) o, 00 T le(0) (X (0) = T e(0) V(o) X (0) = 0
and therefore Y is parallel. This implies the statement.

(iii) By construction T% o T and T*** are both isometries satisfying
(T" o T%)(e(0)) = e(s + 1) = T""(c(0))
Denote by P the parallel translation and notice, that

(ii) (ii)

(T" 0 T%)ule(0) = Ttles) © Tileto) = Peifs,st] © Prio.s] = Pelo,sie) = 1o e(0)-

Thus T% o T = T*** by uniqueness of Riemannian isometries.

O

We now give a recipe how to cook up symmetric spaces. In fact one can show that all symmetric spaces
are of this form. We will assume the reader to be familiar with the basic concepts of Lie groups and
Lie algebras. Some of these facts are discussed in more detail in the next chapter (also c.f. |3, 9,20]).

12.4 Theorem (Symmetric Space Construction Theorem). Let M be a connected manifold, G be a
Lie group and p : G x M — M be a transitive left action. Let p € M and assume there exists a smooth
involutive group automorphism o : G — G satisfying

Fy C HCF,
where
F:=F°:={geG|o(g) =g} H:=Gy:={gecG|gp) =p}

and Fj is the component of F' containing the identity e € Fy C F. Then the following hold:
(i) Let h C g be the Lie algebra of the subgroup H C G. Then

hb={Xeg|oX =X}
and if we define m := {X € g | 0,X = —X}, we obtain
g=hHom
and
[h,61 C b [h,m] Cm [m,m] C b.

(ii) Define p : G — Dift(M), p(g)(_) = plg, ), and 7 : G — M, g — p(g)(p). Then 7 is a
submersion satisfying

ker my|g = Lg,le(h) Tilg : Lg,le(m) - TrgyM
and forany he H, X € g
moLy=p(g)=m7 Tl e (Adp (X)) = p(h)«|p(m]e(X)).
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(iii) The equation
S(p(9)(p)) = p(a(9))(p)

defines an involutive diffeomorphism S : M — M satisfying

Somr=mwoo.

(iv) Let (_, ) be a scalar product on m which is invariant under every Ady, h € H. Then

((p(g)«lp 0 male) (X)), ((P(9))slp 0 Tele) (V) (g) 7= (X, V)

defines a G-invariant Riemannian metric on M. With respect to this metric M is a symmetric
space and the geodesic reflections S are given by S, = S and for any ¢ = p(g)(p)

Sy =p(g)oSopg)".

(v) For any X € g let X be the Killing field on M defined by

X(q) = 9(p(e"*)(q))lt=o-

Then
h={Xecg|X(p) =0} m={Xeg|VX(p)=0}.

For any X,Y, Z e m
R(m|e X, 7| e X)) (74]e Z) = —[Z,[Y, X]].

(vi) For any X € m the map t — ~x(t) := w(e/X) is the geodesic through p with initial veolcity
Tele(X) and !X is the transvection along vx.

(vii) Let A be a tensor on m, which is invariant under all Ady, h € H. Then A induces a G-invariant
parallel tensor field on M via my|e.

Proof. We only sketch the proof and leave some of the easy steps as an exercise.

(i) Since o, is involutive, g is the sum of eigenspaces to eigenvalues +1 and —1. Since Fy C H C F,
h is the eigenspace to +1.

(ii) For any k € G
(mo Lg)(k) = m(gk) = p(gk)(p) = p(9)(p(k)(p)) = p(9)(7(k)) = (p(g) o 7) (k).
Furthermore

Tile(Adp (X)) = Be(m(he" h™1))|1=0 = Be(p(R)p(e"™)p(h ™) (p))li=0
= 3(p()p(e™)(P))le=0 = p(R)xTe]e(X).

This proves the last two statements from (ii). The rest is left as an exercise.
(iii)) We show that S is well-defined: If p(g)(p) = p(k)(p), then k = gh, where h € H. Since H C F

plo(k))(p) = plo(gh))(p) = pla(9)h)(p) = p(a(9))a(h)(p) = p(a(9))(P)-

Furthermore
S(m(g)) = S(p(9)(p)) = p(co(9))(p) = (w0 0)(9),

thus S om = m o o. This implies that S is smooth. Now S is involutive and therefore a
diffeomorphism of M.
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(iv) Since (_, ) is invariant under every Ady, h € H, the Riemannian metric on M is well-defined.
It is easy to see, that it is smooth and G-invariant as well. We show that S is an isometry: Let
4 = 7(g) = plg)(p) € M and Xo = p(g).|yma|e(X), Yo = plg)elpmeo(Y) € T,M, X, Y € m. Since

Sop(glor=Somoly=mocolLy;=moLsgo00=p(o(g)omoo
we obtain

(S4lq(Xo0), Sil(Yo))s(q) = (P(0(9))slpmele (04 (X)), p(0(9)) llpele (0 )) 5g)
= (0.X,0.Y) = (X,Y) = (X0, Yo)q

by definition of the Riemannian metric.

(v) For any X,Y € g, we obtain

Y (m(e) = Y (p(e™ (p))) = 0s(p(e™ ) p(e) (p)]s=0 = D5 (" )p(e™ ¥ e )p(e) (p)) =0
= p(etX)*‘pﬂ'*’e(Ad;ti( (Y))‘SZO.

For any X,Y, Z € m, we obtain

\\l
Il
SV
~
A
D

p (w()), Z(m (")) =0
= O (p(e )il (AdZX)(Y), p(e )il e (Ad Lk (2)))|e=o
= 8t<77*’e Ad;‘i( (Y)7 W*’e(Ad;&%( (Z))>|t:07

since p(e!X) is an isometry (G-invariance). Now

AL (V) =e YY) =Y —¢[X,Y] + t;[X, [(X,Y]] —...

and the 2k-th term, k > 1, on the right hand side is in h and the others are in m. Therefore

~ ~ ~ t2 t2
Xp(Y,Z) = 0(Y + 3 remainder, Z + 3 remainder)|;—o = 0.

This implies DY (p) = 0 since [m,m] C h and h = {X € g|X(p) = 0} by definition of H.
(vi) The previous statement implies that c(t) := 7(e!X), X € m, is geodesic in X. Now

S x (w(e7*X)) = (eI,

m(e2

)

thus c is geodesic in ¢ as well (the reflections are isometries). Since o(e/X) = e7*X the rest follows

from (iii).

(vii) Exercise, c.f. (iv).

12.5 Example.
(i) M =CP", G =U(n+1), o is conjugation with ((1) %
—Ln
through (1,0,...,0).
(i) M = Gg(n), the Grassmannian manifold of k-planes in R”, G = O(n), o is conjugation with

Ej 0 = A € O(n), p= linear span of ey, ..., eg.
0 —Enk

Find m in these examples, describe S and look for suitable scalar products on m. Analyse more

examples! If G = SL(n,R), then H = SO(n) for suitable M and o. Find them!

> =Ae€U(n+1), p= Hopf circle
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13 Lie Groups

In this chapter G is a Lie group with Lie algebra g. We will explain some of the basic notions concerning
Lie theory below, but assume the reader to have at least heard of it before. More on these basics can
be found in [3, 9,20].

13.1 Definition (Lie group). A Lie group is a smooth manifold and a group, such that the group

multiplication
G x G — G, (gh) — gh

is smooth and the inversion

G—G,g—g’

is a smooth diffeomorphism.

13.2 Example.
) (R"+)
) GL,(R) = {A € M,(R)|det(A) # 0}
(iii) O(n) = {A € GL,(R)|AA! = E,.}
) U(n), SU(n), SL,(C) and further classical matrix groups.
)

The Heisenberg group
2t
1

Hoppqr =

o O =

z
Y| lz,y e R™ z e R » C GLy,12(R).
1

Identifying (z,y,2) € R2?7+1 with the matrix from Hyp41 above, then Hap,41 corresponds to
R?™*! with the non abelian group structure

(,9,2)- ("¢, 7)) = (x + 2",y + ¢, 2+ 2"+ (2,9)).
Warning: Sometimes other coordinates are used for Hop,11.

13.3 Definition (Translation and conjugation). Let G be a Lie group and g € G.

(i) The map Ly : G — G, h — gh, is the left-translation with g. This is a diffeomorphism with

mnverse L;l =L 1.

g
(ii) The map Ry : G — G, h — hg, is the right-translation with g. This is a diffeomorphism with

mverse Rg_l =R, 1.

g
(ili) The map Cy : G — G, h +— ghg™', is the conjugation with g. This is a diffeomorphism with

inverse C;l = Cg—l. Of course

Cy=Lgo Rg—l = qu o Ly.

13.4 Definition (left-invariance). A vector field X € 7(G) is left invariant, if
Vg,heG:XoLy= 1Ly, 0X,

i.e. if it is Lg-related to itself. The space g of all left-invariant vector fields on G is the Lie algebra of
G.

Similar a vector field is right-invariant, if it is Rg-related to itself.
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13.5 Remark.

(i) The vector space g of left invariant vector fields on G can be canonically identified with T.G, i.e.
the map } — T.G, X — X, is an isomorphism with inverse T.G' — g, Xe — (Lg),Xe, (cf. [3,
4.20)).

(i) If {X1,...,X,} is a basis of T.G, then {L,,X1,... Ly, X, } is a basis of T,G. Thus there ex-
ists a continuous global frame on G. Therefore the tangential bundle T'G is trivial, i.e. G is
parallelizable and orientable. (c.f. [3, 5.15] und [3, 13.5]).

13.6 Lemma. The Lie algebra is closed unter Lie brackets, i.e.

VX,Y € T(Q): X,Y € g — [X,Y] € g,
(c.f. [3, 4.18)).
Proof. By hypothesis Y is left invariant. Thus for all g,p € G, f € C*(QG)

Y (f) o Lg)(p) = Ylgp(f) = Ly, (Y [p)(f) = YIp(f o Lg)

and therefore
X[g(Y(f)) = Lg (Xe)(Y([f)) = X[e(Y(f) 0 Lg) = X[e(Y(f o Lg)).
Alltogether

(X, Y]lg(f) = X|g(Y(f)) = YV]g(X(f)) = X[e(Y(f 0 Ly)) = Y[e(X(f 0 L))
= [X7 Y”e(f OLQ) = Lg*([X7Y])(f)

O
13.7 Theorem. Let G be a Lie group. The left invariant vector fields g on G together with the Lie
bracket [ , ]:gxg — garenot only a vector space over R, but also a Lie algebra, i.e. the Lie bracket
satisfies
(i) [_,_] is bilinear.

(ii) VX,Y €g: [X,Y] = —[Y, X].
(iii) VX,Y,Z € g: [[X,Y],Z] +[[Y, Z], X] + [[Z, X], Y] = 0 ("Jacobi identity”).

13.8 Remark.
(i) g is a Lie subalgebra of the Lie algebra of all smooth vector fields on G and thus the theorem
above follows from Lemma 13.6.

(ii) Since T.G may be identified with g, T.G is a Lie algebra as well. The Lie bracket can be described
as follows: If X,Y € T,G define left invariant extensions X,Y € T7(G), X, := Ly, X, calculate
[X,Y] € g, and obtain [X,Y] := [X,Y]l.

13.9 Example. Let G := GL,(R), B€ M,(R) =T.G, X € G = Lx,(B) = 0(X - (Ey +tB)|i=0 =
X - B. Thus X — X B is the left invariant vector field with value B in e = F,,; denote this by V. If
B,C € T.G, then

[B,C] = VB, Vclle = 0:Ve(e + tB)|i=o — 0:(Vp(e + tV))|t=0 = BC — CB
This formula holds for all Lie subgroups of GL,(R) as well (c.f. [3, 4.23|).

13.10 Lemma. If X is a left invariant vector field on a Lie group G and FY% is the maximal flow of
X, then
Vg € G: Fx(g) = gFx (e).
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Proof. On the one hand

O(9F%(€)) = Ly, |pt ()0 (Fx (€)) = Lg,|pt (o)X pt () = Xlgrt (o)
and on the other hand
9F%(e)li=0 = g.
Thus gF% (e) is the integral curve of X through g. O

13.11 Corollary. Left invariant vector fields are complete (c.f. [3, 20.1]).

Proof. Certainly there exists € > 0, such that the integral curve F¥(e) : [—¢,¢] — G is defined. Let
g € G and t € R, such that F%(g) is defined. Then

13.10
F(9) = FY°(F&(9)) = Fx(9)Fx (9)
is defined as well. Thus F%(g) is defined for all ¢ € R. O

13.12 Definition (One parameter subgroup). A one parameter subgroup of G (a "1PSG”) is a Lie
group homomorphism « : (R, +) — G, i.e. a is smooth and satisfies a(0) = e and

Vs,t e R:a(s+1t) =a(s)a(t).

13.13 Theorem. The map ¥ : {1IPSG} — T.G, a — &(0) is a bijection with inverse ® : T.G —

{1PSG}, X — Fi(e). (c.f. [3,20.2]).

Proof. Certainly

VX €T.G: (Wod)(X)=W(Fi)=File)=X —= Tod =id.
Conversely if o is a 1PSG, the left invariant extension X of &(0) satisfies
(@0 T)(a) = ((&(0))) = Fi (e).
We have to show, that a is the integral curve of X:
&(to) = Or(alto +1))|t=0 = dr(a(to)a(t))lt=0 = Lat,),(0) = X|o<(to)'

O

13.14 Definition (Lie exponential map). For any X € g let /X = Fi(e) = ®(X) be the 1PSG
through e € G with initial velocity X. This is the exponential map of a Lie group.

13.15 Lemma. The exponential map e of a Lie group G satisfies

VXY €g:[X,Y] = 8:(0s(eX ey e7)|s—0) 1m0 = 9 Cltx,|e(Y)|t=0.

Proof. First notice that for any t € R
Ds(e e e | 4—g = D5(Clix (€°Y))|s=0 = Crix |(Y) € T.G, (13.1)

€

therefore we may take 9; inside T.G and the right side makes sense. Using a general rule for vector

fields X,Y (c.f. 3, 18.20]]), we obtain
(X, Ylp = ZxY |y = 0(Fx' (Y |pt () li=0 = Ou(FX", (05 (FY)] pt. () s=0l=0
= (05 (Fx' (F¥(F% (p)))))ls=o0lt=0-

In our case Lemma 13.10 ensures, that F)t( (p) = petX . Thus

X, Y]le = 0(0s(Fx " (F(Fi (€))))ls=ole=0 = 9:(0s (Fx" (F5(€"))))ls=olt=o0
= O4(0s(F' (" Fy (€))))ls=olt=0 = 8u(Ds(e"* €™ 7)) |s—oli=o.
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13.16 Remark.
(i) In a matrix group G any B € g = T.G satisfies
!X = exp(tB),
where exp is the usual exponential map for matrices: exp(tB) is a one parameter subgroup and
exp(tB)'(0) = B. (c.f. [3, 20.6]).
(ii) Using [B,C] = BC — CB for B,C € T.G this can be verified more easily.
13.17 Definition (invariant metric). A Riemannian metric on G is
(i) left-invariant, if for any g € G the left translation L4 is an isomety.

(i) right-invariant, if for any g € G the right translation R, is an isometry.

(iii) bi-invariant, if it is left- and right-invariant.

13.18 Remark. Any Lie group with a left invariant metric is a homogenous space: For any g,h € G
the map Lj,-1 is an isometry mapping g to h. In particular G is complete (c.f. Lemma 12.1).

13.19 Definition (ad). For any Lie algebra g define ad : g — gl(g) by X — adx, where adx : g — g,
Y — [X,Y]. This is a Lie algebra homomorphism (here we use the notation gl(g) for the Lie algebra
End(g) together with the commutator).

13.20 Theorem (Curvature of left invariant metrics). Let G be a Lie group with Lie algebra g,
(_, ) be aleft invariant metric on G and let V be the induced Levi-Civita connection. Then for any
X, Y, Z, W e g:
(i) VxY = 3([X,Y] —adk(Y) — ad} (X)), where ad’ is the adjoint endomorphism to ady w.r.t.
(L)

(it}) (R(X,Y)Y,X) = [VxY ]2~ [[X.Y]P — (VxX,VyY) - {ad}(X), X).

Proof.
(i) By the Koszul formula

2VxY, Z) = X({Y, 2)) + Y ({2, X)) = Z((X,Y)) — (Y, adx (Z)) + (Z,adx (V)) — (X, ady(Z)).

Notice that for a left invariant metric (_, ), two left invariant vector fields X,Y € g and any
p € G, the following holds:

(X1p, Yip)p = (Lp)«X]e; (Lp)sY[e)p = (X[e, Ye)e-
Thus the function p — (X|,,Y|,)p is constant. Therefore the Koszul formula collapses to

2VxY, Z) = =(Y,adx(Z)) + (Z,adx(Y)) — (X, ady (Z))
= ([X,Y],Z) — (adx(Y), Z) — (ad}(X), Z).

(i) Since L, is an isometry we obtain VxY € g by the naturality of the Levi Civita connection (this
can also be seen using (i)). Thus X ((Vy Z,W)) = 0 as well and therefore

0=Vx({(VyZW)) =(VxVyZ, W)+ (VyZ,VxW)
and (VyVxZ W)+ (VxZ,VyW) = 0. Thus

Rm(X, Y, Z, W) = <R(X, Y)Z, W> = <VvaZ - VYVXZ — V[X7y]Z, W>
= —<VyZ, VXW> + <VXZ, VyW> - <V[X7Y]Z, W>
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(iii) Using (ii) and the symmetry Vy X = VxY — [X, Y] we obtain

(RIX, Y)Y, X) = (VxY,VyX) — (VyY,Vx X) — (Vix Y, X)
= |VxY|? = (VxY,[X,Y]) = (VyY,VxX) — (Vix Y, X).

Using (i) we obtain
(VXY [X,Y]) — (Vi ¥ X)
XYL I YD) + L (adl (V). [X, V) + 3 {ad (X)), [X, V)
S YLYLX) + Jladty (V). X) + 5 fad (1X, Y]), X)
= DG YIP + 5 (% 161X V) + 500 Y, [ V)
— XYL YL X) + S0 [X, Y] XD + (X, Y], [, X))
= D YIP (VX X) = [ Y]~ (adf (X), X).

Combining both yields the statement.

0
13.21 Lemma. A left or right invariant metric (_, ) on G is bi-invariant if and only if for any g € G
the map Ady := (Lg)« o (R;-1)« is an isometry.
Proof.
=": In case (_, ) is bi-invariant, the left- and right-translations are isometries. Thus the Ad, are
isometries.

"«<" Let Ady be an isometry for all g € G. Assume (_, ) is left invariant. We have to show, that it

is right invariant as well. We calculate

((Rg)«(X), (Rg)«(Y)) = {(Adg o(Ry)« (X)), (Adg o(Ryg)«)(Y))
= (((Lg)x o (Rg=1)s 0

(Rg)+(X )))((Lg)*o(Rg_l)*o( 9)=) (V) = ((Lg)(X), (Lg):(Y)) =

In case (_, ) is right invariant, notice that Ad;1 is an isometry as well and calculate analogously:

((Lg)(X); (Lg)+(Y)) = ((Lg)x 0 (Rg=1)4) ™" ( ) (X), ((Lg)« © (Rg-1):) ™" 0 (L))
((Rg)x 0 (Lg)i " © (L)) (X), (Rg)s 0 (Lg):" 0 (Lg) o) (Y)) = ((Rg)+(X), (Rg)«(Y)) = (XY

O
13.22 Lemma (ad is skew). Let (_, ) be a bi-invariant metric on G. Then ad is skew-symmetric,
- VX, Y € T(G):(adx Y, Z) = —(Y,adx Z).
In other words ady = — adx.
Proof. We have just shown in Theorem 13.21, that
VXY €eT(GQ):Vge G:(Ady,Y,Ad, Z) = (Y, Z). (13.2)
Notice that we may rephrase the statement of Lemma 13.15 by
adx (Y) = Or(Adex [e(Y))|e=o- (13.3)
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Near the identity we may write g = e!*. Assume X,Y, Z € g and differentiate equation (13.2) in order

to obtain
0= (Adx Y, Adyix Z)limo "2 (adx Y, Z) + (X, adx Z).

O

13.23 Theorem (Curvature of bi-invariant metrics). Let G be a Lie group with a left invariant metric
such that for all X € g, the map adx is skew symmetric (c.f. 13.22) and let X,Y, Z € }.

(i) The associated Levi-Civita connection satisfies
1
VxY = §[X Y.
(ii) The Riemannian curvature is given by
1

(iii) Its covariant derivative satisfies

VR =0,

so G is a locally symmetric space.

(iv) If X,Y is an ONB the sectional curvature of the plane they determine is

1

K(X.Y) =

I[X, Y%
(v) The Ricci curvature is given by
1
Ric(X,Y) = ~1 tr(adx ady).

Proof.
(i) By Theorem 13.20 and the skew symmetry of adx we obtain:

1
VxY =S (X, Y] —adk (V) —ady (X)) = 5[X, Y],
(ii) Statement (i) and the Jacobi identity imply

R(X.Y)(Z) = VxVyZ — VyVxZ — Vixy 2 = %vx v, 7] - %Vy[X, 7] - %[[X, ¥], 7]
1 1 1 1

= Z[Xa Y, Z]] - Z[K (X, Z]] - 5[[X7Y]7Z] = _Z[[X’YLZ]'

(iii) Statment (ii) implies
8VR(X,Y,Z, W) =8(VwR)(X,Y,Z)
=8Vw(R(X,Y,Z) —8R(VwX,Y,Z) —8R(X,VwY,Z) —8R(X,Y,VwZ2)
— 4[W, R(X,Y)Z] — 4R([W, X],Y, Z) — AR(X,[W,Y], Z) — 4R(X, Y, W, Z))
= WX, Y] 2] + (W, X], Y, 2] + [[X, W YD), 2] + [1X YL (W Z]]
= =W X, Y], Z]]+[[W, X], Y], Z1+[[[Y, W, X], 2] + [[X, Y], [W, Z]]

—
~

= WX, Y], 2] - [I[X, Y], W], Z] + [[X, Y], [W, Z]]

= (I[X, Y], 2], W] + (12, W], [X, Y]] + [, [, Y]], 2] 2 o.

In step (1) we use the Jacobi identity at the underlined inner Lie bracket for W, X, Y and in (2)
we use the Jacobi identity for [X,Y], Z, W.
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(iv) Statement (ii), the definition of sectional curvature and the skew symmetry of adx implies

K(X,)Y)=Rm(X,Y,Y,X)=(R(X,Y)(Y),X) = —i([[X,Y},Y],)Q
= {ady ([X, Y]), X) = ~ (X, Y] ady (X)) = 3 ([X, VL[, Y))

(v) Using (ii) we obtain

Ric(X,Y) = Rie(Y, X) = tr(Z — R(Z,Y)X) = —i (2 [[Z,Y], X]) = —i (2 [X, [V, Z]]).

O

13.24 Lemma. Let G be a Lie group and g be its Lie algebra. For any t € R

commutes, i.e.
VX €g:elX = Ad_ix .

Here €' denotes the resp. Lie group exponential maps for time ¢.

Proof. Fix X € g and consider the map o : R — GL(}), t — Ad.x. Clearly a(0) = idg and since Ad
is a Lie group homomorphism, we obtain

a(s+1t) = Ad s1nx = Adgsxex = Adgsx 0o Adgix = a(s)a(t),

thus « is a one parameter subgroup of GL(g) through the identity. Furthermore

VY € g: 6(0)(Y) = 0(Corx )alelim0ds (€ ) smo = 00sCuix (€ )] solimo "= [X, Y] = By(e"™IX)|i—o(Y).

O

13.25 Theorem (Characterization of bi-invariant metrics). Let (G,(_, )) be a connected Lie group
with left-invariant metric. The following are equivalent:

(i) The metric ( , ) is bi-invariant.

(ii) For any X € g the map adx is skew-symmetric.
= e!X are geodesics, i.e. e = exp, (tX).

1

The inversion 0 : G — G, g +— ¢~ +, is an isometry of G.

)
(iii) The one parameter subgroups c(t)
(iv)

)

(v) For any g € G the map Ady is an isometry.

Proof.

"(i)<(v)”: This was shown in Lemma 13.21.

”(i)=-(ii)”: This was shown in Lemma 13.22.

(i)« (iil)™ If ¢ = cx is a such a one parameter subgroup, by definition we obtain

&(t) = Xleg)-

Thus the geodesic ODE for ¢ reads as
VxX =0.
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For a left-invariant metric Theorem 13.20 states
1

VxX = 5([X, X] — adl (X) — ad (X)) = —ad’ (X).

Thus we obtain the equivalence (always with VX € T.G)
c is geodesic <= VxX = 0 <= ad’(X) = 0 <= ady is skew-symmetric,
where the last equivalence follows from polarization via

<ad§/+Z(Y + Z),X) = <Y + Z, ady+Z(X)> = <Y + Z, ady(X) + adz(X)>
= (Y,ady (X)) + (Y, adz(X)) + (Z,ady (X)) + (Z,adz(X))
= (ady (Y), X) — (Y, adx(2)) — (Z,adx (V) + (ad3(Z2), X)
= —(adx(Y),Z) — (Y,adx(2)).
”(ii) and (iii) = (v)”: Since G is complete any g € G may be written as g = exp,(tX), X € T.G = g.

By (iii) and what we have just proven above g = e!*. By Lemma 13.24, we obtain Ad, = €/2X and
by (i)

(Ad, Y, Ad, Z) = (e'2IxY, et2dx 7) — (v, (et2dx )tet2dx 7) = (v, Hedx +adk) 7y — (X Y)

this is an isometry of g.
"(iv)=-(1)”: Since the metric is left invariant, statement (iv) together with the factorization

Vg,h € G: (0o L,100)(h) =0(g 'h™') = hg = Ry(h)

implies (i).

"(i)=(iv)™: Since oxle = —1id (c.f. [3, 3-6]), this is certainly an isometry of T.G. For any g € G we
may transform the factorization above to 0 = 6~! = R,~1 000 L,-1. Since (_, ) is bi-invariant, we
obtain alltogether that

g

Oulg = Ry-1,]e 0 0ulc 0 Ly-1 g
is an isometry as well. O
13.26 Corollary (abelian). Let G be a Lie group and g be its Lie algebra.
(i) If G is abelian, then g is abelian.

(ii) If g is abelian and G is connected, then G is abelian.

Proof.

(i) In case G is abelian, we may employ Lemma 13.15 above in order to obtain
VX, Y c g: [X, Y] = 8t(95€tX€8Y€7tX‘5:[)‘t:0 = 8t85€SY’5:0€tX€7tX‘t:0 = 8tY|t:0 =0.

(ii) In case g is abelian and G is connected we may write any g,h € G as g = e!X, h = ¢*¥. Fix any

t € R and consider the 1PSGs o, 3 : R — G, a(s) := eXeVe X, 3(s) := V. Differentiation
yields
@(0) = Ad,x (V) "7 29X (V) = ¥ = §(0)
and therefore o = 3, which implies gh = hg.
O

13.27 Corollary (Sectional curvature). Let G be a connected Lie group with bi-invariant metric. The
sectional curvatures K and the Ricci curvature Ric satisfy:
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(i) K >0.
(i) K =0 < G is abelian.
(i) Any X € g satisfies

Ric(X,X) >0 and Ric(X,X) =0 X €3,
where 3 is the center ¢ of g. In case 3 = {0}, we always have Ric(X, X) > 0, X # 0.

Proof.
(i) Theorem 13.23,(iv) directly implies K > 0.
(ii) Theorem 13.23,(iv) implies: If K = K(X,Y) = }([X,Y]|? = 0 for every X,Y € g, then g is
abelian. Conversely, if g is abelian, then K = 0. So the statement follows from Corollary 13.26.
(iii) First a preliminary remark.
STEP 1: For any matrix A € R™*" satisfying A' = — A, we obtain

tr(4%) = (AA)] = Aj 4] = (4} <0

In particular tr(A4%) = 0= A = 0.
STEP 2: By Theorem 13.25 the map adx is skew symmetric for any X € g. Thus tr(ad_zx) <0
and therefore Theorem 13.23,(v) implies

1
VX € g: Ric(X, X) = —Ztr(ad?x) > 0.

Now let X € g, such that Ric(X,X) = 0. Then tr(ad%) = 0 and thus ady = 0, which is
equivalent to X € 3.

O

13.28 Example.

(i) Let G be a Lie group of matrices. Then —tr(XY') defines a non degenerate bilinear form on
g, such that ady is skew symmetric for every Z € g. In case G C GL,(R), we obtain the
bi-invariant, but not necessarily Riemannian metric on G. In case G C O(n) this metric is
Riemannian:

—tr(XX) = tr(XX") >0
(in case thisis = 0 & X = 0). If G € GL,(C), then —Retr(X,Y) is a bi-invariant Semi-
Riemannian metric on G.

(ii) On every Lie group we may define the Killing form
B(X,Y) :=tr(adyadY).

Since adaq, x = Adgoadx o Ad this is bi-invariant, but may be degenerate. A Lie group for
which B is not degenerate, is called semi-simple and are very well understood. By Theorem
13.23 a semi-simple Lie group (G, B) automatically is a semi-Riemannian Einstein manifold, i.e.
Ric = const B.

16Reminder: The center is defined by

3:=3()={X€g|VWeg:[X,Y]=0}
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13.29 Theorem (Existence of bi-invariant metrics). Let G be a compact Lie group. Then there exists
a bi-invariant Riemannian metric on G.

Proof. Choose a left-invariant metric (_, ) and a left-invariant volume form x on G. For any two
X,Y € g define the function f(X,Y): G — R, g — (Ady(X),Ady(Y)). Define a scalar product on g
by

vy = [

(Ad X, AdY)u :/ F(X,Y)p.
G G

By Theorem 13.25 it suffices to show, that ((_, )) is invariant under the adjoint representation. Now
Vg€ G: (f(X,Y) o Cpap)(g) = (Adp-15(X), Adp1gn (Y))ptg = Ly 1 (f(X,Y) © Rup)

and therefore the left-invariance of p and the diffeomorphism invariance of the integral yields
(Ad (). A (YD) = [ Yo Bagt= [ LY o Rug) = [ 1Y) 0 G
€]
[ xyye CpaldetAdyn = [ fEY)p= (XY

(1): Here we use the fact that i — |det Ad, ' | is a continuous Lie group homomorphism G — (R, ).
Therefore the image is a compact subgroup of (R, -) and the only such subgroup is {1}. O

13.1 The Unitary Group
As an example we discuss the unitary group
U, :={AcGL,(C) | AA' = E}

with its Lie algebra
uy =TgU, = {B € g[n(c) ‘ B' = —B},

where gl,, are the n by n matrices with the commutator as a Lie bracket. We define the Ad-invariant
scalar product B
(X,Y) := —Retr(XY) = Retr(XY")

on u,. This induces a bi-invariant Riemannian metric on U,. On the other tangential spaces
TyU, ={AB | B € u,}
the metric is given by the same formula since for any A € U,
tr(AXAX') = tr(AXY'AA™) = tr(XYY).

We remark that the metric is the restriction of the canonical hermitian form on C™°.
We choose an orthogonal basis for (uy,(_,_)) and therefore define E;; € C™*™ to be the matrix
(El)fC := 0;0y;. For @ > j the matrices

Fij = Eij - Ej' Gij = Z(E[z] — Ejl) EZ = ZE“

are an orthogonal basis for u,. We remark that

EijEw = 6juEq |Fyj|* = |Gy =2 B = 1.
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The set a := Lin{£;|1 < i < n} is a maximal abelian subalgebra of u,. The Fj;, G;; are common
eigenvectors of the ad%, A = > By

adA(Ejk) = Zlaz(Equk — E]kEu) = Zz’ai(&jEik — (5k1Eﬂ) = i(Oéj — Oék)Ej
ada(Fij) = (i — o) Bij —i(aj — i) Bji = (0 — «;)i(Eij + Eji) = (i — ;) Gij
ada(Gij) = — (i — ;) Eij — (o — i) Eji = — (i — o) (Eij — Eji) = —(ai — o) Fyj.

Therefore the curvature may be calculated by

1 1
R(FZJ,A)A = *Z adi(FZ]) = Z(al — Oéj)2Fi‘ (134)

1
R(Gij, A)A = (0 — )" Gy
R(E;, A)A = 0.

13.30 Theorem. The sectional curvature K of U,, with respect to the bi-invariant metric — Re tr(XY")
satisfies the sharp estimate

0<KKL

NN

Proof. Since any A € u, may be transformed into normal form by conjugation with a suitable g € U,
(ie. gAg™! € a), it suffices to consider planes A A X, where A = Y, o,E; € a, Y, a? = 1. But for
those the estimate is clear due to (13.4). O

Next we determine the cut locus of U,: Let S € U,. Choose a geodesic e between e and > = 9,
¥ € u,. Since ¥ is skew-hermitian, there exists T € U, such that TXT~! = A = idiag(ay,...,an),
a; € R. Therefore Te>T~1 = ¢t is a geodesic of the same length from e to e = diag(e’®, ..., )
and this normal form e of S is unique up to permutation. Therefore the lengths of geodesics from e

to S are exactly 1/, 32, where B = idiag(f, ..., 3,) satisfies e? = e4.

Consequently e is minimizing between e and S if and only if the normal form A of ¥ satisfies
a; € [—m, .

13.31 Theorem. The cut locus of e in U, is

C(e) ={S € U, | S has eigenvalue —1}.

Proof. If S does not have eigenvalue -1, there exists (up to permutation) precisely one A = i diag(asq, ..., ap)
satisfying a; €] — 7, 7[ and e is conjugate to S. In that case d(e, S) = \/ Do Al
In case S does have eigenvalue -1, S € C(p) since €™ = e~ = —1. O

13.32 Remark.
(i) U, = S' x SU, as a product of groups and Riemannian manifolds.
(ii) U, C Uy, totally geodesic, m < n.
(iii) O, C U, totally geodesic, since O,, is the fixed point set of the isometry A — A.

13.2 The Heisenberg group H;

hs = Lin(ey, e2, e3), where

0 1
€] = 0 0 e3 =
0 0

S O O

D

Do

|
o O O
o O O
O = O
o O O
o O O
S O =
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Define a scalar product on hs by declaring ej,es,e3 to be an ONB. The Lie bracket is given by
[e1, e2] = e3 and [e;, ej] = O for any other {i,j} # {1,2}. All ad’ are zero except

t t
adg, e3 = ez ad, e3 = —eq,

which implies that the connection is given by
1 1 1
V€162 - 563 Veleg - _562 v6263 = 561

and all other values can be deduced from symmetry or are zero. Remember that the sectional curvature
is given by Theorem 13.20, which implies that

1 3 1
K(el/\e2):1_1:_1 K(el/\eg):Z:K(eg/\eg).

Therefore the scalar curvature is given by
. . . 1 1 1 1
S = Ric(e1) + Ric(ez) + Ric(es) = 5 5 t5="5
13.3 A realization of hyperbolic Space

We want to realize the hyperbolic space RH™ ! as a solvable group with left invariant metric. Choose

Euclidean vector spaces a, x, dima = 1, dimz = n and define s := a + = (as an orthogonal sum of
Euclidean vector spaces). Then s becomes a solvable Lie algebra by defining [a, a] := [z, 2] := 0 and
ada |z = cid, where A € a (is a unit vector for example.). This implies for X,Y € =

ady X = cX ady Y = —¢(X,Y)A

and all others are zero. Furthermore
Va=0 Vx =cANKX,
where U AV is the skew-symmetric endomorphism w — (w,v)u — (w, uw)v. This implies
R(A,X)=—cVx=—-ANX R(X,Y)=[Vx,Vy] = X AY.

Consequently the cuvature operator R : A%2s — A2%s is —c?id. So the simply connected Lie group
(S,{(_, _)) associated to (s, (_, )) with left invariant metric is the space form with constant curvature
—c2.

The last two examples admit a proof of the following

13.33 Theorem (Milnor). If G is non-abelian, then G admits a left-invariant metric of negative scalar
curvature.

Proof.

CASE 1: There exist X, Y € g : X,Y,[X,Y] are linearly independent. Complete them to a basis
by == X, by :=Y,b3 := [X,Y],bg,...,b, of g. For any € > 0 define a scalar product ( , ). on g by
declaring

e1:=¢eby,eq := by, e3 := 52b3, B TN £2b,,

to be an ONB. The stucture constants ;. defined by [e;, e;] = Y. ayjrer satisfy a3 = 1 = a3 and
a;j, < const e otherwise. Thus lim._.g ;i(¢) are the structure constants of a direct sum go = b3 + 3,
3 = center. Since the scalar curvature S depends continuously on the structure constants with respect

to an ONB, we obtain
. 1
lim S(g, (_, _)e) = S(g0) = S(hs) = —5 < 0.

In particular S < 0, if € > 0 is sufficiently small.
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CASE 2: For any X,Y we have Lin(X,Y, [X,Y]) = Lin(X,Y). Then
adx Y =1(X)Y mod Rz

for some linear functional [ € g*. Thus
(X, Y] =1(X)Y - (V)X

and ker [ is an (n—1)-dimensional abelian ideal in g. Choose a unit vector A € keri*+. Then ad4 | ker! =
[(A)id. Thus we have the Lie algebra from the preceeding example with ¢ = [(A). In particular g has
negative scalar curvature.

O

13.4 The Heisenberg Group

As a last example we discuss the Heisenberg Group in more detail, a Lie group with a left invariant
metric. We use slightly different coordinates as in Example 13.2.

13.34 Definition (Heisenberg Group). For any m € N the Heisenberg group is given by

t

8

1
Hom1 = { 0 € RMHDX(M+2)|3 0 e RM ;¢ R.}.
0

O =
e SR

It is an affine linear subspace of M,,;+2(R) and a subgroup of GL,,+2(R). Therefore its Lie algebra is
given by

0 2t 2z
bom+1 = TeHom+y1 = 0 0 y| eRMEDXH) L0 cR™ 2z eRY.
+ +
0 0 O

To simplify notation we employ the “exponential coordinates”
1

H > (z,y,z) :=exp(x,y,2) = |0

0

in which multiplication looks like
1
(x’yv Z) ’ (xlvy,’ Z,) = (‘T + ':U/vy + y/7 z+ Z, + §<‘T’y,> - *<(L‘,,y>).

The Lie algebra may also be written as

0 =t =z
ho(v,y,2):=(0 0 y],
0O 0 O

in which the Lie bracket looks like
[(z,y,2), (.9, 2)] = (0,0, (w,/) — (', ).
A basis for b is consequently given by
X; = (€:,0,0) i = (0,€5,0) Z = (0,0,1),
where 1 < i < m. The only non-zero Lie brackets are

(X, Y] = -V, Xi] = Z.
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13.35 Remark.
(i) Observe that [h,h] = Lin(Z) # 0, [b, [h, b]] =0, so b is a second order nilpotent Lie algebra.

(i) From the multiplication formula we may deduce exp(A)exp(B) = exp(A + B + 3[A, B]). This
formula holds in every second order nilpotent Lie algebras and is a special case of the so called
”Campbill-Baker-Hausdorff-Formula”.

We would like to calculate the left-invariant vector fields corresponding to X1,..., X, Y1,..., Yy, Z
w.r.t. the chosen identification of H with R2™*! (exponential coordinates): Let p = (x,%,2) € H and
observe

1 1
Xi|p = Lp*XZ - at(J:)y) Z) : (teia 07 0)‘15:0 = 875(:1: + teia Y,z — ityi)’tzo - (ei)0> _iyz)

Analogously
1
Yilp = (0, €5, 5 ) Z|, = (0,0,1).

Definition of the metric: Let g be the left-invariant metric on H uniquely determind by requirering
the left-invariant vector fields Xi,..., Xy, Y1,..., Ym, Z, to be orthonormal.

Levi-Civita Connection: The Levi-Civita connection with respect to this metric is given by
1
inXj :OZVYZ.Y}, VXIY] :(5ij§Z:—ijXi,

1 1
VxZ=—3Yi= VX, V.2 = 5 Xi = VY, V17 =0

Sectional Curvature: The only non-zero sectional curvatures of H are generated by

1 3 1 1
K(X,Y)=7-1-0=-% K(X:,Z) =7 -0-0=7=K(Y;,2)

Ricci Curvature: The Ricci curvature is given by

1 1 1

Scalar Curvature: The scalar curvature is given by

1 m m
s:2m(—§)—|—5:—5<0

Geodesics: Let v be a unit speed geodesic in (H, g) satisfying v(0) = e = (0,0,0). We may decompose
4(t) into

Yt = ai(t)Xily(0) + bi()Yily e + () Z] -

i

Therefore the geodesic equation reads as
0= VW")/ = Z a; X; + i)iY;—i-C‘Z—i-Z a,bZ(VXlE + VKXZ)+Z aic(VXiZ + VZXZ')—FZ bic(inZ + VZY;)
By comparing the coefficients, we obtain the following system of ODE
—cb

= ca

0

Q. o Q-
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So ¢ = const and solutions are given by

a;i(t)\ e [@i(0) te . [cos(tc) —sin(tc)
(bi(t)> =D (bZ(O)> ’ D™= (sin(tc) cos(tc) ) '
Now let v(t) = (x(t),y(t), 2(t) and obtain
V(L
z c— 32 ity Y, bixs

CASE 1 (¢ = 0): This implies a = a(0), b = b(0), z(¢t) = ta(0), y(t) = tb(0), 2 = 0, z = 0 and therefore
v(t) = (ta(0),tb(0),0) = exp(t¥(0)) is a one parameter subgroup which is a geodesic.
CASE 2 (¢ #0): In that case the solutions for z,y are given by

() -2 (58)
1

Z(t)=c+ %2 (—cos(tc)a;(0) — sin(te)b;(0))(a;(0) — cos(tc)a; (0) + sin(te)b;(0))

and therefore

+ Z (sin(te)a; (0) + cos(te)bi(0))(—b;(0) + sin(tc)a; (0) + cos(te)b;(0))
:H;C  (aa(0)? + bi(0))(1 ~ cos(tc).

which implies
2

c .

5.2 (tc — sin(tc)).

z(t) =tc+

13.36 Remark. If we had used the coordinates from 13.2 the function z(¢) would be even more
complicated. This is one reason to use exponential coordinates.

t

~—

Finally we would like to analyze lengths of geodesics having the same endpoint in exp(RZ): Let A
(0,0,t) the particular geodesic through (0,0, 1). Let ¢ # 0 and a(0), b(0), such that |(a(0), b(0), c
be arbitrary and let v be the geodesic with initial velocity (a(0),b(0),c). Now

-

2k

Such a ty satisfies z(tg) = 2km + 127:32 2km = 1;032 2km. Thus til the point (0,0, z(¢y)) the "straight”
2 2
geodesic A has length L = 2||’Zi7r 12""5‘ and v has length Lo = % Since 12—0|-Cc‘ >1,0<|c] <1, Ly > Lo

and the "wriggled” geodesic v is shorter.
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A Appendix

A.1 Covariant Derivatives along fields of Endomorphisms

We are assuming that we already have established covariant derivaties of tensor fields on manifolds
and along curves.

A.1 Remark. Let V be a real vector space of dimension n. Remember, that the map ® : End(V) —
TLH(M), defined by ®(f) : V* x V — R, (w, X) — w(f(X)), is an isomorphism (c.f. [2, 2.1]) For a
smooth n-manifold M, this induces a diffeomorphism ® : End(M) — T1(M).

A.2 Definition. Let f € End(M) and X € 7(M). We call
Vxf =" (Vx(2(f)),

the covariant derivative of f in direction X. By construction

commutes. If ¢: I — M is a smooth curve, f € End(c), X € 7(c), we say
(Def)() = f'(t) == Ve f(t)
is the covariant derivative of f along c.

The only reason we consider this is, that we would like to derive some formulas, which are helpful
when calculating with this derivative.

A.3 Theorem. Let X,Y € T(M), T € T} (M), f € End(M), sodass ®(f) = T. Then f(Y) € T(M)
and we obtain:

(i) Product Rule:
Vx(f(Y)) = (Vxf)Y) + f(VxY)

(ii) Let v be a curve and let Y € 7 (), f € End(y). Then

Di(f(Y)) = (Def)(Y) + f(DiY),

where we are assuming that the covariant differential D; is extended to tensor fields.
(iii) For any g € End(M), we obtain the chain rule

Vx(f(g(Y)) = (Vxf)(g(Y)) + F(Vxg)(Y)) + f(9g(VxY)).
(iv) In particular if f is a field of isomorphisms and g := f~!, we obtain
(Vxf D) = =FH(VxHY)).
Analogous formulae hold when considering fields of endomorphisms along curves.

Proof. We choose a local frame {E;} and calculate using [2, 4.6]:
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Vx(f(Y)) = (Vx)Y) = f(VxY)

=Vx ( ( 'Y)E;) — (VxT)(E',Y)E; — T(E',VxY)E;

= (X(T(E"Y))E; + T(E",Y)VxE;) — (X(T(E"Y))E; - T(VxE".Y)E; — T(E',VxY)E;)
~T(E' VXY)

(E"Y)VxE; + T(VxE" Y)E; = T(E"Y)X'Vg,E; + X’T(Vg,E"Y)E

(B, Y)X'TVEy + XIT(-T%E* Y )E; = T(E",Y)X'T},E;, — X'THT(E',Y)Ep = 0

T
T

(ii) Follows analogously.

(iii) Using (i) we obtain

Vx(f(g(Y)) = (Vx)g(Y) + F(Vx(9(Y))) = (Vx )g(Y)) + F(Vxg)(Y) + 9(VxY))
= (Vx )+ F(Vxg)(Y)) + f(g(VxY)).

(iv) Using (iii) we obtain:

Vx(FTH ) = (VxHEW) + 1V HE) + FHF(VxY))
& VxY = (VxfH([FW) + (VYY) + VxY
& (VxfHFY) == (VX))

Besides this abstract interpretation, there is a very easy way to calculate the differential.

A.4 Lemma (Covariant derivative in coordinates). Let ¢ : I — M be a unit speed curve and let
Ey :=¢, By, ..., E, be a parallel ONB along c. Let (u]) be the coordinate matrix function of a field of
endomorphisms U € End(c) along ¢ whith respect to this basis, i.e.

Vt e I:ul(t) = (Uy(Ei(t)), E;(t)).

Then . '
vee I (W)i(t) = () (1),

(2

i.e. the coefficients of U’ are just the ordinary derivaties of the coefficients u of U.
Proof. Since D;E; = DiF; = 0 the product rule implies

(u])(r) = (U:(E2), Ej(r)) = (Dy(Ur Eq), Bj(r)) + (Ur(Ei), DeEy(r))

=0
— (UL(B). Ej() + (U (DeEy), DiFEs(r)) = (UL(E:), By (r) = ().

=0

O

The concept of covariant differentiation of fields of endomorphisms is of geometric intrest, because of
the curvature endomorphism.
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A.5 Lemma. Denote by 73(M) — T(M) : (X,Y,Z) — R(X,Y)Z the Riemannian curvature of M.
By fixing two fields at two positions, this defines three smooth fields of endomorphisms

X—Ryz(X):=R(X,Y,Z) Y—Rxz(Y)=RX,Y,Z) Z~— Rxy(Z):=R(X,Y,2)

Their covariant differentials are given by

VwRy z(X)=Vw(R(X,Y,2)) - R(VwX,Y, Z)
VwRxy(Z) =Vw(R(X,Y,Z)) - R(X,Y,VwZ).
Proof. This follows directly from Theorem A.3. O

A.6 Remark. This construction can be generalized. If we denote by MultfC (V') the space of multilinear

maps (V*)! x V¥ — V, there is also a canonical isomorphism ® : Multf(V) — TE (V) (cf. [2, 2.1]

again). If F € Mult}(V) and T € TE (V) such that ®(F) = T we may use a basis {E;} of V and its
corresponding dual basis { £’} to mutually identify T 2 F (via ®) using the equations

T(wl, ves ,wl+1,X1,. . .,Xk) = wl+1(F(w1, N ,wl,Xl, co ,Xk))
Fwi,...,w, X1,..., X)) =T(E wy,y ... w, X1, .., Xi)) B

This generalizes to manifolds and by forcing this diagramm

Multk (M) —2— T+ (M)
bl
Multh (M) —2— T+ (M)

to commute, we may also define covariant differentiation of (k,)-multilinear fields in an entirely anal-
ogous fashion.

A.7 Lemma. In the sense of the above definition the covariant derivative of the Riemannian curvature
R € Mult?(M) is given by

VR(X,Y,Z,W)=Vw(R(X,Y,Z)) — R(VwX,Y,Z) — R(X,VwY,Z) — R(X,Y,VwZ2).
Proof. By unwinding all the definitions we obtain

VR(X,Y,Z,W)2VR(X,Y,Z, W,E)E; = (VwR)(X,Y, Z, E)E;

= W(R(X,Y,Z,E"))E; — R(X,Y, Z,VwE")E;
—~R(VwX,Y,Z,E'")E; — R(X,VwY, Z,E")E; — R(X,Y,VwZ, E')E;
£ E'(Vw (R(X,Y, Z, E))E;

—~R(VwX,Y,Z) - R(X,VwY,Z) — R(X,Y,VwZ).
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A.2 Gauss' Lemma

There are various formulations of Gauss’ lemma in the literature. We will prove one version of it as
well as some small preliminary lemmas, which are sometimes useful themselves.

A.8 Lemma ((exp). and Jacobi fields). Let p € M, w,v,Y € T,M w = ||jw|lv and let ¢ be the unit
speed geodesic through p with initial velocity ¢(0) = v. Then

(expy)slw(Y) = 7= J([Jwl]),

[lwll
where J is the Jacobi field along ¢ satisfying J(0) = 0 and J'(0) =Y.
Proof. Define a geodesic variation H of ¢ by

H(s,t) := exp,(t(v + sY)).

Its variation field
J(t) := O0sH(s,t)|s=0 = Os(exp,(t(v + sY)))s=0

is a Jacobi field ([2, 10.2]) and we obtain

1 1
(expy )l (Y) = m(expp)*lvnwu(YHMII) = Tl expp,(vl|wl| + sY [lwl])]s=o
1 1
= s expy([[wl| (v + sY)]s=0 = S ([[w]]).
[[w]] P [[0]]

Obviously J(0) = 0 and furthermore
Jl(o) = DtJ(O) = DtasH(37t)|s:O‘t:0 = D;0; epr(t('l) + SY))‘t:O’szo = Ds(” =+ 3Y)|s:0 =Y.
Ul

A.9 Lemma. Let ¢ : I — M be a geodesic and let J be a Jacobi field along ¢. Then the function
t — (J(t),¢(t)) is a polynomial of degree 1. More precisely:

(J(1),c(t)) = (DeJ(0),¢(0))t + (J(0),¢(0))

Proof. Since c is a geodesic, we have D¢ = 0. Using compatibility with the metric and that J solves
the Jacobi equation, we obtain

(J,&)" = (D?J,¢) = —(R(J,&)(¢),¢) = —Rm(J, é,¢,¢) =0,

where the last equality follows from the symmetries of the curvature tensor (c.f. |2, 7.4]). Thus there
are a,b € R, such that (J(t),¢é(t)) = at + b =: p(t). We obtain

b= p(0) = (J(0),¢(0)), a =p'(0) = (D:J(0), ¢(0)).

A.10 Theorem (Gauss’ Lemma). Let pe M, X € £, C T,M and Y € T,M. Then

(exp,, [x (X)), expy, [x (V) = (X,Y).
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Proof. In case X = 0, the statement is trivial, so let X # 0. Let cx be the geodesic through p with
initial velocity X € T,,M. Then

expp*|X(X) = at(expp(X +tX)|t=0 = at(expp(tX))|t:1 =¢x(1).

By Lemma A.8 we obtain
1

where Jy is the Jacobi field along ¢_x satisfying Jy (0) = 0 and D;Jy(0) =Y. Using ¢_x (|| X]]) =

X1 T

cx (t), we obtain alltogether

(052, (X).ex0,, [x (V) = (ex (0. 77 UXID) = (e (XD e (1X10)

9 (¢ x (0), Dy ()X + (Jy (0, x

11l 11l

>

(0)) = (X,Y).

A.3 Technical Lemmata

A.11 Lemma. Let D C R be open, f: D — R be smooth and a € D. Suppose
VO<k<n—1:f®(a)=0,

but £ (a) # 0. Then there exists a smooth function g : D — R, such that
Ve D: f(z) = (z — a)g(x),

where g(a) # 0.

Proof. This is just a weaker formulation of Taylor’s formula: Although f is not analytic it has a
representation

n—1
f¥(a) f(a) o UV ER) n
f(z) = 2 (x —a)k + T(m —a)" + W(:{: — )"t
W (100 | (e
(0 )
=:g(x)
where {(x) € [z,a] bzw. £(z) € [a, z]. O

A.12 Corollary. Let c¢: [0, R] — M be a curve and let X € 7 (c) be a vector field such that X (0) =0
and X’(0) # 0. Then there exists Y € 7 (c) such that

vVt e [0,R]: X(t) =tY(t),
where Y (0) = X'(0).
Proof. Let E; be the parallel translate of X’(0) # 0 and choose Fa, ..., E,, such that E,..., E, is
a parallel ONB along ¢. We obtain
0=X(0) = X"(0)E;(0) = X*(0)=0
E1(0) = X'(0) = X"(0)E:(0) + X'(0)E;(0) = X'(0) = 4.

Therefore Lemma A.11 above yields functions G* : [0, R] — R such that G¢(0) # 0 and X*(t) = tG*(¢).
Thus ‘ ‘

X(t) = X"(t)Ei(t) = tG'(t)Ei(t) =: tY (¢).
Clearly X'(0) =Y (0). O
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A.4 Law of Cosines

A.13 Theorem (Law of Cosines). Let x € R and let A = (y0,71,72) be a triangle in M? with side
lengths [; and angles «;, i € {1,2,3}. Taking all indices modulo 3, the law of cosines holds:

(i) fk=0
l? = Z?H — 2liy1liy2 cos(ay).

(i) fk #0
csk(li) = csk(lit1) csk(liva) + sgn(k)k sng(li11) sng(ii42) cos(ay).

Here the functions cs,, sn, are taken from 2.7.

Proof. We just quote this from [6, p.138]. O]

A.14 Theorem (Angle sum identity). If k # 0 the cs, satisfies
csk(aq + ag) = csk(aq) csk(ae) — K sng () sng(ag).

A.15 Theorem. Let M be a Riemannian manifold with metric g. Assume there is a second metric §
and a constant A € Ry, such that § = Ag. Then we obtain the following transformation laws:
(i) Length:
Vpe M :Yve T,M: vl = VAo,

(ii) Balls

Vpe M :YveT,M:YR>0:Br(v) = Br (v).

R
VvV
(iii) Distance: )

Vp,q € M :d(p,q) = VAd(p,q).

(iv) Levi/Civita-Connection:

VX,Y € T(M):VyxY = VxY.
(v) Riemannian Curvature Endomorphism:

VX,Y,Z € T(M): R(X,Y)Z = R(X,Y)Z.
(vi) Curvature Tensor:
X,Y,Z,W € T(M) : Rm(X,Y,Z,W) = AR(X, Y, Z,W).

(vii) Sectional Curvature

R(X,Y) = %K(X, Y)
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List of Symbols

1PSG one parameter subgroup, page 84

Ad Adjoint representation of a Lie group, page 86

ad the ad map in a Lie group, page 85

Cy conjugation with g, page 82

C(p) cut locus, page 13

CSk standard solution of the Jacobi equation, page 10

cty standard solution of the Riccati equation, page 10

Cy geodesic through p := 7(v) with initial velocity v € T,M
dZ"™ integration with respect to the Lebesgue measure in R™
Dr  tangential cut ball, page 15

e!’X  the exponential map of a Lie group, page 84

End(c) the smooth endomorphism fields along a curve ¢
End(M) the smooth endomorphism fields on M

& domain of definition for exp,

F%  maximal flow of the vector field X, page 83

g a Lie algebra, page 82

G usually a Lie group or the group of deck transformations
g a Riemannian metric on M

17 the second fundamental form

Isom(M) the isometry group of M

Jac I the Jacobian of F', page 34

K(X AY) the sectional curvature of the plane spanned by X,Y
L, left-translation with g, page 82

Lip  Lipschitz constant

M smooth Riemannian n-manifold with metric g

My a distance modifying function, page 24

MultF(M) the smooth (k,l)-multilinear fields M, page 99
NM  the normal bundle of M

R, right-translation with g, page 82

R, curvature endomorphism along ¢, , page 5

sn,  standard solution of the Jacobi equation, page 10

Sp the geodesic reflection, page 71
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to cut point, page 12

t conjugate point, page 12

T*(M) the smooth tensor fields of type (k,l) on M
TFEM  the bundle of tensors of type (k,1) on M

7T (M) the smooth vector fields on M

TM  the tangential bundle of M

U(n) the unitary group, page 67

U,(t) second fundamental form of geodesic sphere, page 43
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Cartan’s Theorem, 75
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of a group, 30

Heisenberg group, 94
Hessian, 4
homotopy class
free, 53
Hopf circle, 62
Hopf map, 62

injectivity radius, 18

Jacobi equation, 8
of endomorphisms, 5
Jacobian, 34

Karcher’s Trick, 24
Killing form, 90
Klingenberg’s Lemma, 57
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left-invariance
of a metric, 85
of a vector field, 82
left-invariant, 82
Lie algebra, 82
Lie group, 82
locally symmetric space, 71

Milnor’s Theorem, 93
model spaces, 26

one parameter subgroup, 84
parallelepiped, 34

Riccati equation, 8

of endomorphisms, 5
right-invariance

of a metric, 85

of a vector field, 82

short basis, 49

Sphere Theroem, 56

symmetric space, 71
construction theorem, 79

Synge’s Theorem, 55

Topogonov

inverse, 26
Toponogov’s Theorem, 45
transformation theorem, 35
translation, 82
transvection, 78
triangle, 26

Veronese map, 64
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