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The following lemmata are widely used in a large variety of mathematical subjects such as Global
Analysis, Algebraic Topology and Algebraic Geometry. In these areas, they are often labeled as boring
and technical. As a consequence, their proofs are often unloving, short, inprecise, incomplete, left to
the reader as an ”exercise”, handwaved or simply omitted. It is the aim of this article to fill this gap by
giving complete proofs including not only some diagrams, but also classical written calculations. We
will also discuss some topological applications. For more on topology see [1].
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1 Diagram Lemmas

1.1 The Snake Lemma

1.1.1 Statement

1.1 Theorem (Snake Lemma). Let R be a ring and suppose we are given the following commutative
diagram in the category of R-modules

A1

dA

��

f1
// B1

dB

��

g1
// // C1

dC

��

// 0

0 // A2
� � f2

// B2
g2
// C2

where the rows are short exact sequences. Then there exists the following morphisms making the
following diagramm commutative:

ker dA
f̂1

//_______
� _

ιA

��

ker dB
ĝ1

//_______
� _

ιB

��

ker dC� _

ιC

��


�δ _______


� �
�
�
�
�
�
�
�
�
�

��_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

�	�
�
�
�
�
�
�
�
�
�

//_______

A1
f1

//

dA

��

B1
g1

//

dB

��

C1
//

dC

��

0

0 // A2
f2

//

πA

����

B2
g2

//

πB

����

C2

πC

����

coker dA
f̄2

//______ coker dB
ḡ2

//______ coker dC .

(1.1)

In particular there exists a connection morphism1 δ : ker dC → coker dA such that furthermoore the
sequence

ker dA
f̂1
// ker dB

ĝ1
// ker dC

δ // coker dA
f̄2
// coker dB

ḡ2
// coker dC

is exact. In addition the following statements are also true:
(i) If f1 is injective, f̂1 is injective as well. If g2 is surjective, ḡ2 is surjective as well.
(ii) The maps ιA, ιB, ιC are the canonical inclusions and the maps πA, πB, πC are the canonical

projections.
(iii) The maps f̂1,ĝ1 are the restrictions of f1,g1 to ker dA resp. ker dB. The maps f̄2, ḡ2 are the maps

induced by f2,g2 on the quotient coker dA resp. coker dB.
(iv) By slight abuse 2 of notation, the connection morphism δ can be expressed as

δ = πA ◦ f−1
2 ◦ dB ◦ g−1

1 ◦ ιC .
1Due to the form of the arrow in diagram (1.1) this is ”the snake”.
2The map g1 is not an isomorphism, so g−1

1 has to be read as ”chose an arbitrary preimage”. This choice is arbitrary,
but we will show that this will be compensated by πA. The map f−1

2 is injective and thus can only be inverted on
its image.
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By defining

chase(c1) := {(b1, b2, a2) ∈ B1 ×B2 ×A2 | b1 ∈ g−1
1 (c1), dB(b1) = b2, f2(a2) = b2}

to be a chase tripel of c1 ∈ ker dC , the connection morphism δ can be expressed as

δ(c1) = πA(a2) = [a2]A,

whenever there are b1 ∈ B1, b2 ∈ B2 such that (b1, b2, a2) ∈ chase(c1).

1.1.2 Proof

1.1.3 The Upper Row

• Existence of f̂1, ĝ1: Define f̂1 := f1 ◦ ιA : ker δA → B1 and ĝ1 := g1 ◦ ιB : ker dB → C1. We have
to show

im f̂1 ⊆ ker dB, im ĝ1 ⊆ ker dC .

Clearly dA ◦ ιA = 0 . Thus by commutativity:

dB ◦ f̂1 = dB ◦ f1 ◦ ιA = f2 ◦ dA ◦ ιA = 0.

And thus im f̂1 ⊆ ker dB as claimed. The statement for ĝ1 follows analogously. Furthermoore

ιB ◦ f̂1 = ιB ◦ f1 ◦ ιA = f1 ◦ ιA

So the upper left square is commutative. Analogously the upper right square is commutative as
well.

• Injectivity of f̂1: Suppose f1 is injective and a1 ∈ ker f̂1, i.e.

0 = f̂1(a1) = ιA(f1(a1))

This implies
f1(a1) ∈ ker ιA = {0} ⇒ a1 ∈ ker f1 = {0}

since f1 is injective by hypothesis.
• ”im f̂1 ⊆ ker ĝ1”: By hypothesis g1 ◦ f1 = 0, thus

ĝ1 ◦ f̂1 = g1 ◦ ιB ◦ f1 ◦ ιA = 0

as well.
• ”ker ĝ1 ⊆ im f̂1”: Let b1 ∈ ker dB thus

0 = ĝ1(b1) = (g1 ◦ ιB)(b1)

This implies
ιB(b1) ∈ ker g1 = im f1 ⇒ ∃a1 ∈ A1 : f1(a1) = ιB(b1)

It remains to show, that a1 ∈ ker dA. But by commutativity

(f2 ◦ dA)(a1) = (dB ◦ f1)(a1) = (dB ◦ ιB)(b1) = 0

and thus dA(a1) ∈ ker f2 = {0}. So a1 ∈ ker dA as claimed and f̂1(a1) = b1.
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1.1.4 The Lower Row

• Existence of f̄2, ḡ2: By composition we immediately obtain the map πB ◦ f2 : A2 → coker dB. By
definition im dB = kerπB and thus commutativity implies

πB ◦ f2 ◦ dA = πB ◦ dB ◦ f1 = 0

So im dA ⊂ ker(πB ◦ f2). So by the universal property of the quotient, we obtain f̄2 : coker dA →
coker dB such that

f̂2 ◦ πA = πB ◦ f2

So the bottom left square is commutative. The statements concerning ḡ2 follow analogously.
• ”im f̄2 ⊆ ker ḡ2”: By hypothesis g2 ◦ f2 = 0, so by construction

ḡ2 ◦ f̄2 ◦ πA = ḡ2 ◦ πB ◦ f2 = πC ◦ g2 ◦ f2 = 0

Since πA is surjective, ḡ2 ◦ f̄2 = 0.
• ”ker ḡ2 ⊆ im f̄2”: Let [b2]B ∈ ker ḡ2, i.e.

0 = ḡ2([b2]B) = [g2(b2)]C

so there exists c1 ∈ C1 : dC(c1) = g2(b2). By surjectivity of g1 there exists b1 ∈ B1 : g1(b1) = c1.
This implies

(g2 ◦ dB)(b1) = (dC ◦ g1)(b1) = dC(c1) = g2(b2)

and thus g2(b2 − dB(b1)) = 0. By exactness

b2 − dB(b1) ∈ ker g2 = im f2 ⇒ ∃a2 ∈ A2 : f2(a2) = b2 − dB(b1)

This implies
f̄2([a2]A) = [f2(a2)]B = [b2 − dB(b1)]B = [b2]B

• Surjectivity of ḡ2: Suppose g2 is surjective and let [c2]C ∈ coker dC be arbitrary. Since c2 ∈ C2 =
im g2 there exists b2 ∈ B2 : g2(b2) = c2. Thus

ḡ2([b2]B) = [g2(b2)]C = [c2]C

1.1.5 The Snake

• Existence of δ: Define δ : ker dC → coker dA as follows: Let c1 ∈ ker dC ⊂ C1 be arbitrary. Since
g1 is surjective

∃b1 ∈ B1 : g1(b1) = c1

but this choice is arbitrary ! Define
b2 := dB(b1)

Commutativity implies

g2(b2) = (g2 ◦ dB)(b1) = (dC ◦ g1)(b1) = dC(c1) = 0

Thus by exactness and since f2 is injective

b2 ∈ ker g2 = im f2 ⇒ ∃!a2 ∈ A2 : f2(a2) = b2.

Define
δ(c1) := πA(a2) = (πA ◦ f−1

2 ◦ dB ◦ g−1
1 ◦ ιC)(c1).

In this diagram chase only the b1 ∈ g−1
2 (c1) was an arbitrary choice. We have just shown that

chase(c1) is never emtpy.
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• δ is well defined: We have to show, that δ does not depend on the choice of the chase triple. So
chose another

(b′1, b
′
2, a

′
2) ∈ chase(c1)

This implies

g1(b′1 − b1) = c1 − c1 = 0 ⇒ b′1 − b1 ∈ ker g1 = im f1 ⇒ ∃a1 ∈ A1 : f1(a1) = b′1 − b1

Thus
b′2 − b2 = dB(b′1 − b1) = (dB ◦ f1)(a1) = (f2 ◦ dA)(a1),

which implies
a′2 − a2 = f−1

2 (b′2 − b2) = dA(a1) ∈ im dA = kerπA.

Thus finally
πA(a′2) = πA(a2)

This shows that δ is well defined and that for any

(b1, b2, a2) ∈ chase(c1)

we have δ(c1) = πA(a2). It also justifies the expression

δ = πA ◦ f−1
2 ◦ dB ◦ g−1

1 ◦ ιC .

• δ is a homomorphism: Let λ ∈ R and c1, c′1 ∈ dC be arbitrary and

(b1, b2, a2) ∈ chase(c1) (b′1, b
′
2, a

′
2) ∈ chase(c′1)

Sinc all the maps in the diagram are homomorphisms, we get

g1(b1 + λb′1) = g1(b1) + λg1(b′1) = c1 + λc′1 ⇒ b1 + λb′1 ∈ g−1
1 (c1 + λc′1),

dB(b1 + λb′1) = dB(b1) + λdB(b′1) = b2 + λb′2,

f2(a2 + λa′2) = f2(a2) + λf2(a′2).

Thus
(b1 + λb′1, b2 + λb′2, a2 + λa′2) ∈ chase(c1 + λc′1),

which means

δ(c1 + λc′1) = πA(a2 + λa′2) = πA(a2) + λπA(a′2) = δ(c1) + λδ(c′1).

• ”im ĝ1 ⊆ ker δ”: Let b1 ∈ ker dB be arbitrary. Then ĝ1(b1) = (g1 ◦ ιB)(b1) and thus especially
b1 ∈ g−1

1 (b1). This implies

(δ ◦ ĝ1)(b1) = (πA ◦ f−1
2 ◦ dB)(b1) = 0,

since b1 ∈ ker dB by hypothesis.
• ”ker δ ⊆ im ĝ1”: Let c1 ∈ ker δ and chose (b1, b2, a2) ∈ chase(c1). This implies

0 = δ(c1) = πA(a2) ⇒ ∃a1 ∈ A1 : dA(a1) = a2 = (f−1
2 ◦ dB)(b1)

Define b′1 := f1(a1). This implies

dB(b′1) = (dB ◦ f1)(a1) = (f2 ◦ dA)(a1) = (f2 ◦ f−1
2 ◦ dB)(b1) = dB(b1)

Consequently b1 − b′1 ∈ ker dB. By construction

ĝ1(b1 − b′1) = (g1 ◦ ιB)(b1 − b′1) = g1(b1)− g1(b′1) = c1 − g1(f1(a1)) = c1.
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• ”im δ ⊆ ker f̄2”: Let c1 ∈ C1 be arbitrary. Chose (b1, b2, a2) ∈ chase(c1). This means in particular
dB(b1) = f2(a2). This implies

(f̄2 ◦ δ)(c1) = f̄2([a2]A) = [f2(a2)]B = [dB(b1)]B = 0

• ”ker f̄2 ⊆ im δ”: Let [a2]A ∈ ker f̄2 be arbitrary. This implies

0 = f̄2([a2]A) = [f2(a2)]B ⇒ ∃b1 ∈ B1 : b2 := dB(b1) = f2(a2)

Define c1 := g1(b1). It follows

dC(c1) = (dC ◦ g1)(b1) = (g2 ◦ dB)(b1) = (g2 ◦ f2)(a2) = 0,

so c1 ∈ ker dC . This implies that (b1, b2, a2) ∈ chase(c1) so in particular δ(c1) = [a2]A.

1.1.6 Naturality

1.2 Theorem (Naturality). Suppose we are given two Snake Lemma Diagrams and a morphism
between them, i.e. a commutative diagram

A1

ϕA

��

dA
1

~~||
||

||
||

f1
// B1

ϕB

��

dB
1

~~||
||

||
||

g1
// C1

ϕC

��

dC
1

~~||
||

||
||

// 0

0 // A2

ψA

��

f2
// B2

ψB

��

g2
// C2

ψC

��

A3

dA
2

~~||
||

||
||

f3
// B3

dB
2

~~||
||

||
||

g3
// C3

dC
2

~~||
||

||
||

// 0

0 // A4 f4
// B4 g4

// C4

Then there is a morphism between the induced exact sequences, i.e. a commutative diagram

ker dA1

ϕ̂A

��

f̂1
// ker dB1

ϕ̂B

��

ĝ1
// ker dC1

ϕ̂C

��

δ1 // coker dA1

ψ̄A

��

f̄2
// coker dB1

ψ̄B

��

ḡ2
// coker dC1

ψ̄C

��

ker dA2
f̂3
// ker dB2

ĝ3
// ker dC2

δ2 // coker dA2
f̄4
// coker dB2

ḡ4
// coker dC2

Here the maps ϕ̂A,ϕ̂B,ϕ̂C are just the restriction of ϕA,ϕB,ϕC and the maps ψ̄A,ψ̄B,ψ̄C are the induced
maps of ψA,ψB,ψC on the quotient.

Proof. We index the inclusions and projections generated by the top snake (1.1.(ii)) whith a 1 and the
ones generated by the bottom snake with a 2.
Step 1 (Existence of ϕ̂): We are already given a map ϕA : A1 → A3 and claim that its restriction to
the kernel is the desired map ϕ̂A: Let a1 ∈ ker dA1 be arbitrary. By commutativity

(dA2 ◦ ϕA)(a1) = (ψA ◦ dA1 )(a1) = 0

thus ϕA(a1) ∈ ker dA2 . So ϕ̂A := ϕA|ker dA
1

is a map ker dA1 → ker dA2 . In the same manner we define ϕ̂B

and ϕ̂C .
Step 2 (Existence of ψ̄): We are given a map ψA : A2 → A4. Define ψ̄A : coker dA1 → coker dA2 by

ψ̄A([a2]) := [ψA(a2)]
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Or in other words, we would like to define this map by ψ̄A ◦ πA1 = πA2 ◦ ψA. We have to check, that
this is well defined: So let a1 ∈ A1 be arbitrary and a2 := dA1 (a1). By commutativity

ψA(a2) = (ψA ◦ dA1 )(a1) = (dA2 ◦ ϕA)(a1) ∈ im dA2

thus [ψA(a2)]A4 = 0. The maps ψ̄B and ψ̄C are defined in the same manner.
Step 3 (Commutativity of the left squares): By hypothesis ϕB ◦ f1 = f3 ◦ ϕA. By the snake lemma
(1.1.(iii)) f̂1 and f̂3 are just restrictions of f1 resp. f3 and by step 1 ϕ̂A and ϕ̂B are just restrictions of
ϕA resp. ϕB as well. Thus ϕ̂B ◦ f̂1 = f̂3 ◦ ϕ̂A as well. The same argument holds for ϕ̂C ◦ ĝ1 = ĝ3 ◦ ϕ̂B.
Step 4 (Commutativity of the right squares): By hypothesis ψB ◦ f2 = f4 ◦ ψA. Thus by the snake
lemma (1.1.(iii) and by definition

(ψ̄B ◦ f̄2)([a2]) = ψ̄B([f2(a2)]) = [ψB(f2(a2)] = [f4(ψA(a2))] = f̄4([ψA(a2)]) = (f̄4 ◦ ψ̄A)(a2)

The same argument works for ψ̄C ◦ ḡ2 = ḡ4 ◦ ψ̄B.
Step 5 (Commutativity of the center square): Let c1 ∈ ker dC1 be arbitrary and chose (b1, b2, a2) ∈
chase(c1). We claim that

(ϕB(b1), ψB(b2), ψA(a2)) ∈ chase(ϕ̂C(c1))

But indeed

g3(ϕB(b1)) = (ϕC ◦ g1)(b1) = ϕ̂C(c1)

dB2 (ϕB(b2)) = (ψB ◦ dB1 )(b1) = ψB(b2)

f4(ψA(a2)) = (ψB ◦ f2)(a2) = ψB(b2)

Thus by definition

(ψ̄A ◦ δ1)(c1) = (ψ̄A ◦ πA1 )(a2) = (πA2 ◦ ψA)(a2) = (δ2 ◦ ϕ̂C)(c1)

1.1.7 Long Exact Sequence

An immediate and extremly important application of the snake lemma is the following

1.3 Corollary (The long exact Sequence). Every short exact sequence of chain complexes induces a
long exact sequence in their homology. More precise: Let R be a ring and

0 // A∗
f
// B∗

g
// C∗ // 0

be a short exact sequence in the category of chain complexes of R-modules. Then there is a long exact
sequence

. . .
δn−1

// Hn(A)
[fn]
// Hn(B)

[gn]
// Hn(C)

δn // Hn−1(A) // . . .

Here [fn] = Hn(f), [gn] = Hn(g) and by slight abuse of notation the connection homomorphism δn
can be calculated by

∀cn ∈ ZCn : δn([cn]) = [(f−1
n−1 ◦ d

B
n ◦ g−1

n )(cn)].

Alternatively, if we define

chase([cn]) := {(bn, bn−1, an−1) ∈ Bn×Bn−1×An−1 | bn ∈ g−1
n (cn), dBn (bn) = bn−1, fn−1(an−1) = bn−1}

for any cn ∈ ZCn , then
δ([cn]) = [a2].
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Moreover this long exact sequence is natural. This means that for any commutative diagram

0 // A∗

ϕA

��

f
// B∗

ϕB

��

g
// C

ϕC

��

// 0

0 // A′∗
f ′
// B′∗

g′
// C ′ // 0

in the category of short exact sequences of chain complexes of R modules, we get a morphism in the
category of long exact sequences or R-modules, i.e. a commutative diagram

. . .
δn−1
// Hn(A)

[ϕA
n ]
��

[fn]
// Hn(B)

[ϕB
n ]
��

[gn]
// Hn(C)

[ϕC
n ]
��

δn // Hn−1(A)

[ϕA
n−1]

��

// . . .

. . .
δ′n−1
// Hn(A′)

[f ′n]
// Hn(B′)

[g′n]
// Hn(C ′)

δ′n // Hn−1(A′) // . . .

Proof. By definition for every n ∈ Z

An+1

dA
n+1

��

fn+1
// Bn+1

dB
n+1

��

gn+1
// // Cn+1

dC
n+1

��

// 0

0 // An
� � fn

// Bn
gn

// Cn

satisfies the hypothesis of the Snake Lemma 1.1. Thus in the following diagram (which we regard to
be the diagram for the index n)

0 // ZAn+1

��

// ZBn+1

��

// ZCn+1

��

0 // An+1

dA
n+1

��

fn+1
// Bn+1

dB
n+1

��

gn+1
//// Cn+1

dC
n+1

��

// 0

0 // An

��

fn
// Bn

��

gn
// Cn

��

// 0

An

dA
n+1An+1

//
Bn

dB
n+1Bn+1

//
Cn

dC
n+1Cn+1

// 0

(1.2)

the top and the bottom row are part of a leS. Applying (1.2) to the top row and the index n− 1 and
to the bottom row for the index n, we obtain that the diagram

An

dA
n+1An+1

d̄A
n

��

f̄n
//

Bn

dB
n+1Bn+1

d̄B
n

��

ḡn
//

Cn

dC
n+1Cn+1

d̄C
n

��

// 0

0 // ZAn−1

f̂n−1
// ZBn−1

ĝn−1
// ZCn−1

has exaxt rows. Here maps f̄n,ḡn,f̂n−1,ĝn−1 are induced as in the Snake Lemma (1.1.(iii)). The map
d̄An is induced via dAn and the universal property of the quotient

An

��

dA
n // ZAn−1

An

dA
n+1An+1

d̄A
n

;;v
v

v
v

v
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and the maps d̄Bn ,d̄Cn likewise. The diagram is commutative since f and g are morphisms of chain
complexes. So we may apply the snake lemma again, to obtain a morphism δn such that

0 // ker d̄An // ker d̄Bn // ker d̄Cn
δn // coker d̄An // coker d̄Bn // coker d̄Cn // 0

is exact. We claim that in fact this is the desired sequence. Notice that

Hn(A) =
ker(dAn : An → Zn−1)

im(dAn+1 : An+1 → An)
= ker

(
d̄An :

An

dAn+1An
→ Zn−1

)
,

since
∀aAn : 0 = d̄An ([a]) = dn(a) ⇔ [a] ∈ Hn(A).

The same holds for B,C as well. For the cokernels we obtain

Hn−1(A) =
ker(dAn−1 : An−1 → Zn−2)

im(dAn : An → BA
n−1)

= coker

(
d̄An :

An

dAn+1An+1
→ ZAn−1

)
,

since
∀a ∈ An : d̄An ([a]) = dn(a) ∈ dnAn.

The snake lemma (1.1(iii)) also states that the map ker d̄An → ker d̄Bn is just the restriction

f̄n|ker d̄A
n

= Hn(f) = [fn]

and similar we identify the map ker d̄Bn → ker d̄Cn as [gn]. Also by 1.1.(iii) the map coker d̄An → coker d̄Bn
is the map induced by f̄n−1 on the quotient and thus identical to Hn−1(f) = [fn−1]. The same holds for
coker d̄Bn → coker d̄Cn . The formula for the connection morphism δn is also directly derived from 1.1(iv).
By pasting the upper sequences together for all n ∈ Z we obtain the desired long exact sequence.
The naturality statement is a direct application of Theorem 1.2.

1.4 Remark. The construction of the long exact sequence from the Snake Lemma may be visualized
in its finest beauty by:

0 // An
fn

//

dA
n

||yyyyyyyyy
Bn

gn
//

dB
n

||xxxxxxxxx
Cn

dC
n

||yyyyyyyyy
// 0

0 // An−1
fn−1

// Bn−1
gn−1

// Cn−1
// 0

0 // ZAn
f̂n

//
?�

ιAn

OO

πA
n

����

ZBn
ĝn

//
?�

ιBn

OO

πB
n

����

ZCn
?�

ιCn

OO

πC
n

����

// 0

0 // ZAn−1

f̂n−1
//

?�

OO

πA
n−1

����

ZBn−1

ĝn−1
//

?�

ιBn−1

OO

πB
n−1

����

ZCn−1

?�

ιCn−1

OO

πC
n−1

����

// 0

. . . // Hn(A)
[fn]

// Hn(B)
[gn]

// Hn(C) EDBC
GF

δn

��

Hn−1(A)
[fn−1]

// Hn−1(B)
[gn−1]

// Hn−1(C)
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1.5 Corollary (leS of the Pair). Let (X,A) be a pair of spaces. Then there is a natural leS

. . .
δn+1

// Hn(A)
[ι]
// Hn(X)

[π]
// Hn(X,A)

δn // Hn−1(A) // . . .

where H∗ denotes the Singular Homology functor, ι : A→ X the canonical inclusion and π∗ : C∗(X) →
C∗(X,A) the canonical projection. Using the fact that for any z̄ ∈ Cn(X,A)

z̄ ∈ Zq(X,A) ⇔ ∃a ∈ Cn(A) : ∃x ∈ Cn+1(X) : z̄ = a+ dXn+1(x)

the connection morphism δ can be described as

δ([z]) = [dAn (a)]

This sequence is natural in (X,A).

Proof. There is a seS
0 // C∗(A)

ι∗ // C∗(X)
π∗ // C(X,A) // 0

of chain complexes, where C∗ denotes the singular chain functor. Thus the statement follow from
1.3.

1.6 Corollary (leS of the Triple). Let (X,Y, Z) be a triple of spaces. Denote by i : (Y, Z) → (X,Z)
and j : (X,Z) → (X,Y ) the canonical inclusions. Then there is a leS

. . .
δq−1

// Hq(Y, Z)
[iq ]
// Hq(X,Z)

[jq ]
// Hq(X,Y )

δq
// Hq−1(Y, Z) // . . .

The connection homomorphism can be described as follows: For any c ∈ Zq(X,Y )

δ([c]) = [(i−1
q−1 ◦ d

X,Z
q ◦ j−1

q )(c)] = [dX,Zq (c)] ∈ Zq−1(Y, Z)

Proof. It is more or less obvious, that

0 // C∗(Y, Z)
i∗ // C∗(X,Z)

j∗
// C∗(X,Y ) // 0

is short exact. So the statement follows from 1.3.
To see exactness, chose any q ∈ N, y ∈ Cq(Y ) and denote by dyeZ ∈ Cq(Y, Z) the corresponding
equivalence class. We have

iq(dyeZ) = 0 ⇒ y ∈ Z ⇒ dyeZ = 0

thus i∗ is injective. For any dxeY ∈ C∗(X,Y ), we have

jq(dyeZ) = dyeY

by definition. Thus j∗ is surjective. Clearly j∗ ◦ i∗ = 0, thus im i∗ ⊆ ker j∗. Conversely

dxeZ ∈ ker jq ⇒ jq(dxeZ) = dxeY = 0 ⇒ x ∈ Y

Thus iq(dxeZ) = dxeZ .

11



1.2 The Five Lemma

1.7 Lemma. Let R be a ring and assume we are given the following commutative diagram in the
category of R-modules:

A1
α1 //

ϕ1

����

A2
α2 //

ϕ2∼
��

A3
α3 //

ϕ3

��

A4
α4 //

ϕ4

��

A5� _

ϕ5

��

B1
β1
// B2

β2
// B3

β3
// B4

β4
// B5

Let both rows be exact and ϕ2, ϕ4 be isomorphisms. If ϕ1 is an epimorphism, then ϕ3 is a monomor-
phism. If ϕ5 is a monomorphism, then ϕ3 is an epimorphism.

1.8 Remark. One usually memorizes this as: If the outer four maps ϕ1, ϕ2, ϕ4, ϕ5 are isomorphisms,
so is the inner one ϕ3.

Proof.
Injectivity: We show, that kerϕ3 is trivial. So assume x ∈ kerϕ3. This implies

(ϕ4 ◦ α3)(x) = (β3 ◦ ϕ3)(x) = 0

due to commutativity of the diagram. Since ϕ4 is injective

x ∈ kerα3 = imα2 =⇒ ∃a2 ∈ A2 : α2(a2) = x

This implies
(β2 ◦ ϕ2)(a2) = (ϕ3 ◦ α2)(a2) = ϕ3(x) = 0

Thus
ϕ2(a2) ∈ kerβ2 = imβ1 =⇒ ∃b1 ∈ B1 : β1(b1) = ϕ2(a2)

Since ϕ1 is surjective by hypothesis, there exists a1 ∈ A1 such that ϕ1(a1) = b1. It follows

(ϕ2 ◦ α1)(a1) = (β1 ◦ ϕ1)(a1) = β1(b1) = ϕ2(a2)

Since ϕ2 is injective

α1(a1) = a2 =⇒ a2 ∈ imα1 = kerα2 =⇒ x = α2(a2) = 0

Surjectivity: Let b3 ∈ B3 be arbitrary. Since ϕ4 is surjective

∃a4 ∈ A4 : ϕ4(a4) = β3(b3)

We obtain
(ϕ5 ◦ α4)(a4) = (β4 ◦ ϕ4)(a4) = (β4 ◦ β3)(b3) = 0

Since ϕ5 is injective

α4(a4) = 0 =⇒ a4 ∈ kerα4 = imα3 =⇒ ∃a3 ∈ A3 : α3(a3) = a4

This impiles
(β3 ◦ ϕ3)(a3) = (ϕ4 ◦ α3)(a3) = ϕ4(a4) = β3(b3)

and thus
ϕ3(a3)− b3 ∈ kerβ3 = imβ2 =⇒ ∃b2 ∈ B2 : β2(b2) = ϕ3(a3)− b3

Since ϕ2 is surjective there is a a2 ∈ A2 such that ϕ2(a2), which implies

(ϕ3 ◦ α2)(a2) = (β2 ◦ ϕ2)(a2) = β2(b2) = ϕ3(a3)− b3 ⇐⇒ b3 = ϕ3(a3 − α2(a2))

12



2 Resolutions

2.1 Definition (projective). An R-Module P is projective, if

P
∃β

~~~~
~~

~~
~

γ

��

B π
// // C

for every other R-Modules B,C and every morphism γ : B → C and every surjective morphism
π : B → C there exists a β : P → B such that π ◦ β = γ.

2.1 The Horseshoe Lemma

2.2 Lemma. Let R be a ring. Assume we are given a short exact sequence

0 // A′
f
// A

g
// A′′ // 0

in the category of R-modules. Let (P ′∗, p
′
∗, ε

′) be a projective resolution of A′ and (P ′′∗ , p
′′
∗, ε

′′) be a
projective resolution of A′′. Then the Pn := P ′n ⊕ P ′′n can be connected by morhpisms to a projective
resolution of A and there is a short exact sequence

0 // P ′
ι // P

π // P ′′ // 0

in the category of chain complexes of R-modules. The map ιn : P ′n → Pn is the canonical inclusion,
the map πn : Pn → P ′′n the canonical projection.

Proof. We construct the augmentation map first: Since g is surjective and P ′′0 is projective

P ′0

ε′

��

P0

ε

��
�
�
� P ′′0

β

~~}
}

}
}

ε′′

��

A′
f
// A

g
// A′′

there exists β : P ′′0 → A such that g ◦ β = ε′′. Define ε : P0 → A by ε := (f ◦ ε′)⊕ β. Now extend this
diagram to

0 // P ′0

ε′

��

ι0 // P0

ε

��

π0 // P ′′0

ε′′

��

// 0

0 // A′
f
// A

g
// A′′ // 0

By construction both rows are exact. Furthermore

ε ◦ ι0 = f ◦ ε′ g ◦ ε = g ◦ (f ◦ ε′ ⊕ β) = 0⊕ g ◦ β = 0⊕ ε′′ = π0 ◦ ε′′

thus both squares commute, i.e. this is a morphism of short exact sequences. The snake lemma 1.1
yields

ker ε′ //
� _

��

ker ε //
� _

��

ker ε′′� _

��

0 // P ′0

ε′

��

ι0 // P0

ε

��

π0 // P ′′0

ε′′

��

// 0

0 // A′
f

//

��

A
g

//

��

A′′ //

��

0

0 // coker ε // coker ε′′

13



where every square is commutative and the upper row together with the connection morphism δ :
ker ε′′ → coker ε′ and the bottom row is an exact sequence. Since ε′, ε′′ are both surjective by hypothesis
their cokernels vanish. Exactness now implies coker ε = 0, i.e. ε is surjective as well. This finishes the
construction of the augmentation map.
The situation now is

P ′′1

p′1
����

P ′1

p′1
����

0 // ker ε′ // ker ε // ker ε′′ // 0

since the given projective resulutions are exact sequences by hypothesis. But this is precisely the same
situation as in the beginning, just one index further above and with other names for the objects. So
the filling of the horseshoe proceeds inductively by applying the procedure above again and again.

2.2 The Fundamental Lemma

2.3 Theorem (Fundamental Lemma of Homological Algebra). Let A,B be modules over R and (P∗, α),
(Q∗, β) be projective resolutions of A and B resp. Then there exists isomorphisms

HomR(A,B) ∼= HomR(H0(P∗),H0(Q∗)) ∼= [P∗, Q∗]

where [P∗, Q∗] denote the chain homotopy classes of chain maps P∗ → Q∗. The second isomorphism is
induced by

(f : P∗ → Q∗) 7→ H0(f)

Proof. The first isomorphy is obtained by the following: By exactness of the projective resolution, by
the surjectivity of α and by the universal property of the quotient, we obtain

P1

δP
1 // P0

πP
0
��

α // A // 0

P0/ kerα

ᾱ

;;vvvvvvvvvv

Here πP0 is the canonical projection and ᾱ is the induced isomorphism satisfying ᾱ◦πP0 = α. We obtain

A ∼= P0/kerα = P0/im δP1 = H0(P∗)

since the projective resolution complex

P1

δP
1 // P0

// 0

has homology
H0(P∗) = ker 0/im δP1 = P0/im δP1

Applying the same procedure to (Q∗, β) we obtain an analogue isomorphism β̄ : H0(Q∗) → B. Thus
the maps

HomR(A,B) → HomR(H0(P∗),H0(Q∗)) f 7→ β̄ ◦ f ◦ ᾱ
HomR(H0(P∗),H0(Q∗)) → HomR(A,B) g 7→ β̄−1 ◦ g ◦ ᾱ−1

yield the first isomorphy.
To proof the second isomorphy, we will show, that there exists a bijection

Ψ : [P∗, Q∗] → HomR(H0(P∗),H0(Q∗))
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A chain homotopy class [f ] : P∗ → Q∗ induces a map H0(f), wich is independent of the choice of
representative f . So we obtain a well defined element

Ψ([f ]) := H0(f) ∈ HomR(H0(P∗),H0(Q∗))

We claim, that Ψ is surjective: Let f ∈ HomR(H0(P∗),H0(Q∗))B be arbitrary. The projection map
πQ0 : Q0 → H0(Q∗) is surjective. So by projectivity of P0

P0

ϕ0

��

πP
0 // // H0(P∗)

f

��

Q0
πQ
0 // // H0(Q∗)

there exists a map ϕ0 : P0 → Q0 such that

πQ0 ◦ ϕ0 = f ◦ πP0

We can now proceed by induction: Suppose we have already constructed ϕ0, . . . , ϕn−1. Then we obtain

Pn

ϕn

��

δP
n // Pn−1

ϕn−1

��

δP
n−1
// Pn−2

ϕn−2

��

Qn
δQ
n // Qn−1

δQ
n−1
// Qn−2

In case n = 1 we interpret P−1 := H0(P∗), Q−1 := H0(Q∗). By commutativiy we obtain

δQn−1 ◦ ϕn−1 ◦ δPn = ϕn−2 ◦ δPn−1 ◦ δPn = 0

and thus
imϕn−1 ◦ δPn ⊆ ker δQn−1 = im δQn

So we can regard ϕn−1 ◦ δPn as a map Pn → im δQn . Since δQn : Qn → im δQn is certainly surjective the
projectivity of Pn yields a map ϕn : Pn → Qn such that

δQn ◦ ϕn = ϕn−1 ◦ δPn

So we have constructed a chain map ϕ∗ : P∗ → Q∗ with Ψ([ϕ∗]) = f .
We claim that Ψ is also injective: Suppose we have a map f : H0(P∗) → H0(Q∗) and two chain
maps ϕ∗, ψ∗ : P∗ → Q∗ such that Ψ([(ϕ∗])) = Ψ([(ψ∗])) = f . We have to construct a chain homotpy
Σ : P∗ → Q∗+1. Consider

P1

ϕ1ψ1

��

δP
1 // P0

ϕ0ψ0

��

πP
0 // H0(P∗)

f

��

Q1
δQ
1

// Q0
πQ
0

// H0(Q∗)

Since ϕ0, ψ0 both induce f we have

πQ0 ◦ (ψ0 − ϕ0) = πQ0 ◦ ψ0 − πQ0 ◦ ϕ0 = πP0 ◦ ϕ− πP0 ◦ ϕ = 0

Thus imψ0 −ϕ0 ⊆ kerπQ0 = im δQ1 . Since δQ1 : Q1 → im δQ1 is certainly surjective the projectiviy of P0

yields a map Σ0 : P0 → Q1 such that
δQ1 ◦ Σ0 = ψ0 − ϕ0

15



We continue now by induction: Suppose Σ0, . . . ,Σn−1 are already defined such that

∀1 ≤ i ≤ n− 1 : δQi ◦ Σi + Σi−1 ◦ δPi = ψi − ϕi

where we define Σ−1 := 0. Then we obtain again

Pn+1

ϕn+1ψn+1

��

δP
n+1

// Pn

ϕnψn

��

δP
n // Pn−1

ϕn−1ψn−1

��

Qn+1
δQ
n+1

// Qn
δQ
n

// Qn−1

Analogously we have:

δQn ◦ (ψn − ϕn − Σn−1 ◦ δPn )

= δQn ◦ ψn − δQn ◦ ϕn − δQn ◦ Σn−1 ◦ δPn
= ψn−1 ◦ δPn − ϕn−1 ◦ δPn − δQn ◦ Σn−1 ◦ δPn
= (ψn−1 − ϕn−1 − δQn ◦ Σn−1) ◦ δPn
= Σn−2 ◦ δPn−1 ◦ δPn
= 0

So im(ψn−ϕn−Σn−1 ◦ δPn ) ⊆ ker δQn = im δQn−1. So again projectivity of Pn+1 yields a map Σn : Pn →
Qn+1 such that

δn+1 ◦ Σn = ψn − ϕn − Σn−1 ◦ δPn

2.4 Definition. Let (P∗, α), be a projective resolution of M and (Q∗, β) be a projective resolution of
N . Then we say P∗ and Q∗ are resolutions over f ∈ HomR(M,N) if they correspond to f under the
isomorphisms the theorem above establishes.

2.5 Corollary. Let (P∗, α), (Q∗, β) be two projective resolutions of M . Then there exists a chain
homotopy equivalence ϕ : P∗ → Q∗ such that

H0(P∗)

H0(ϕ)
��

α //M

id

��

H0(Q∗)
β

//M

commutes. Moreover ϕ is unique up to chain homotopy.

Proof. Especially idM ∈ HomR(M,M) and thus by the theorem above there are two chain maps
ϕ : P∗ → Q∗ and ψ : Q∗ → P∗ over idM . Consider

P∗

ϕ

��

α //M

id

��

P∗α
oo

id

��

Q∗

ψ

��

β
//M

id

��

P∗
α //M P∗α

oo

The identity idP is a chain map P∗ → P∗ over idM but ψ ◦ ϕ is also a chain map P∗ → P∗ over idM .
By the fundamental lemma ψ ◦ ϕ ' idP . Analogously ϕ ◦ ψ ' idQ.
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2.3 Ext

2.3.1 Properties of the Hom Functor

For the entire section let R be a Ring.

2.6 Definition (Hom Functor). Let A,B ∈ ModR. Then

HomR(A,B) := {λ : A→ B|λ is an R-Module homomorphism}

For any homomorphisms f : A→ A′, g : B → B′ we define:

HomR(f, g) : HomR(A′, B) → HomR(A,B′)

by α 7→ g ◦ α ◦ f . So

A
f
// A′

α // B
g
// B′

2.7 Lemma (Elemental Properties of Hom).
(i) HomR(_,_) is a functor in two variables which is contravariant in the first variable and covariant

in the second.
(ii) There exists a bijection HomR(⊕i∈IAi, B) ∼=

∏
i∈I HomR(Ai, B)

(iii) There exists a bijection HomR(A,
∏
i∈I Bi) ∼=

∏
i∈I HomR(A,Bi)

Proof. (i) clear
(ii) Let (⊕i∈IAi, (ιi∈I) be the direct sum of theAi. Define ϕ : HomR(⊕i∈IAi, B) →

∏
i∈I HomR(Ai, B)

by sending f 7→ fi where fi := f◦ιi. Conversely define ψ :
∏
i∈I HomR(Ai, B) → HomR(⊕i∈IAi, B)

by the following: Given a system of maps (fi)i∈I the universal property of the direct sum

Ai

fi

��

� � ιi // ⊕i∈IAi

∃!f
{{wwwwwwwww

B

yields precisely one f =: ψ((fi)i∈I) : ⊕i∈IAi → B such that for all i ∈ I we have f ◦ ιi = fi.
These mappings are obviously inverse to each other.

(iii) Let (
∏
i∈iBi, (πi)i∈I) be the product of theBi. Define ψ : HomR(A,

∏
i∈I Bi) ∼=

∏
i∈I HomR(A,Bi)

by sending f 7→ fi where fi := πi◦f . Conversely define ψ
∏
i∈I HomR(A,Bi) → HomR(A,

∏
i∈I Bi)

by the following: Given a system of maps (fi)i∈I the universal property of the product

Bi
∏
i∈I Bi

πioooo

A

fi

OO

∃!f

;;vvvvvvvvv

there exists precisely one f =: ψ((fi)i∈I) such that for all i ∈ I we have fi = πi ◦ f . These
mappings are obviously inverse to each other.

2.8 Theorem (Exactness).
(i) HomR(_, B) is left exact, i.e. for any e.S.

A
α // A′

β
// A′′ // 0
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the sequence

0 // HomR(A′′, B)
β∗
// HomR(A′, B) α∗ // HomR(A,B)

is also exact. Here β∗ := HomR(β, idB), α∗ := HomR(α, idB).
(ii) If the s.e.S.

0 // A
α // A′

β
// A′′ // 0

splits, then

0 // HomR(A′′, B)
β∗
// HomR(A′, B) α∗ // HomR(A,B) // 0

is also a s.e.S.
(iii) HomR(A,_) is left exact, i.e. for any e.S.

0 // B
α // B′

β
// B′′

the sequence

0 // HomR(A,B)
α∗ // HomR(A,B′)

β∗
// HomR(A,B′′)

is also exact. Here α∗ := HomR(α, idA), β∗ := HomR(β, idA).
(iv) If the s.e.S.

0 // B
α // B′

β
// B′′

splits, then

0 // HomR(A,B)
α∗ // HomR(A,B′)

β∗
// HomR(A,B′′) // 0

is also exact.

Proof.

(i) β∗ is injective: Let λ′′ ∈ HomR(A′′, B) such that

0 = β∗(λ′′) = λ′′ ◦ β

Let a′′ ∈ A′′. By surjectivity of β there exists a a′ ∈ A′ such that a′′ = β(a′). So λ′′(a′′) =
λ′′(β(a′)) = (λ′′ ◦ β)(a′) = 0. And thus λ′′ = 0.
imβ∗ ⊆ kerα∗: By hypothesis β ◦ α = 0. So by functoriality β∗ ◦ α∗ = 0 as well and thus
imβ∗ ⊆ kerα∗.
kerα∗ ⊆ imβ∗: Let λ′ ∈ kerα∗, i.e. λ′ ◦ α = 0. This means that λ′|imα = λ′|kerβ = 0. By the
universal property of the quotient

A′

π
����

λ′ // B

A′/ kerβ
∃!λ̃′′

;;vvvvvvvvv

there exists precisely one λ̃′′ : A′/ kerβ → B such that λ̃′′ ◦ π = λ′. By exactness of (??) there
exists an isomorphism ϕ : A′/ kerβ → A′′. So defining λ′′ : A′′ → B by λ′′ := λ̃′′ ◦ϕ−1 we obtain
alltogether by the universal properties of both quotiens

A′′ A′
β

oooo

π
����

λ′ // B

A′/ kerβ
ϕ

ddIIIIIIIII ∃!λ̃′′

;;vvvvvvvvv
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that β∗(λ′′) = λ′′ ◦ β = λ̃′′ ◦ ϕ−1 ◦ β = λ̃′′ ◦ π = λ′.
(ii) One possible way to describe the splitting of a s.e.S. is to say that there exists an isomorphism

ϕ : A′ → A ⊕ A′′. It remains to show, that α∗ : HomR(A′, B) → HomR(A,B) is surjective. So
let λ ∈ HomR(A,B) be arbitrary. Then we can construct a map

A

λ
��

� � α // A′

λ′

~~~~
~~

~~
~~

ϕ
// A⊕A′′

λ̃′
vvlllllllllllllll

B

λ̃′ : A⊕A′′ → B by setting λ̃′ := λ⊕0 and then defining λ′ : A′ → B by λ′ := λ̃′ ◦ϕ. Alltogether
this yields:

α∗(λ′) = λ′ ◦ α = λ̃′ ◦ ϕ ◦ α = λ ◦ ϕ ◦ α⊕ 0 = λ

(iii) α∗ is injective: Let λ ∈ HomR(A,B) such that 0 = α∗(λ) = α ◦ λ. This implies

∀a ∈ A : λ(a) ∈ kerα = {0}

since α is injective by hypothesis. So λ = 0.
imα∗ ⊆ kerβ∗: Since β ◦ α = 0 by covariant functoriality β∗ ◦ α∗ = 0 as well and thus imα∗ ⊆
kerβ∗.
kerβ∗ ⊆ imα∗: Let λ′ ∈ HomR(A,B′) such that 0 = β∗(λ′) = β ◦ λ′. This implies that
imλ′ ⊆ kerβ = imα. So we can construct a map

A
λ′

  
AA

AA
AA

A

λ
��

B α
// B′

λ : A→ B by the following: Let a ∈ A, then λ′(a) ∈ imλ′ ⊆ imα and so there exists b ∈ B such
that α(b) = λ′(a). Define λ(a) := b. We have to show, that λ is well defined. So let b, b′ ∈ B
such that α(b) = α(b′) = λ′(a). This implies

0 = α(b)− α(b′) = α(b− b′) ⇒ b− b′ ∈ kerα = {0}

Thus b = b′ and λ′ = α ◦ λ = α∗(λ).
(iv) It remains only to show, that β∗ is surjective. Let the splitting be realised by a map s : B′′ → B′

such that β ◦ s = idB′′ . If λ′′ ∈ HomR(A,B′′) define λ′ : A → B′ by λ′ := s ◦ λ′′. Then by
construction

β∗(λ′) = β ◦ λ′ = β ◦ s ◦ λ′′ = idB′′ ◦λ′′ = λ′′

2.9 Corollary. Let A ⊂ X be a subspace then

0 // S∗(A) // S∗(X) // S∗(X,A) // 0

is a s.e.S. which splits. So

0 // S∗(X,A) // S∗(X) // S∗(A) // 0

is also a s.e.S.
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2.3.2 Ext

2.10 Definition. LetA,B beR-modules. Let (P∗, ε) be a projective resolution ofA. Then HomR(P ∗, B)
is a cochain complex. Define

ExtnR(A,B) := Hn(HomR(P∗, B)))

2.11 Theorem (Properties of Ext). The Ext functor satisties the following
(i) Ext0R(A,B) ∼= HomR(A,B)
(ii) The definition of Ext does not depend on the choice of the projective resolution (P∗)
(iii) If R is a PID, then ExtnR(A,B) = 0, if n ≥ 2.
(iv) So for abelian groups A,B we can define Ext(A,B) := Ext1Z(A,B).
(v) Extn is a functor in two variables, contravariant in the first entry and covariant in the second.

So for any f : A→ A′, g : B → B′ we have

ExtnR(f, g) : ExtnR(A′, B) → ExtnR(A,B′)

(vi) Ext(A,
∏
i∈I Bi) =

∏
Ext(A,Bi)

(vii) Ext(
⊕

i∈I Ai, B) =
∏
i∈I(Ext(Ai, B))

Proof. (i) Let (P∗, ε) be a projective resolution of A. By definition the sequence

P1
p
// P0

ε // // A // 0

is exact. Since Hom(_, B) is left extact, it follows, that

0 // HomR(A,B) ε∗ // HomR(P0, B)
p∗
// // HomR(P1, B)

is also exact. So in particular ε∗ is injective and thus

ker p∗ = im ε∗ ∼= HomR(A,B)

By taking a look at the complex

0 // HomR(P0, B)
p∗
// HomR(P1, B) // . . .

we see, that
H0(HomR(P∗, B)) = ker p∗/ im 0 = ker p∗ ∼= HomR(A,B)

3 Epic Theorems of Homological Algebra

3.1 Universal Coefficient Theorems

3.1 Theorem (Universal Coefficient Theorem for Homology). Let be (P∗, d) be a projective chain
complex of R-modules, such that for every n ∈ N dPn is projective as well. Then for every R-module
M and every n ∈ N

0 // Hn(P∗)⊗RM
αn // Hn(P∗ ⊗RM)

βn
// TorR1 (Hn−1(P∗),M) // 0
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is a short exact sequence which is non canonically split. The maps α∗, β∗ may be explicitely computed
by 3

∀zn ∈ Zn(P∗) : ∀m ∈M : αn([zn]⊗m) = [zn ⊗m]
∀zn ⊗m ∈ Zn(P∗ ⊗M) : ∀m ∈M : β([zn ⊗m]) = dzn ⊗m

Proof. For every n ∈ N denote Zn := Zn(P∗), Bn := Bn(P∗), B′n := Bn−1,Hn := Hn(P∗) and let
ιn : Zn → Pn and in : Bn → Zn be the canonical inclusions. We always write ⊗ := ⊗R and id := idM
Step 1 (Obtain a seS): The following sequence

0 // Z∗
ι // P∗

d // B′∗
// 0

is a seS of chain complexes, where all the induced differentials in Z∗ and B′∗ are zero. Since dPn is
projective

dPn
s

}}{
{

{
{

id
��

Pn d
// // dPn

there exists a splitting s : dPn → Pn, d ◦ s = id. Since _⊗M is additive

0 // Z∗ ⊗M
ι⊗id

// P∗ ⊗M
d⊗id

// B′∗ ⊗M // 0

is a seS as well. Thus we obtain a leS in Homology

. . .
δn+1

// Hn(Z∗ ⊗M)
[ιn⊗id]

// Hn(P∗ ⊗M)
[dn⊗id]

// Hn(B′∗ ⊗M)
δn // . . .

This implies that

0 // Hn(Z∗⊗M)
ker[ιn⊗id]

ιn⊗id
// Hn(P∗ ⊗M)

[dn⊗id]
// im[d⊗ id]n // 0

is short exact, where ιn ⊗ id denotes the map induced by [ιn ⊗ id] on the quotient (via universal
property). In the following steps we will take a closer look at this sequence and proof that in fact this
already is the sequence we are looking for.
Step 2 (Analyze the modules): By construction all the differentials in Z∗ are identically zero and so
are the differentials in Z∗ ⊗M and id := idM Thus

Hn(Z∗ ⊗M) = Z∗ ⊗M.

The differentials in B′∗ and thus the ones in B′∗ ⊗M vanish as well and thus

Hn(B′∗ ⊗M) = B′∗ ⊗M.

Furthermore since the original sequence is long exact, we have

im[dn ⊗ id] = ker δn
Hn(Z∗ ⊗M)
ker[ιn ⊗ id]

=
Z∗ ⊗M

im δn+1
= coker δn+1

Step 3 (Analyze the connection morphism): The explicit characterization of the connection homo-
morphism δ from Corollary 1.3 states, that in this particular case

δn+1 = [ιn ⊗ id ◦(dn+1 ⊗ id) ◦ (dn+1 ⊗ id)−1] = [in ⊗ id]
3Notice carefully, that β is not the zero map! The decicive point is that there are zn ⊗ m ∈ Pn ⊗ M such that

(dn ⊗ id)(zn ⊗m) = dn(zn)⊗m = 0, but dn(zn) 6= 0.
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where as usual ”(dn+1⊗ id)−1” has to be read as ”take an arbitrary preimage” and the brackets indicate
”take represented class in homology”. Thus together with step 2 we obtain in particular

ker δn = ker[in−1 ⊗ id] = ker in−1 ⊗ id coker δn+1 = coker[in ⊗ id] = coker in ⊗ id

Step 4 (Calculating ker δn): We claim that

0 // dPn
in−1

// Zn−1
πn−1

// Hn−1
// 0

is an augmented projective resolution of Hn−1: The sequence is exact by construction and dPn is
projective by hypothesis. The split seS from step 1 implies that Pn−1

∼= Zn−1 ⊕ dPn. Since Pn−1 is
projective by hypothesis, there exists a free module Fn−1 and a submodule Mn−1 ⊂ Fn−1 such that

Fn−1
∼= Pn−1 ⊕Mn−1

∼= Zn−1 ⊕ dPn ⊕Mn−1

thus Zn−1 is also a direct summand of a free module, hence projective. Consequently the first Homology
Group of the complex

(∗) 0 // dPn ⊗M
in−1⊗id

// Zn−1 ⊗M // 0

yields to
TorR1 (Hn−1,M) = H1(∗) = ker in−1 ⊗ id = ker δn

Step 5 (Calculating coker δn+1): Using the same sequence as above one degree higher, we obtain the
seS

0 // Bn
in // Zn

πn // Hn
// 0

Since _⊗M is right exact

Bn ⊗M
in⊗id

// Zn ⊗M
πn⊗id

// Hn ⊗M // 0

is exact as well and thus

coker δn+1 = coker in ⊗ id = Zn⊗M
im in⊗id = Zn⊗M

kerπn⊗id

πn⊗id

∼
// Hn ⊗M

where πn ⊗ id−1 is the induced isomorphism on the quotient. Thus our desired map is

αn : Hn ⊗M → Hn(P∗ ⊗M), α := ι⊗ id ◦ πn ⊗ id−1

which maps precisely as claimed.
Step 6: Inserting the results of step 2-5 the seS of step 1 proves the claim.
Construction of the splitting: In step 1 we already constructed a splitting sn : dPn → Pn for

0 // Zn(P∗)
ι // Pn

d // dPn // 0

Functoriality implies

dn ◦ sn = iddPn ⇒ dn ⊗ id ◦sn ⊗ id = iddPn⊗M ⇒ [dn ⊗ id] ◦ [sn ⊗ id] = idHn(dPn⊗M)

3.2 Lemma (Integers and Rings).
• For every ring R, there exists a unique ring homomorphism ϕR : Z → R. So Z is initial object

in the category of rings.
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• Every ring R is a Z - Algebra.
• Every R-module is a Z - module.

Proof. By definition a ring homomorphism f : R → L between two rings R,L with unit is a map
satisfying

(1) : ∀a, b ∈ R : f(a+ b) = f(a) + f(b) (2) : ∀a, b ∈ R : f(ab) = f(a)f(b) (3) : f(1R) = 1L

Condition (1) immediately implies

f(0R) = 0L ∀a ∈ R : f(−a) = −f(a)

So if ϕ : Z → R is any ring homomorphism, we have

ϕ(0) = 0 ∀n ≥ 1 : ϕ(n) = ϕ

(
n∑
i=1

1Z

)
(1)
=

n∑
i=1

ϕ(1Z)
(3)
=

n∑
i=1

1R ∀n ≤ −1 : ϕ(n) = −ϕ(−n)

So ϕ is unique and using these relations to define ϕR we obtain the desired homomorphism.
Every ring R already has an additive and multiplicative structure. The scalar multiplication is defined
by Z×R→ R, (n, r) 7→ ϕR(n)r.
Given anyR-moduleM , we obtain the Z-module structure by defining scalar multiplication by Z×M →
M , (n,m) 7→ ϕR(n)m.

3.3 Corollary (Universal Coefficient Theorem for Singular Homology). Let X be a topological space
and R be any commutative ring with unit. Then there is a seS

0 // Hq(X)⊗Z R // Hq(X,R) // TorZ
1 (Hq−1, R) // 0 ,

which splits non-canonically.

Proof. By the lemma above, we interpret R and Cq(X,R) as a Z-modules and drop ϕR in notation.
We define ϕ : Cq(X)×R→ Cq(X,R), (

∑
i niσi, r) 7→

∑
i nirσi. This is bilinear and thus descends to

a linear map ϕ̄ : Cq(X)⊗Z R→ Cq(X,R). We claim that this is an isomorphism.
It is injective since

0 = ϕ̄

(∑
i

niσi ⊗ r

)
=
∑
i

nirσi

implies that for every i nir = 0 (since the σi are linearly independent). This implies(∑
i

niσi ⊗ r

)
=

(∑
i

nirσi

)
⊗ 1 = 0

To proof surjectivity let
∑

i riσi ∈ Cq(X,R) be arbitrary. Clearly

ϕ̄

(∑
i

σi ⊗ ri

)
=
∑
i

ϕ(σi, ri) =
∑
i

riσi

This means, we can interpret

Hq(X,R) = Hq(C∗(X,R)) = Hq(C∗(X)⊗Z R)

and thus the statement follows from 3.1
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3.4 Theorem (Universal Coefficient Theorem for Cohomology). Let R be a PID and C∗ be a projective
chain complex. Then there exists a split exact sequence

0 // Ext1R(Hn−1(C∗),M) α // Hn(HomR((C∗),M))
β
// HomR(Hn(C∗),M) // 0

which is natural in C∗ and M .
But be warned, my fellow: Folks in town say, the splitting is not natural.

Proof. Define C∗ := HomR(C∗,M) with differentials δn = HomR(dn,M).
Construction of β: For any n ∈ N define βn : Hn(HomR((C∗),M)) → HomR(Hn(C∗),M) by the
following: Remember that

Hn(HomR(C∗,M)) =
Zn(HomR(C∗,M)
Bn(HomR(C∗,M))

=
ker δn

im δn−1

An arbitrary cohomology class [λ] ∈ Hn(C∗) has a representative λ ∈ Zn. For any c ∈ Cn+1 we obtain
λ(δn+1(c)) = δn(λ) = 0. So im δn+1 = Bn ⊂ kerλ. By the universal property of the quotient

Zn

πn

��

λ // B

Zn
Bn

λ̄

??��������

we obtain a well defined λ̄ : Hn → B. Define βn([λ]) := λ̄. In order to check that this definition does
not depend on the choice of representative λ of [λ] we have to check, that

[λ] = 0 ⇒ λ̄ = 0

But [λ] = 0 implies the existence of a µ ∈ HomR(Cn−1,M) such that λ = δn−1(µ) = µ ◦ δn. So
λ|Zn = 0 and thus λ̄ = 0.
Construction of a splitting for β: Given any τ ∈ HomR(Hn,M) we have to construct a [λ] ∈
Hn(HomR(C∗,M)) such that β([λ]) = τ . We want to extend τ

Zn� _

��

πn // Hn
τ //M

Cn

λ

66

to the entire Cn. In order to archieve this consider the sequence

0 // Zn
in // Cn

δn // Bn−1
// 0

It is obviously exact and since R is a PID these are all projective modules. So the sequence splits
non canonically to Cn = Zn ⊕ B′n−1. Define λ := τ ◦ πn ⊕ 0. We have to show that λ represents a
cohomology class. But this is clear since

δn(λ) = λ ◦ δn+1 = τ ◦ πn ◦ δn+1 = 0

So we have constructed a well defined γ : HomR(Hn(C∗),M) → Hn(HomR(C∗,M)). It follows from
the definitions, that

(β ◦ γ)(τ) = β(τ ◦ π ⊕ 0) = β(τ ◦ π) = τ
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This proves that γ is a splitting and also that β is surjective.
Construction of α: We need to construct an α : Ext1R(Hn−1(C∗),M) → Hn(HomR(C∗,M)). As in the
discussion above we obtain a s.e.S. of chain complexes

0 // Z∗
ι // C∗

δ // B∗−1
// 0

which splits since R is a PID. The differentials of Z∗ and B∗−1 are just the zero maps. The splitting
implies that

0 // HomR(B∗−1,M) d∗ // HomR(C∗,M) ι∗ // HomR(Z∗,M) // 0

is a s.e.S. as well. The snake lemma for co-chain complexes yields a long exact sequence in cohomology
with connecting homomorphisms δn :

. . . // HomR(Zn−1,M) δn−1
// HomR(Bn−1,M)

Hn(δ∗)
// Hn(HomR(C∗,M))

If you paint the diagram for the snake lemma in this particular situation you see, that δn = jn where
jn : HomR(Zn,M) → HomR(Bm,M) is just the inclusion induced by jn : Bn → Zn.
Next we consider

0 // Bn
jn
// Zn

πn // Hn
// 0

and regard this as a projective resolution of Hn. Applying the Hom functor we obtain

0 // HomR(Zn,M)
j∗n // HomR(Bn,M) // 0

and thus
Ext1R(Hn, B) =

HomR(Bn, B)
im j∗n

Consider

HomR(Zn−1,M)
jn−1=δn−1

// HomR(Bn−1,M)

��

Hn(δ∗)
// Hn(HomR((C∗),M))

Ext1R(Hn−1,M)

α

33

The upper row is exact since it is taken from the long exact sequence, so

im δn−1 = im jn−1 = kerHn(δ∗)

Thus the existence of α follows from the universal property of the quotient.
α is injective by construction since we factored out the kernel.
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3.2 Künneth Formulae

3.2.1 Bicomplexes

3.5 Definition (Bicomplex). Let R be a ring. A family {Cp,q}p,q∈Z of R-Modules together with maps
dh : Cp,q → Cp−1,q and dv : Cp,q → Cp,q−1

. . .

��

. . .

��

. . . // Cp,q

dv
p,q

��

dh
p,q
// Cp−1,q

dv
p−1,q

��

// . . .

. . . // Cp,q−1

��

dh
p,q−1

// Cp−1,q−1

��

// . . .

. . . . . .

is a double complex or bicomplex, if

dh ◦ dh = dv ◦ dv = dv ◦ dh + dh ◦ dv = 0

A morphism of bicomplexes fp,q : (Cp,q, dC,v, dC,h) → (Dp,q, d
D,v, dD,h) is a famliy of morphisms in

ModR such that

dD,v ◦ f = f ◦ dC,v dD,h ◦ f = f ◦ dC,h

This defines the category of bicomplexes BiCh(ModR).

3.6 Definition (Totalization). Let (Cp,q, dC) be a bicomplex. Define

Tot(C)n :=
⊕
p+q=n

Cp,q dTot
n :=

⊕
p+q=n

dC,h +
⊕
p+q=n

dC,v

Then we call (Tot(C), dTot the totalized chain complex.
Given a morphism of bicomplexes fp,q : (Cp,q, dC,v, dC,h) → (Dp,q, d

D,v, dD,h) we define Tot(f)n :
Tot(C)n → Tot(D)n by

Tot(f)n :=
⊕
p+q=n

fp,q

3.7 Lemma (Totalization). Totalization is a functor

Tot : BiCh(ModR) → Ch(ModR)

3.8 Definition (Tensorization). If (A, dA), (B, dB) are chain complexes of R-modules we obtain a
canonical tensorized bi-complex (Cp,q, dC) by defining

Cp,q := Ap ⊗Bq dC,vp,q := dAp ⊗ idq dC,hp,q := (−1)p idp⊗dBq

3.9 Lemma (Tensorization Functor). Tensorization is a functor⊗
: Ch(ModR)× Ch(ModR) → BiCh(ModR)

3.10 Remark. By forgetting about all the differentials, we can interpret these functors as

Tot : ModZ×Z
R → ModZ

R

⊗
: ModZ

R×ModZ
R → ModZ×Z

R
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3.11 Theorem (Künneth Formula). Let (P∗, dP ), (Q∗, dQ) be two chain complexes of R-modules,
such that every Pn and every dPn is projective. Then there exists a short exact sequence

0 // Tot(H∗(P )⊗R H∗(Q))n // Hn(Tot(P∗ ⊗R Q∗)) // Tot(TorR1 (H∗(P ),H∗(Q)))n−1
// 0

If R = Z and P is a complex of free abelian groups, this sequence is non-canonically split.

Proof. The proof will be long and painful, but analogous to the universal coefficient theorem of homol-
ogy (Theorem 3.1) you should definitvely read first. Define Zn := Zn(P∗) := ker dPn , Bn := Bn(P∗) :=
dPn+1, B′n := Bn−1 = im dPnPn ⊂ Pn−1. Denote by ιn : Zn → Pn and in : Bn → Zn the canonical
inclusions. We always write ⊗ := ⊗R and we denote by d⊗ the differential in Tot(P∗ ⊗Q∗).
Step 1 (Producing a seS): Since B′ is projective by hypothesis, we have a split exact sequence of chain
complexes

0 // Z∗
ι // P∗

dP
// B′∗

// 0

Since every _⊗Ql is additive, we obtain in particular split exact sequences

0 // Zk ⊗Ql
ιk⊗idl // Pk ⊗Ql

dP
k ⊗idl

// B′k ⊗Ql // 0

where idl := idQl
and k, l ∈ Z such that k + l = n. Thus their direct sums assemble to short exact

sequences

0 //
⊕

k+l=n Zk ⊗Ql
In //

⊕
k+l=n Pk ⊗Ql

∆n //
⊕

k+l=nB
′
k ⊗Ql // 0

where In :=
⊕

k+l=n ιk ⊗ idl, ∆n :=
⊕

k+l=n d
P
k ⊗ idl and n ∈ Z. Thus we obtain one short exact

sequence of chain complexes

0 // Tot(Z∗ ⊗Q∗)
I // Tot(P∗ ⊗Q∗)

∆ // Tot(B′ ⊗Q∗) // 0

This seS induces a leS in their homology (by 1.3)

. . .Hn(Tot(Z ⊗Q))
[In]

// Hn(Tot(P ⊗Q))
[∆n]

// Hn(Tot(B′ ⊗Q))
δn // Hn−1(Tot(Z ⊗Q)) . . .

In particular for every n ∈ Z the sequence

0 // Hn(Tot(Z⊗Q))
ker[In]

In // Hn(Tot(P ⊗Q))
[∆n]

// im[∆n] // 0

where I is the map induced by [I] on the quotient, is short exact. By exactness of the long sequence
this seS is identical to:

0 // coker δn+1
In // Hn(Tot(P ⊗Q))

[∆]
// ker δn // 0

Step 2 (Analyze the Modules): Since homology is additive, since the differentials in Z∗ and B′∗ are
identically zero and since Z∗ and B′∗ are both flat, we obtain from the universal coefficient theorem
(c.f. 3.1)

Hn(Tot(Z∗ ⊗Q∗)) = Hn

( ⊕
k+l=∗

Zk ⊗Ql

)
∼=
⊕
k+l=n

Hl(Zk ⊗Q∗) ∼=
⊕
k+l=n

Zk ⊗Hl(Q∗)
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and likewise

Hn(Tot(B′∗ ⊗Q∗)) = Hn

( ⊕
k+l=∗

B′k ⊗Ql

)
∼=
⊕
k+l=n

Hl(B′k ⊗Q∗) ∼=
⊕
k+l=n

B′k ⊗Hl(Q∗)

=
⊕

k+l=n−1

Bk ⊗Hl(Q∗)

Step 3 (Analyze the Connection Morphism): By the explicit formula (c.f. 1.3) for the connection
homomorphism δ and Step 2, we obtain for any pk ∈ Pk, b′k := dPk pk ∈ B′k, ql ∈ Zl(Q∗)

δn(b′k ⊗ [ql]) = [(I−1
n ◦ d⊗ ◦∆−1

n )(dPk pk ⊗ [ql])]

= [(I−1
n (d⊗(pk ⊗ ql)]

= [(I−1
n (dPk pk ⊗ ql + (−1)k(pk ⊗ dQl ql))]

= Jn(b′k ⊗ [ql])

where Jn :=
⊕

k+l=n−1 ik ⊗ [idl].
Step 4 (Calculate ker δn): For every k the sequence

0 // dPk+1
ik // Zk(P )

πk // Hk(P∗) // 0

is exact and thus a projective 4 resolution of Hk(P∗). Consequently the torsion of _⊗Hl(Q∗) may be
calculated by taking the first homology of the complex

0 // dPk+1 ⊗Hl(Q∗)
ik⊗[idl]

// Zk(P∗)⊗Hl(Q∗) // 0

Thus
TorR1 (Hk(P ),Hl(Q∗)) = ker ik ⊗ [idl]

which implies ⊕
k+l=n−1

TorR1 (Hk(P ),Hl(Q∗)) =
⊕

k+l=n−1

ker ik ⊗ [idl] = kerJn = ker δn

Step 5 (Calculate coker δn): Consider again the sequence from step 4

0 // dPk+1
ik // Zk(P )

πk // Hk(P ) // 0

Since _⊗Hl(Q) is right exact

dPk+1 ⊗Hl(Q)
ik⊗[idl]

// Zk(P )⊗Hl(Q)
πk⊗[idl]

// Hk(P )⊗Hl(Q) // 0

is exact as well. Consequently

coker ik ⊗ [idl] =
Zk(P )⊗Hl(Q)

im ik ⊗ [idl]
=
Zk(P )⊗Hl(Q)
kerπk ⊗ [idl]

∼= Hk(P )⊗Hl(Q)

Thus
coker δn+1 = coker Jn+1

∼=
⊕
k+l=n

coker ik ⊗ [idl] ∼=
⊕
k+l=n

Hk(P )⊗Hl(Q)

4The fact that Zk(P ) is projective follows as in the proof of the Universal Coefficient Theorem from the fact that the
sequence in step 1 splits and thus Pk = Zk ⊕ dPk+1. Since Pk is projective is it a direct summand of a free module
and thus Zk is as well.
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3.12 Remark. To appreciate the statement of the Künneth formula better, it may be helpful to view
the Künneth Theorem from a more categorical or algorithmical point of view: Its input are two chain
complexes, i.e. an object in Ch(ModR) × Ch(ModR) and its output are three different objects in
ModZ

R related to each other by an exact sequence. These three objects are obtained by totally different
compositions of functors:

Ch(ModR)× Ch(ModR)
H×H

sshhhhhhhhhhhhhhhhhhh N
��

H×H

++VVVVVVVVVVVVVVVVVVV

ModZ
R×ModZRN
��

BiCh(ModR)

Tot

��

ModZ
R×ModZ

R

Tor
��

ModZ×Z
R

Tot
��

Ch(ModR)

H
��

ModZ×Z
R

Tot−1

��

0 //ModZ
R

� x

++VVVVVVVVVVVVVVVVVVVVVV //ModZ
R

//ModZ
RfF

sshhhhhhhhhhhhhhhhhhhhhh
// 0

ModZ
R×ModZR

∼=
LOO

The bottom is supposed to visualize the splitting.

3.3 Method of Acyclic Models

An important topological application of the Künneth Formula is the Product Theorem for Singular
Homology, which relates H∗(X × Y ) to H∗(X)⊗H∗(Y ). In order to prove this, we need to establish
the theorem of Eilenberg-Zilber, which relates H∗(X ×Y ) to H∗(C∗(X)⊗C∗(Y ) and in order to prove
this, we need the following rather abstract concept of acyclic models.

3.13 Definition (Natural Equivalence Classes). Let C be an arbitrary category. Consider two arbitrary
but fixed functors F∗, G∗ : C → Ch≥0(ModR). Two natural transformations ϕ∗, ψ∗ : F∗ ⇒ G∗ are
naturally chain homotopic if for every object X ∈ C there exists a family of natural transformations
DX
n : Fn(X) ⇒ Gn+1(X), n ∈ N, such that DX

∗ is a chain homotopy between ϕX∗ , ψ
X
∗ : F∗(X) →

G∗(X). This defines an equivalence relation on the set of natural transformations F∗ ⇒ G∗ and the
set of equivalence classes is denoted by

π(F∗, G∗).

3.14 Remark. It may be useful to write down the relations implied above somwhat more explicity.
So let’s take two functors F∗, G∗ : C → Ch≥0(ModR) and consider two objects X,Y ∈ C as well as a
morphism f ∈ HomC(X,Y ).

(i) For ϕ∗ to be a natural transformation F ⇒ G, we require in particular, that is a morphism of
chain complexes, i.e.

ϕX∗ ∈ HomCh≥0(ModR)(F (X), G(X))

which means by definition, that

∀n ∈ N : dG(X)
n ◦ ϕXn = ϕXn−1 ◦ dF (X)

n

where dF (X)
∗ denotes the differential in the chain complex F∗(X) and dG(X)

∗ denotes the differential
in G∗(X).
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(ii) By definition of a natural transformation, this diagram commutes:

F∗(X)

ϕX
∗
��

F∗(f)
// F∗(Y )

ϕY
∗
��

G∗(X)
G∗(f)

// G∗(Y )

(iii) Contrary to (i), the Dn is only required to be a natural transformation Fn ⇒ Gn, i.e.

DX
n ∈ HomModR

(Fn(X), Gn(X))

and the diagram

Fn(X)

DX
n

��

Fn(f)
// Fn(Y )

DY
n

��

Gn+1(X)
Gn+1(f)

// Gn+1(Y )

commutes for every n ∈ N. But the map D∗ is not a chain map F∗(X) → G∗+1(X), since this
would force the relation DX

n−1 ◦ dFn = dGn ◦DX
n which in gereral conflicts with (iv).

(iv) For D∗ to be a homotopy between ϕ∗ and ψ∗ we require

d
G(X)
n+1 ◦DX

n +DX
n−1 ◦ dF (X)

n = ϕXn − ψXn

For simplicity one can drop the superscript X or the subscript n if it is clear. But remember that ϕ
and D of course depend on both. If you are confused over all these depencencies, first think of two
chain complexes F and G and two maps ϕ,ψ between them and a homotopy D between ϕ and ψ.
If you ’parametrize” this situation by objects in C, you get precisely what we have just defined. The
diagram looks like

. . . // Fn+1(X)

ϕX
n+1ψX

n+1

��

d
F (X)
n+1
// Fn(X)

d
F (X)
n //

ϕX
nψX

n

��

DX
n

yyrrrrrrrrrr
Fn−1(X)

ϕX
n−1ψX

n−1

��

//

DX
n−1

yyrrrrrrrrrr
. . .

. . . // Gn+1(X)
d

G(X)
n+1
// Gn(X) // Gn−1(X)

d
G(X)
n // . . .

3.15 Definition (Model Category). A functor Fn : C → ModR is free, if there exists an index set J
and a set of objects {Mn,j ∈ C}j∈J , called models, and a set of elements {un,j ∈ Fn(Mn,j)}j∈J , called
base generators, such that for every X ∈ C the set

{Fn(f)(un,j) ∈ Fn(X)|j ∈ J, f ∈ HomC(Mn,j , X)}

is a basis for Fn(X).
A functor F∗ : C → Ch≥0(ModR) is free if for every n ∈ N the functor Fn is free.
We define M to be the subcategory of C whose objects are given by all the Mn,j and whose morphisms
are the same as in C. This category is called the model category of F and its objects are the models
for F . Of course there is a canonical inclusion functor i : M→ C.

3.16 Example. For every n ∈ N, the singular chain complex functor Cn : Top → ModR is free.
By definition Cn(X) the R-module freely generated by all continuous maps f : ∆n → X, where
∆n, the standard n-simplex. So take Mn,0 := ∆n as the only model. The only base generator is
un,0 := idn : ∆n → ∆n. Then for any f : ∆n → X, we have by definition Cn(f)(un,0) = f ◦ id = f .

3.17 Lemma (Uniqueness of natural transformations).
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(i) Let Fn, Gn : C → ModR be functors and let F be free. For any prescribed set of objects
{vn,j ∈ Gn(Mn,j)}j∈J , there exists a unique natural transformation ϕn : Fn ⇒ Gn such that

∀j ∈ J : ϕn(un,j) = vn,j

(ii) Let F∗, G∗ : C → Ch≥0(ModR), let F∗ be free and {vn,j ∈ Gn(Mn,j)}n∈N,j∈Jn be any prescribed
set of objects. Then any natural transformation ϕ∗ : F∗ ⇒ G∗ satisfying

∀n ∈ N : dGn ◦ ϕn = ϕn−1 ◦ dFn

and
∀n ∈ N : ∀j ∈ Jn : ϕ(un,j) = vn,j

is unique.

Proof.
(i) We show uniqueness first: Since Fn is free, any x ∈ Fn(X) has a unique representation

x =
∑
j,f

λj,fFn(f)(un,j)

Since ϕn is natural

ϕn(x) =
∑
j,f

λj,f (ϕn ◦ Fn(f)) (un,j) =
∑
j,f

λj,f (Gn(f) ◦ ϕn) (un,j)

So the ϕn(un,j) uniquely determine ϕn.
On the other hand we can simply define ϕn by this formula to show existence.

(ii) By (i) all the ϕn are unique and the compatibility condition ensures that ϕ∗ is a chain map.

3.18 Definition (acyclic). Let G∗ : C → Ch≥0(ModR) be a functor and M ⊂ C be any subcategory.
Then we call G∗ acyclic with respect to M, if

∀M ∈M : ∀i > 0 : Hi(G∗(M)) = 0

Note carefully that H0(G∗(M)) 6= 0 is allowed.

3.19 Example. The singular chain complex functor is also acylic with respect to the model category
M := {∆n|n ∈ N}.

Notice, that the following theorem is a massive generalization of the Fundamental Theorem of Homo-
logical Algebra (2.3).

3.20 Theorem (Method of acyclic Models). Let F∗, G∗ : C → Ch≥0(ModR) be functors, let F∗ be free
with model category M and let G∗ be acyclic with respect to M. Denote by HM

0 (F∗, G∗) the set of
natural transformations H0 ◦ F∗ ◦ i ⇒ H0 ◦G∗ ◦ i. Then there is a set bijection

π(F∗, G∗) → HM
0 (F∗, G∗)

induced by
(ϕ∗ : F∗ ⇒ G∗) 7→ (H0 ◦ ϕ0 ◦ i : H0 ◦ F0 ◦ i ⇒ H0 ◦G0 ◦ i)
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Proof. As in Definition 3.15 denote by

M := {Mn,j ∈ C}n∈N,j∈Jn

the model category of F∗ and by
{un,j ∈ Fn(Mn,j)}n∈N,j∈Jn

the set of base generators.

Surjectivity: Let
ϕ : H0 ◦ F∗ ◦ i ⇒ H0 ◦G∗ ◦ i

be any natural transformation. For every j ∈ J0, there exists v0,j ∈ G0(M0,j) such that

[v0,j ] = ϕ([u0,j ]) ∈ H0(G∗(M0,j))

We define
ϕ0(u0,j) := v0,j

and obtain a natural transformation ϕ0 : F0 ⇒ G0 satisfying

H0 ◦ ϕ0 ◦ i = ϕ

by Lemma 3.17. We will inductively extend ϕ0 to a natural transformation F∗ ⇒ G∗. We will show
by induction, that there are natural transformations

∀0 ≤ i < n : ϕi : Fi ⇒ Gi

satisfying the relations
∀0 ≤ i < n : dGi ◦ ϕi = ϕi−1 ◦ dFi

By defining ϕ−1 := 0 the construction of ϕ0 above can be interpreted as the induction start n = 0.
For the induction step n − 1 → n assume the maps ϕi described above are already constructed. We
will construct the map ϕn as follows:

Fn(Mn,j)

ϕn

��

dF
n // Fn−1(Mn,j)

dF
n−1
//

ϕn−1

��

Fn−2(Mn,j)

ϕn−2

��

Gn(Mn,j)
dG

n // Gn−1(Mn,j)
dG

n−1
// Gn−2(M)

If n = 1 and j ∈ J1

[ϕn−1(dFn (un,j))] = [ϕ0]([dF1 (u1,j)]) = [ϕ](0) = 0 =⇒ ϕn−1(dFn (un,j)) ∈ BG
n−1(Mn,j)

If n > 1 and j ∈ Jn, the induction hypothesis guarantees

dGn−1(ϕn−1(dFn (un,j))) = (dGn−1 ◦ ϕn−1 ◦ dFn )(un,j) = (ϕn−2 ◦ dFn−1 ◦ dFn )(un,j) = 0

and thus ϕn−1(dFn (un,j)) ∈ ZGn−1(Mn,j). Since n− 1 > 0 and G∗ is acyclic by hypothesis, we obtain in
any case

ϕn−1(dFn (un,j)) ∈ BG
n−1(Mn,j)

Consequently
∃vn,j ∈ Gn(Mn,j) : dGn (vn,j) = ϕn−1(dFn (un,j))

Define
ϕn(un,j) := vn,j
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Again by Lemma 3.17 this defines a unique natural transformation ϕn : Fn ⇒ Gn which satisfies

dGn ◦ ϕn(un,j) = ϕn−1 ◦ dFn (un,j)

by construction. We will show that this implies dG(X)
n ◦ ϕXn = ϕXn−1 ◦ d

F (X)
n for every X ∈ C using this

commutative cube:

Fn(X)

ϕX
n

��

d
F (X)
n // Fn−1(X)

ϕX
n−1

��

Fn(Mn,j)

ϕn

��

Fn(f)
99rrrrrrrrrr dF
n // Fn−1(Mn,j)

ϕn−1

��

Fn−1(f)
77ppppppppppp

Gn(X) dG(X)
// Gn−1(X)

Gn(Mn,j)

Gn(f)
99rrrrrrrrrr dG

n // Gn−1(Mn,j)
Gn−1(f)

77ppppppppppp

Since F∗ is free by hypothesis, we may calculate

(dG(X)
n ◦ ϕXn )(x) = (dG(X)

n ◦ ϕXn )

∑
j,f

λj,fFn(f)(un,j)

 =
∑
j,f

λj,f (dG(X)
n ◦ ϕXn ◦ Fn(f))(un,j)

=
∑
j,f

λj,f (Gn−1(f) ◦ dGn ◦ ϕn)(un,j) =
∑
j,f

λj,f (ϕXn−1 ◦ Fn−1(f) ◦ dFn )(un,j)

=
∑
j,f

λj,f (ϕXn−1 ◦ dF (X)
n ◦ Fn(f))(un,j) = ϕXn−1 ◦ dF (X)

n

∑
j,f

λj,fFn(f)(un,j)


= (ϕXn−1 ◦ dF (X)

n )(x)

Thus ϕ∗ : F∗ ⇒ G∗ is the desired natural transformation.

Injectivity: Suppose ϕ∗, ψ∗ : F∗ ⇒ G∗ are both natural transformations such that

∀M ∈M : [ϕ0] = [ψ0] : H0(F (M)) → H0(G(M))

We have to show that ϕ∗ is naturally chain homotopic to ψ∗. The hypothesis implies, that in particular

[ϕ0](u0,j) = [ψ0](u0,j) ⇒ [ϕ0(u0,j)−ψ0(u0,j)] = 0 ⇒ ∃w1,j ∈ G1(M0,1) : ϕ0(u0,j)−ψ0(u0,j) = dG1 (w1,j)

Define
D0(u0,j) := w1,j

and again use Lemma 3.15 to obtain a unique natural transformation D0 : F0 ⇒ G1 such that

dG1 ◦D0 = ϕ0 − ψ0

We will again proceed by induction and show, that there are natural transformations Dn : Fn ⇒ Gn+1

such that
∀0 ≤ i < n : dGi+1 ◦Di +Di−1 ◦ dFi = ϕi − ψi

By setting D−1 := 0 this hast just been accomplished for n = 1. For the induction step n − 1 → n
consider

ūn,j := (ϕn − ψn −Dn−1 ◦ dFn )(un,j) ∈ Gn(Mn,j)
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Since

dGn ūn,j = dGn ◦ (ϕn − ψn −Dn−1 ◦ dFn )(un,j) = (dGn ◦ ϕn − dGn ◦ ψn − dGn ◦Dn−1 ◦ dFn )(un,j)

= (ϕn−1 ◦ dFn − ψn−1 ◦ dFn − (ϕn−1 − ψn−1 −Dn−2 ◦ dFn−1) ◦ dFn )(un,j) = 0

we have ūn,j ∈ ZGn (Mn,j). Since G is acyclic, this implies ūn,j ∈ BG
n (Mn,j) and thus

∃wn,j ∈ Gn+1(Mn,j) : dGn+1(wn,j) = ūn,j

Setting Dn(un,j) := wn,j , this again defines a unique natural transformation Dn : Fn ⇒ Gn+1 such
that dGn+1 ◦Dn = ϕn − ψn −Dn−1 ◦ dFn .

3.3.1 Applications

The method of acyclic models has some immediate powerful applications.

3.21 Corollary (Eilenberg-Zilber). Let X,Y be two topological spaces. Then there are natural chain
homotopy equivalences

α : Tot(C∗(X)⊗ C∗(Y ))∗ � C∗(X × Y ) : β

In particular
H∗(Tot(C∗(X)⊗ C∗(Y ))∗) ∼= H∗(X × Y )

Proof. Define C := Top × Top to be the product category between Top and Top, i.e. the objects
are tupels (X,Y ) where X,Y ∈ Top and morphisms f = (f1, f2) : (X1, Y1) → (X2, Y2) where f1 ∈
HomTop(X1, X2) and f2 ∈ HomTop(Y1, Y2).
Construction of β: Define functors F∗, G∗ : C → Ch(ModR) by

F∗(X,Y ) := C∗(X × Y ) G∗(X,Y ) := Tot(C∗(X)⊗ C∗(Y ))

Choose models Mn := Mn,0 := (∆n,∆n) and declare the generators un := un,0 : ∆n → ∆n × ∆n

to be the diagonal maps x 7→ (x, x). Clearly M ⊂ C and un ∈ Fn(Mn). To see that F∗ really is
free on these models, just notice that by the universal property of the product any pair (f1, f2) ∈
HomC((∆n,∆n), (X,Y )) defines a unique map f : ∆n → X × Y and that f(x) = (f1(x), f2(x)) =
(f1, f2)(un(x)). Conversely every map ∆n → X × Y is of that form. Thus by definition

Fn(X,Y ) = Cn(X × Y ) = Z[{f : ∆n → X × Y |f ∈ HomTop(∆n, X × Y )}]
= Z[{(f1, f2) ◦ un : ∆n → X × Y |(f1, f2) ∈ HomC((∆n,∆n, (X × Y ))}]

So F is free. Since all the simplices are convex

Hq(G∗(∆n,∆n)) = Hq(Tot(C∗(∆n)⊗ C∗(∆n))∗) ∼= Tot(H∗(∆n)⊗H∗(∆n))q) = δq,0Z

by the Künneth Formula (3.11) (here δ0,q is just the Kronecker delta). Thus G∗ is acyclic. Consequently
the method of acyclic models (3.20) is applicable. We calculate

Hq(F∗(∆n,∆n)) = Hq(∆n ×∆n) = δq,0Z

Thus
HM

0 (F∗, G∗) ∼= {± idZ}

Chose β∗ to be the natural transformation F∗ ⇒ G∗ corresponding to idZ.
Construction of α: Redefine functors F∗, G∗ : C → Ch(ModR)

F∗(X,Y ) := Tot(C∗(X)⊗ C∗(Y )) G∗(X,Y ) := C∗(X × Y )
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Choose new models Mn,j := (∆j ,∆n−j), 0 ≤ j ≤ n and generators un,j := idj ⊗ idn−j , where idj :=
id∆j : ∆j → ∆j . By definition

Cj(X) = Z[{C∗(f)(idj) : ∆j → X|f ∈ HomTop(∆j , X)}]

thus F∗ is free. Again G∗ is acyclic with H0(G∗(∆j ×∆n−j)) ∼= Z ∼= H0(F∗(∆j ×∆n−j)). Define α∗
to be the natural transformation F∗ ⇒ G∗ corresponding to idZ.
Then β ◦ α is a natural transformation F∗ ⇒ F∗ as well as id ∈ Ch(ModR). Since they both agree in
zero homology, they are naturally chain homotopic. The same holds for α ◦ β.
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