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The following lemmata are widely used in a large variety of mathematical subjects such as Global
Analysis, Algebraic Topology and Algebraic Geometry. In these areas, they are often labeled as boring
and technical. As a consequence, their proofs are often unloving, short, inprecise, incomplete, left to
the reader as an “exercise”, handwaved or simply omitted. It is the aim of this article to fill this gap by
giving complete proofs including not only some diagrams, but also classical written calculations. We
will also discuss some topological applications. For more on topology see [1].

Comments or suggestions are very welcome, just email to: n.nowaczyk@web.de
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1 Diagram Lemmas

1.1 The Snake Lemma

1.1.1 Statement

1.1 Theorem (Snake Lemma). Let R be a ring and suppose we are given the following commutative
diagram in the category of R-modules

A LB Mo 0
o el e

where the rows are short exact sequences. Then there exists the following morphisms making the
following diagramm commutative:

f g )
kerdA—— ="~ ~tkerdB -~ ~" —~ skerdC—— - -~ q (1.1)
|
|
A B © |
|
|
A L B & o 0o
|
a4 dB dc I
e it i S J
|
|
! 0 A & By & Cs
|
|
I A B o)
|
| - _
- +cokerdd — — == - + cokerdB — — = = = = coker dC.

In particular there exists a connection morphism® § : ker d° — coker d” such that furthermoore the
sequence

f g s f: g
ker d# — ker dB — ker d¢ — coker d* — coker dB — coker d¢

is exact. In addition the following statements are also true:

If f1 is injective, fl is injective as well. If g9 is surjective, g is surjective as well.

The maps ¢4, 1B, (© are the canonical inclusions and the maps 74, 78, 7€ are the canonical
projections.

The maps f},gl are the restrictions of fi,g1 to ker d? resp. ker d®. The maps fo, go are the maps
induced by f2,g2 on the quotient coker d* resp. coker d”.

By slight abuse ? of notation, the connection morphism & can be expressed as

5:WAofglodBogfloLC,

'Due to the form of the arrow in diagram (1.1) this is "the snake”.

2The map g1 is not an isomorphism, so g; ! has to be read as “chose an arbitrary preimage”. This choice is arbitrary,
but we will show that this will be compensated by 7. The map f{l is injective and thus can only be inverted on
its image.



By defining
chase(cy) := {(b1,b2,a2) € By X By x Ay | b1 € gfl(Cl)adB(bl) = b, f2(az) = b2}
to be a chase tripel of ¢; € kerd®, the connection morphism ¢ can be expressed as
3(er) = 7 (az) = [az]a,

whenever there are by € By, by € By such that (b1, by, a2) € chase(cy).

1.1.2 Proof

1.1.3 The Upper Row

Existence of fl,glz Define fl = fio 14 ker 84 — B; and J1:=g10 1B kerd®? — C;. We have
to show

im fl C kerd”, im §; C kerd®.
Clearly d”* ot =0 . Thus by commutativity:
dBOfl:dBOfloLA:fQOdAOLAZO.
And thus im fl C kerd® as claimed. The statement for §; follows analogously. Furthermoore
LBoflzLBofloLA:floLA

So the upper left square is commutative. Analogously the upper right square is commutative as
well.

Injectivity of flz Suppose f1 is injective and a1 € ker fl, ie.

A~

0= fi(a1) = A(fi(ar))

This implies
filar) € kert* = {0} = a1 € ker f1 = {0}

since f is injective by hypothesis.

)

im fl C ker g1”: By hypothesis g1 o f1 =0, thus
grofi=gioPofiot=0

as well.
"ker g1 C im fl”: Let by € kerd® thus

0=3g1(b1) = (g1 07)(b1)

This implies
PB(by) € kergr = im f1 = a1 € Ay : fi(ar) = B (by)

It remains to show, that a; € ker d*. But by commutativity
(faod*)(ar) = (d% o f1)(ar) = (d® 0 ) (b1) = 0

and thus d4(a;) € ker f, = {0}. So a; € kerd* as claimed and fj(a1) = by.



1.1.4 The Lower Row

e Existence of f, go: By composition we immediately obtain the map 72 o fo : Ay — coker d®. By
definition im d? = ker 7 and thus commutativity implies

8o fyodt =78 0dPofi =0

So imd* C ker(nB o f). So by the universal property of the quotient, we obtain fs : coker d4 —
coker dP such that
foort=nPof

So the bottom left square is commutative. The statements concerning ge follow analogously.
e im fy C ker §o”: By hypothesis g2 o fo = 0, so by construction
goofoor =gponPofy=n%0gy0fo=0

A

Since 7 is surjective, go o fo = 0.

e "ker go C im fo™: Let [bo]p € ker go, i.e.
0 = g2([be] B) = [g2(b2)]c

so there exists ¢; € C : d°(c1) = g2(ba). By surjectivity of g; there exists by € By : g1(b1) = c1.
This implies

(g2 0 dP)(b1) = (d° 0 g1)(b1) = d°(c1) = ga(b)
and thus go(ba — dP(b1)) = 0. By exactness

by — dB(by) € ker gy = im fo = 3ag € Ag : fo(az) = by — dB(by)

This implies -

fa(lagla) = [f2(a2)]p = [ba — d”(b1)]B = [bo]B

e Surjectivity of go: Suppose gs is surjective and let [co]c € coker d© be arbitrary. Since ¢y € Co =
im go there exists by € By : ga(b2) = 2. Thus

g2([b2]B) = [g2(b2)lc = [e2]c

1.1.5 The Snake

e Existence of §: Define ¢ : ker d© — coker d? as follows: Let ¢; € kerd® C C; be arbitrary. Since
g1 1s surjective
db; € By : 91(51) =

but this choice is arbitrary ! Define
by == dP (b))

Commutativity implies
g2(b2) = (92 0 d”)(b1) = (d“ 0 g1)(b1) = d (1) = 0
Thus by exactness and since fs is injective
by € ker go = im fo = Flag € Ay : fa(az) = bo.

Define
5(er) = (a2) = (14 0 f5 L 0 dB 0 g7 0.C) (cr).

In this diagram chase only the b; € gy 1(61) was an arbitrary choice. We have just shown that
chase(c;) is never emtpy.



e ) is well defined: We have to show, that § does not depend on the choice of the chase triple. So
chose another
(b}, bh, ah) € chase(cy)

This implies
gl<b,1 — bl) =c—c=0= bll — bl c kergl = imf1 = 3&1 € A1 : fl(al) = bll — b1

Thus
by — by = d7 (b = br) = (@7 o f1)(a1) = (f2 0 d*) (@),

which implies
—a2 Ia (b/2_b2) ZdA(al) € imd” = ker 4.

Thus finally
w(ay) = 7 (az)

This shows that § is well defined and that for any
(b1,b2,a2) € chase(cy)
we have §(c1) = 74 (ag). It also justifies the expression
§=nofylodBogrto”.
e § is a homomorphism: Let A € R and ¢, ¢} € d® be arbitrary and
(b1, b2, a2) € chase(cy) (b, b, aly) € chase(c])
Sinc all the maps in the diagram are homomorphisms, we get

g1(b1 + b)) = g1(b1) + Ag1 (D)) = 1 + A}y = by + Ay € g7 (er + ),
dP(by + b)) = dP (b)) + AdP (b)) = by + \b),
faolaz + Aah) = fa(az) + Afa(ay).

Thus
(b1 + Ab, by + Aby, ag + Aab) € chase(c; + Acy),

which means
5(c1 4 Aey) = m(ag + Adb) = 7 (ag) + Mt (ah) = d(c1) + No(c)).

e "im§; C kerd™ Let by € kerd? be arbitrary. Then g1(b1) = (g1 0 LB)(bl) and thus especially
by € gy '(b1). This implies

(60g1)(b1) = (% o fy ! 0 d”)(b1) =0,

since by € ker d? by hypothesis.
e "kerd C im g1 Let ¢; € kerd and chose (b1, b2, a2) € chase(cy). This implies

0="3(c1) = 7ag) = Jay € Ay : d*(a1) = aa = (f5 ' 0 dP)(by)
Define b} := fi(a1). This implies
dP () = (d" o fi)(a1) = (fao d*)(a1) = (f20 f5 " 0 d”)(b1) = d”(by)
Consequently by — b} € ker d®. By construction

g1(b1 = b)) = (g1 0 P) (b1 — b)) = g1(b1) — 1 (B)) = 1 — g1 (fi(a1)) = c1.



e "imJ C ker fo™: Let ¢; € Cy be arbitrary. Chose (b1, ba, az) € chase(c;). This means in particular
dB(b1) = f2(az). This implies

(faod)(er) = follaz]a) = [f2(a2)]p = [d” (b1)]p = 0
e "ker fo Cim ™ Let [ag)a € ker fo be arbitrary. This implies
0= fa(laz]a) = [fo(as)]p = 3b1 € B : by := dP(b1) = fa(az)
Define ¢1 := g1(b1). Tt follows
d®(c1) = (d° 0 g1)(b1) = (g2 0 d”)(b1) = (g2 0 fo)(a2) = 0,

so ¢1 € kerd®. This implies that (b1, b2, az2) € chase(c;) so in particular §(c1) = [a2] .

1.1.6 Naturality

1.2 Theorem (Naturality). Suppose we are given two Snake Lemma Diagrams and a morphism
between them, i.e. a commutative diagram

A, f1 By g1 C, 0
v v e
0 A, f2 By g2 Oy
W[ @B J o°
PA B Pp©
As f Bs 93 Cs 0
/d;* /dQB /10
0 Ay i By m Cy

Then there is a morphism between the induced exact sequences, i.e. a commutative diagram

f g1 3 f2 g2
ker df —— ker dP —— ker d¥ — coker d{* —— coker d¥ —— coker d¢

l@A ﬂ Fc J‘”A le Fc
. ) 5 _ .
ker d3' — s ker ds —2 s ker d§ —= coker d — coker db — coker ds

Here the maps @A,géB ,p¢ are just the restriction of cpA,goB 0% and the maps A B hC are the induced
maps of ¥4,1B 1) on the quotient.

Proof. We index the inclusions and projections generated by the top snake (1.1.(ii)) whith a 1 and the
ones generated by the bottom snake with a 2.

Step 1 (Existence of ¢): We are already given a map @? 1 Ay — Az and claim that its restriction to
the kernel is the desired map ¢4: Let a; € ker d‘f‘ be arbitrary. By commutativity

(d3' 0 p™)(a1) = (¥* 0 df')(a1) = 0

thus ¢4(a;) € kerds'. So pA = 90A|kerd{‘ is a map ker d{' — kerds'. In the same manner we define G
and ¢¢. B B
Step 2 (Existence of ¥): We are given a map ¢* : Ay — Ay. Define ¢4 : coker di — coker d§' by

P ([az)) = [p" (az)]



Or in other words, we would like to define this map by % o wf = 7ré4 o . We have to check, that
this is well defined: So let a; € A; be arbitrary and ag := d{!(a1). By commutativity

Y (az) = (W o di)(ar) = (df 0 p™)(a1) € imdy

thus [/ (az)] 4, = 0. The maps 1)® and )¢ are defined in the same manner.

Step 3 (Commutativity of the left squares): By hypothesis ¢® o f; = f3 0 . By the snake lemma
(1.1.(ii1)) f1 and f3 are just restrictions of fi resp. fs3 and by step 1 ¢ and BB are just restrictions of
o4 resp. P as well. Thus @B o fl = fyo ¢4 as well. The same argument holds for $¢ o §; = g3 0 ¢p.
Step 4 (Commutativity of the right squares): By hypothesis 1)® o fo = f4 044, Thus by the snake
lemma (1.1.(iii) and by definition

(W7 o f2)(laz]) = ¥F([f2(a2)]) = V7 (fala2)] = [fa(¥" (a2)] = fa(l (a2)]) = (fa 0 ™) (a2)

The same argument works for ¢ o gy = g4 o B,
Step 5 (Commutativity of the center square): Let ¢; € kerd{ be arbitrary and chose (b1, b2, az) €
chase(c1). We claim that

(97 (b1), ¥ (b2), 1 (a2)) € chase( (c1))

But indeed

93(9” (01)) = (¢ 0 g1)(b1) = ¢ (c1)
dy (P (b2)) = (WP 0 dP)(b1) = ¥P(bo)
fa((az)) = WP o fo)(az) = 7 (b2)

Thus by definition

(" 061)(c1) = (" o) (az) = (5" 0 ™) (az) = (62 0 %) (c1)

1.1.7 Long Exact Sequence
An immediate and extremly important application of the snake lemma is the following

1.3 Corollary (The long exact Sequence). Every short exact sequence of chain complexes induces a
long exact sequence in their homology. More precise: Let R be a ring and

0— A, 1B, *

C. 0

be a short exact sequence in the category of chain complexes of R-modules. Then there is a long exact

sequence

677,71

s m,(B) on

o] — H, 1(A)— -

— H,(C)

Here [f,] = Hn(f), [g9n] = Hn(g) and by slight abuse of notation the connection homomorphism §,
can be calculated by
Ve € Zyy : 0n([en]) = [(fq;ll ody 0 gy (en)]-

Alternatively, if we define
chase([cn]) := {(bns b1, an—1) € By X Bp_1 % Ap_1 | by € g, (cn),d5 (bn) = b1, frn1(an—1) = bp_1}

for any ¢, € ZS, then
6(len]) = laz].



Moreover this long exact sequence is natural. This means that for any commutative diagram

0 A, B, C 0
J(QPA J‘DB l@c
0 AN 0

in the category of short exact sequences of chain complexes of R modules, we get a morphism in the
category of long exact sequences or R-modules, i.e. a commutative diagram

67;,—1 Hn(A) [fn] Hn(B) [gn] Hn(C) 6n Hn_l (A) .
[pn] [pB ]j [soﬁ]l [wﬁ_lll
g [fn] ,

g 22wy 2L m ey < A ——

Proof. By definition for every n € Z

fnt1 Gn+1
Apt1 — Bpy1 —» Cpp1 —— 0

dﬁﬂl dfﬂj dCl
f

0 An C n Bn gn Cn

satisfies the hypothesis of the Snake Lemma 1.1. Thus in the following diagram (which we regard to
be the diagram for the index n)

0 Z7114+1 Z??Jrl Zngl (1'2)

fn+1 In+1
0—— Apy1 —— By ——— Chy1 —— 0
dr?—&-l d§+1 dg—&-l
f g
0 Ap B B, i Ch 0
An Bn

dﬁ+1An+1 df+1Bn+1 dg+1gn+1 0
the top and the bottom row are part of a leS. Applying (1.2) to the top row and the index n — 1 and
to the bottom row for the index n, we obtain that the diagram

Ay fn Ba n Ch
dﬁ+1An+1 df+1Bn+1 dg+1cn+1

A n—1 B In—1 C
0 Zn—l Zn—l Zn—l

HO

has exaxt rows. Here maps fp,gn,fn—1,dn—1 are induced as in the Snake Lemma (1.1.(ii1)). The map
dﬁ is induced via dﬁ and the universal property of the quotient

dA
n A
Ay, ——— 7

A
Ve
e
=
7 dy

An
da  Anta



and the maps dZ,d likewise. The diagram is commutative since f and g are morphisms of chain
complexes. So we may apply the snake lemma again, to obtain a morphism d,, such that

_ _ _ Sn _ _ _
0 —— ker d4 —— ker d? —— ker d§ — coker d? —— coker d® —— coker d5 —— 0

is exact. We claim that in fact this is the desired sequence. Notice that

ker(dd : A T - A
H, (A) = er(d : Ap, — Zp 1)):ker<d£: n__ n1>’

im(dZt ;@ A — Ay i, Ay

since

VaA, : 0= d*([a]) = d,(a) < [a] € H,(A).

The same holds for B,C as well. For the cokernels we obtain

ker(dd | : A, T - Ay
Hn—1(A) _ er( n—1 1= 2) — coker <dﬁ e NN Z,i?_1> ’
n+1

(d + A — B, T

since B
Va € A, : d2([a]) = dp(a) € d,A,.

The snake lemma (1.1(iii)) also states that the map ker d? — ker d? is just the restriction

fn|kerJg = Hn(f) = [fn]

and similar we identify the map ker d? — ker d< as [g,]. Also by 1.1.(iii) the map coker d4 — coker d2
is the map induced by f,,_1 on the quotient and thus identical to H,,_1(f) = [f._1]. The same holds for
coker d? — coker d$. The formula for the connection morphism &, is also directly derived from 1.1(iv).
By pasting the upper sequences together for all n € Z we obtain the desired long exact sequence.

The naturality statement is a direct application of Theorem 1.2. O

1.4 Remark. The construction of the long exact sequence from the Snake Lemma may be visualized
in its finest beauty by:

0 An fn Bn gn Cn O
d; a7 dy
fn—l gn—1
OHAn—l Bn—l C'n—l —0
A B C
0 ZA fn ZB on 78— 0
B ©
7|—A n—1 WE n—1 ﬂ_TCLv
0 VZ,;?_I fn-1 Z;B_l In—1 Z:?_l O
T T 1 L
[fn] [9n]
S H(A) S Hu(B) L H(O)
;" D
[ [fr—1] [gn—1]
H,_1(A) Y L H,(B)—2 3 H, 1(C)

10



1.5 Corollary (leS of the Pair). Let (X, A) be a pair of spaces. Then there is a natural leS

[7]

. T Hy (X, A) = Hy g (4) ——

— H,(X)

6n+1

—— H,(A)

where H, denotes the Singular Homology functor, ¢ : A — X the canonical inclusion and 7, : Ci(X) —
C.(X, A) the canonical projection. Using the fact that for any z € C,, (X, A)

2€ Zy(X,A) & JacCp(A): Fr € Cp(X) : 2=a+d) (2)
the connection morphism § can be described as
8([2]) = [dy ()]
This sequence is natural in (X, A).

Proof. There is a seS
00— Cu(A) —— C.(X) /5 C(X,A) —0

of chain complexes, where C, denotes the singular chain functor. Thus the statement follow from

1.3. O

1.6 Corollary (leS of the Triple). Let (X,Y, Z) be a triple of spaces. Denote by i : (Y, Z) — (X, Z)
and j : (X,Z) — (X,Y) the canonical inclusions. Then there is a leS

O H,(v, 2) A Hy(x,2) P H (X YY) Hy (V. Z) s

The connection homomorphism can be described as follows: For any ¢ € Z,(X,Y)
0(lc]) = (i 2y 0 dg? 0 j ) (e)) = [dg 7 (c)] € Zg—1(Y, Z)
Proof. Tt is more or less obvious, that

0—— Cu(Y, Z) 5 Ou(X, Z) —2 Cu(X,Y) —— 0

is short exact. So the statement follows from 1.3.
To see exactness, chose any ¢ € N, y € Cy(Y) and denote by [y]% € C,(Y,Z) the corresponding
equivalence class. We have

ig([y1?)=0=yeZ=[y]” =0

thus 4, is injective. For any [2]Y € C4(X,Y), we have
by definition. Thus j, is surjective. Clearly j. o i, = 0, thus im i, C ker j,. Conversely

[2]7 € kerj, = j([2]7) =[2]Y =0=>2€Y

Thus i,([2]?) = [z]%. O

11



1.2 The Five Lemma

1.7 Lemma. Let R be a ring and assume we are given the following commutative diagram in the

category of R-modules:

a1 a2 a3 a4

A1 A2 Ag A4 A5

l%"l Nﬂpz l«ps Jw I%
B I J&; B

By —+ By —2 By —>3 By — B

Let both rows be exact and @3, ¢4 be isomorphisms. If ¢; is an epimorphism, then 3 is a monomor-
phism. If 5 is a monomorphism, then 3 is an epimorphism.

1.8 Remark. One usually memorizes this as: If the outer four maps @1, 2, 4, @5 are isomorphisms,
so is the inner one 3.

Proof.
Injectivity: We show, that ker p3 is trivial. So assume x € ker p3. This implies

(paoas)(x) = (B30p3)(x) =0
due to commutativity of the diagram. Since ¢4 is injective
x € kerag = imag = Jag € Ay : as(ag) =

This implies
(B2 0 p2)(az) = (30 az)(az) = p3(x) =0
Thus
p2(ag) € ker fo = im 31 = by € By : f1(b1) = ¢a(az)

Since ¢ is surjective by hypothesis, there exists a; € Ay such that ¢1(a;) = b;. It follows
(p2 0 a1)(ar) = (b1 o p1)(ar) = Bi(b1) = pa(az)
Since 29 is injective
a1(a)) = ag = ag € ima; = kerag = = = as(az) =0
Surjectivity: Let bs € B3 be arbitrary. Since 4 is surjective
Jayg € Ay : ps(as) = P3(b3)

We obtain
(¢5 0 aq)(as) = (Bao@s)(as) = (Bao B3)(b3) =0

Since 5 is injective
ay(ag) =0 = ay € keray = imag = Jag € Az : az(az) = a4

This impiles
(B30 p3)(az) = (¢4 0 az)(az) = pa(as) = B3(b3)
and thus
p3(ag) — bs € ker B3 = im fo = Iby € By : [a2(b2) = ps(az) — b3

Since ¢y is surjective there is a ag € Ay such that ¢a(az), which implies

(¢3 0 az)(az) = (B2 0 p2)(az) = B2(b2) = p3(as) — bs <= bs = p3(az — az(az))

12



2 Resolutions

2.1 Definition (projective). An R-Module P is projective, if
P
7|
v
B—»C

for every other R-Modules B,C and every morphism + : B — C and every surjective morphism
7w : B — C there exists a §: P — B such that mo § =~.

2.1 The Horseshoe Lemma

2.2 Lemma. Let R be a ring. Assume we are given a short exact sequence

f
0 A —— A—" A" 0
in the category of R-modules. Let (P.,p.,¢’) be a projective resolution of A" and (P}, p!,e") be a
projective resolution of A”. Then the P, := P, & P} can be connected by morhpisms to a projective
resolution of A and there is a short exact sequence

L T

0 P’ P P’ 0

in the category of chain complexes of R-modules. The map ¢, : P, — P, is the canonical inclusion,
the map 7, : P, — P}/ the canonical projection.

Proof. We construct the augmentation map first: Since g is surjective and P is projective
P} Py 4
I s/
e’ J{ €l é 7 Ja’ !
fooYvog
Al—— A—— A"

there exists 3 : P — A such that go f =¢". Define e : Py — A by ¢ := (f o€’) ® 3. Now extend this

diagram to
o)

0— P} —5 P, Py 0

0 Al A—T A7 0
By construction both rows are exact. Furthermore
golg=foe goe=go(fod®f)=0@gof=00c" =moe”
thus both squares commute, i.e. this is a morphism of short exact sequences. The snake lemma 1.1
yields
ker ¢’ kere ker g
0 P—2 P —" Py 0
E/ I3 EH
!/ f 9 "
0 A A A 0

0 — coker e —— coker &”

13



where every square is commutative and the upper row together with the connection morphism ¢ :
ker e” — coker €’ and the bottom row is an exact sequence. Since ¢/, ¢” are both surjective by hypothesis
their cokernels vanish. Exactness now implies cokere = 0, i.e. ¢ is surjective as well. This finishes the
construction of the augmentation map.

The situation now is

P/ P|
p’ll p’ll
0 kere’ kere kere” ——0

since the given projective resulutions are exact sequences by hypothesis. But this is precisely the same
situation as in the beginning, just one index further above and with other names for the objects. So
the filling of the horseshoe proceeds inductively by applying the procedure above again and again. [

2.2 The Fundamental Lemma

2.3 Theorem (Fundamental Lemma of Homological Algebra). Let A,B be modules over R and (P, @),
(Q«, B) be projective resolutions of A and B resp. Then there exists isomorphisms

HomR(A, B) = HOIIIR(H()(P*),H()(Q*)) = [P*,Q*]

where [Py, Q.] denote the chain homotopy classes of chain maps P, — Q.. The second isomorphism is
induced by

Proof. The first isomorphy is obtained by the following: By exactness of the projective resolution, by
the surjectivity of o and by the universal property of the quotient, we obtain

i

Py Py

Py/ ker «

Here 7/ is the canonical projection and & is the induced isomorphism satisfying aom}’ = a. We obtain

A= Py/kera = Py/im6F = Hy(P,)
since the projective resolution complex

5P
P1*1>P0*>0

has homology
Hy(P,) = ker 0/im 67 = Py/im 67

Applying the same procedure to (Q«, 3) we obtain an analogue isomorphism 3 : Ho(Q«) — B. Thus
the maps

Homp(A, B) — Hompg(Ho(P:), Ho(Qx)) fpBofoa
Hom g (Hy(P,), Hy(Q,)) — Homp(A, B) g— B ltogoat

yield the first isomorphy.
To proof the second isomorphy, we will show, that there exists a bijection

U2 [Py, Qi) — Homp(Ho(P:), Ho(Qx))

14



A chain homotopy class [f] : P, — Q. induces a map Hy(f), wich is independent of the choice of
representative f. So we obtain a well defined element

U([f]) := Ho(f) € Hompg(Ho(Py), Ho(Qx))

We claim, that U is surjective: Let f € Homp(Hy(Py), Hyo(Q«))B be arbitrary. The projection map
7782 : Qo — Ho(Qx) is surjective. So by projectivity of Py

7rP
Py —=2 Hy(P,)
®o J(f
Qo — Ho(Qx)

there exists a map g : Py — Qo such that

7§ 0o =fomy

We can now proceed by induction: Suppose we have already constructed g, ..., @,—1. Then we obtain
sy LR
Pn Pnfl Pn72

Pn lﬁpn—l lﬁpn—Q
: Q
g 6Q 5n—1

Qn - Qn—l Qn—Z

In case n = 1 we interpret P_y := Hy(Py), Q—1 := Hp(Q). By commutativiy we obtain
5<Q

n—

109071*105528011*2055—105520

and thus
im ¢, _1 062 C ker 57?_1 = im 6%

So we can regard ¢, _1 o (STILD as a map P, — im 5,?. Since 57? :@Qn — im 5,? is certainly surjective the
projectivity of P, yields a map ¢, : P, — @, such that

57? O Pn = Pn-1 065

So we have constructed a chain map ¢, : P, — Q. with U([p.]) = f.

We claim that ¥ is also injective: Suppose we have a map f : Ho(Py) — Hy(Q«) and two chain
maps @, ¥y : P« — Q4 such that U([(p.])) = ¥U([(v])) = f. We have to construct a chain homotpy
31 Py — Qyy1. Consider

i o
P—F— Ho(P*)

Y1 J{‘Pl ¢0J<PO fl

Q1 o Qo —3 Ho(Q+)

Since g, Yo both induce f we have
75 o (o — o) = TG 0 tho — TG 0 o =T 0 p — g 0 =0

Thus im 19 — g C ker 7782 = im 5?. Since 5? 1@ — im 5? is certainly surjective the projectiviy of Py
yields a map > : Py — @1 such that
5? 0 Yo = Yo — o

15



We continue now by induction: Suppose X, ..., 2,1 are already defined such that

VI<i<n—1:6%0%4+% 100" = — ¢

where we define ¥_; := 0. Then we obtain again

Analogously we have:

4 sP
n+1
Pn+1 —_— Pn *n> Pn,1

wn+1JfD"+1 wnlwn ";Z)nf IJ(SD'IL—l

Qni1 T> Qn 4@> Qn-1
6n+1 5"

5% 0 (Y — pn — Tn_108),)
:6,?01/;”—57?0%—5202”_1055
= Yp_1060 —pp_106F —6%0%, 106"
= (Yn-1 — n—1 _63 0 Xn-1) 051113
=%, 006F 0P
=0

So im (¢, — pp —Xp_10 (55) C ker 5;? =im 67?71. So again projectivity of P41 yields a map ¥, : P, —

@Qn+1 such that

2.4 Definition. Let (P, «), be a projective resolution of M and (Q., 3) be a projective resolution of
N. Then we say P, and Q. are resolutions over f € Homp(M, N) if they correspond to f under the

6n+1 o En = wn — Pn — En—l 055

isomorphisms the theorem above establishes.

2.5 Corollary. Let (Py, a),(Q«,3) be two projective resolutions of M. Then there exists a chain

homotopy equivalence ¢ : P, — @, such that

HO(P*) LM

Ho(@)l id

Ho(Q.) 2 a1

commutes. Moreover ¢ is unique up to chain homotopy.

Proof. Especially idy; € Hompg(M, M) and thus by the theorem above there are two chain maps

p: P, — Q4 and ¢ : Q — P, over idys. Consider

P, ——= M<+— P,

| ﬁ }d

Qi —— M id

L

P, — M+— P,

O

The identity idp is a chain map P, — P, over idy; but ¥ o ¢ is also a chain map P, — P, over id;.
By the fundamental lemma v o ¢ ~ idp. Analogously ¢ o1 ~ idg.

16
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2.3 Ext
2.3.1 Properties of the Hom Functor

For the entire section let R be a Ring.
2.6 Definition (Hom Functor). Let A, B € Modg. Then

Hompg(A, B) := {\: A — B|\ is an R-Module homomorphism}
For any homomorphisms f: A — A’, g: B — B’ we define:
Homg(f,g) : Homg(A', B) — Hompg (A, B)

by a+— goao f. So

Aty p tp

2.7 Lemma (Elemental Properties of Hom).

(i) Hompg( _, ) isa functor in two variables which is contravariant in the first variable and covariant
in the second.

(ii) There exists a bijection Hompg(®ierAi, B) = [ [,y Homp(A;, B)
(iii) There exists a bijection Hompg(A, [[,c; Bi) = [[,c; Homg (A, B;)

Proof. (i) clear
(ii) Let (®serAi, (tier) be the direct sum of the A;. Define ¢ : Hompg(®icr A, B) — [[;c; Homg(A;, B)
by sending f — f; where f; := for;. Conversely define ¢ : [[,c; Homg(A;, B) — Homp(®icr As, B)
by the following: Given a system of maps (f;);c; the universal property of the direct sum

A5 et Ay
fzi -
B

yields precisely one f =: ¥((fi)ier) : ®ierAi — B such that for all i € I we have f o = f;.
These mappings are obviously inverse to each other.

(iii) Let (J[,c; Bs, (mi)ier) be the product of the B;. Define ¢ : Hompg (A, [[;c; Bi) = [[;c; Homg(A, B;)
by sending f — f; where f; := m;jof. Conversely define ¢ [[,.; Homg(A, B;) — Hompg(A,[[;c; Bi)
by the following: Given a system of maps (f;);c; the universal property of the product

T
B; «— | lie; Bi

i

A

there exists precisely one f =: ¥((f;)icr) such that for all ¢ € I we have f; = m; o f. These
mappings are obviously inverse to each other.
O

2.8 Theorem (Exactness).

(i) Hompg( , B) is left exact, i.e. for any e.S.

a B

A A A" 0

17



the sequence
0 —— Homp(A”, B) LN Homp(A', B) AN Homp(A, B)
is also exact. Here 8* := Hompg(0,idp), o := Hompg(a,idp).

(i) If the s.e.S.

©a 4 0

splits, then

0 — Homg(A”, B) 2 Homp(A', B) —*" Homp(A, B) —— 0

is also a s.e.S.

(iii) Homp(A, ) is left exact, i.e. for any e.S.

o B

0 B B’ B”

the sequence
0 — Homp(A, B) % Homg(A, B') — Homp(A, B")

is also exact. Here o, := Hompg(a,id4), B« := Hompg(8,id4).
(iv) If the s.e.S.

o B

0 B B’ B"

splits, then

0 — s Homp(A, B) —* Homp(A, B') —2s Homp(A, B") —— 0

is also exact.

Proof.

(i) B* is injective: Let \” € Homp(A”, B) such that
0 — ﬁ*()\”) — )\IIOB

Let a” € A”. By surjectivity of 3 there exists a a’ € A’ such that o’ = 3(a’). So M'(da") =
N(B(a")) = ("o f)(a') =0. And thus ' = 0.

im 3* C kera*: By hypothesis o a = 0. So by functoriality 8* o a* = 0 as well and thus
im * C ker o*.

ker o C im §*: Let X' € kera*, i.e. X o = 0. This means that X|ima = N|kerg = 0. By the
universal property of the quotient

’
A/L}

A’/ ker g3
there exists precisely one N’ : A’/ ker 3 — B such that X o7 = . By exactness of (??) there

exists an isomorphism ¢ : A’/ ker § — A”. So defining X’ : A” — B by X := X 0 o~ we obtain
alltogether by the universal properties of both quotiens

a2 p

A/ ker 3

18



that 5*()\//) —\" 0= 5\// o 90—1 off = 5\// omr =\,

(ii) One possible way to describe the splitting of a s.e.S. is to say that there exists an isomorphism
p: Al — A® A”. Tt remains to show, that a* : Homp(A', B) — Hompg(A, B) is surjective. So
let A\ € Homp(A, B) be arbitrary. Then we can construct a map

A(—a>A/4@>AEBA”
[
)\/
B

N : A® A” — B by setting X := A®0 and then defining X' : A’ — B by X := X o¢. Alltogether
this yields: 3
a*(N)=Noa=Nopoa=Aopoa®0 =\

(iii) a is injective: Let A € Homp(A, B) such that 0 = () = e o A. This implies
Va € A: Xa) € kera = {0}

since « is injective by hypothesis. So A = 0.

im oy, C ker B4: Since 8o o = 0 by covariant functoriality 5, o a, = 0 as well and thus im a, C
ker (3.

ker B, C imay: Let M € Hompg(A, B’) such that 0 = £,(\) = B o X. This implies that
im\ C ker 3 = ima. So we can construct a map

AN

BTB/

A : A — B by the following: Let a € A, then X (a) € im A C im «v and so there exists b € B such
that a(b) = XN(a). Define A(a) := b. We have to show, that A is well defined. So let b,b' € B
such that a(b) = a(b’) = N(a). This implies

0=al)—al)=alb-t)=b-V € kera = {0}

Thus b =0 and X = ao XA = a.(N).

(iv) It remains only to show, that (3, is surjective. Let the splitting be realised by a map s : B” — B’
such that fos = idgr. If N’ € Homp(A, B”) define \' : A — B’ by N := so \’. Then by
construction

Be(N)=BoN =BosoN =idgroX =\

2.9 Corollary. Let A C X be a subspace then
0—— Sx(A) —— Su(X) —— Su(X,A) —— 0

is a s.e.S. which splits. So

00— S*(X,A) — S*(X) S*(A) 0

is also a s.e.S.

19



2.3.2 Ext

2.10 Definition. Let A, B be R-modules. Let (Px, €) be a projective resolution of A. Then Hompg(P*, B)
is a cochain complex. Define

Ext’ (A, B) := H"(Homp(P,, B)))
2.11 Theorem (Properties of Ext). The Ext functor satisties the following

(i) Ext%(A, B) = Homg(A, B)

(ii) The definition of Ext does not depend on the choice of the projective resolution (P;)

(iii) If R is a PID, then Extz(A, B) =0, if n > 2.

(iv) So for abelian groups A, B we can define Ext(A, B) := Ext} (A, B).

(v) Ext™ is a functor in two variables, contravariant in the first entry and covariant in the second.

So for any f: A— A, g: B — B’ we have

Bxth(f, 9) : Exti(4', B) — Bxth(4, B)

(vi) Ext(A,T];c; Bi) = [1Ext(A, B;)
(vii) Ext(Dics Ais B) = [Lic (Ext(4;, B))

Proof. (i) Let (Px,¢€) be a projective resolution of A. By definition the sequence

Py

is exact. Since Hom( , B) is left extact, it follows, that

0 — s Homp(A, B) — Hompg(Py, B) —— Hompg(P1, B)
is also exact. So in particular €* is injective and thus
ker p* = ime* = Homp(A, B)
By taking a look at the complex
0 —— Homp(Po, B) —*—s Homp(P,, B) — - --

we see, that
H°(Hompg(P,, B)) = kerp*/ im0 = ker p* = Homp(A, B)

3 Epic Theorems of Homological Algebra

3.1 Universal Coefficient Theorems

3.1 Theorem (Universal Coefficient Theorem for Homology). Let be (Py,d) be a projective chain
complex of R-modules, such that for every n € N dP, is projective as well. Then for every R-module
M and every n € N

0 —— Hy(P,) @ M~ H, (P, @ M)~ TorR®(H,,_1(P,), M) — 0

20



is a short exact sequence which is non canonically split. The maps a., 8« may be explicitely computed
by 3

Vzn € Zn(Py) :Ym € M : ay([zn]) @ m) = [z, @ m]

Vzp@m € Zp(Pe @ M) : Ym € M : B([zp, @ m]) = dz, @ m
Proof. For every n € N denote Z,, := Z,(P:), By, := Bn(P:), Bl, :== Bn_1,H, := H,(P.) and let

b @ Ly — P, and i, : B, — Z, be the canonical inclusions. We always write ® := Qg and id := idy,
Step 1 (Obtain a seS): The following sequence

0—— 72, —p, 2

B, 0

is a seS of chain complexes, where all the induced differentials in Z, and B’ are zero. Since dP, is
projective
dP,

Ve
e lid
1’4
P, — dP,
there exists a splitting s : dP, — P, dos=1id. Since _ ® M is additive

0——Z. oM ZYp oM @ om0

is a seS as well. Thus we obtain a leS in Homology

on 1, ®id d,, ®id »
— S H,(Z.®@ M) e oid] H,(P.® M) [dn@id] Hn(Bi@)M)J;%--
This implies that
Ln @i d,®id] .
0 HaZ.00) 05 (p, o M) AP infd @ dd), ——— 0

is short exact, where ¢, ® id denotes the map induced by [, ® id] on the quotient (via universal
property). In the following steps we will take a closer look at this sequence and proof that in fact this
already is the sequence we are looking for.

Step 2 (Analyze the modules): By construction all the differentials in Z, are identically zero and so
are the differentials in Z, ® M and id := idp; Thus

H,(Z,@ M) =27, M.

The differentials in B/, and thus the ones in B, ® M vanish as well and thus
H,(B.® M) = B, ® M.

Furthermore since the original sequence is long exact, we have

Hy(Z.®M) Z.®M

im{dy, @ id] er o ker[t, ® id] im d,,41

= coker 0,41

Step 3 (Analyze the connection morphism): The explicit characterization of the connection homo-
morphism § from Corollary 1.3 states, that in this particular case

Oni1 = [tn @ ido(dpi1 ®@id) o (dpyq ®id) 7Y = [i, @1id]

3Notice carefully, that 3 is not the zero map! The decicive point is that there are z, ® m € P, ® M such that
(dn ®id)(2zn ® M) = dpn(2n) @ m = 0, but dn(2n) # 0.
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where as usual ”(d,, ;1 ®id) "' has to be read as "take an arbitrary preimage”’ and the brackets indicate
“take represented class in homology”. Thus together with step 2 we obtain in particular

ker 6, = ker[i,,—1 ® id] = keri,—1 ® id coker 0,1 = cokerli,, ® id] = coker i, ® id
Step 4 (Calculating ker d,,): We claim that

in—1 Tn—1

0 ap, » n—1 Hyp1——0

is an augmented projective resolution of Hy,_1: The sequence is exact by construction and dP, is
projective by hypothesis. The split seS from step 1 implies that P, 1 & Z, 1 & dP,. Since P,_1 is
projective by hypothesis, there exists a free module F;,_1 and a submodule M,,_1 C F,_1 such that

Fn—l = Pn—l 2] Mn—l = Zn—l 2] dPn 2] Mn—l

thus Z,,_1 is also a direct summand of a free module, hence projective. Consequently the first Homology
Group of the complex

o
(%) 0——dP, o M52, 1o M —0

yields to
Torf(H,_1, M) = Hy(x) = keri,_; ®id = ker d,,

Step 5 (Calculating coker d,,+1): Using the same sequence as above one degree higher, we obtain the
seS

0 By "= Z, H, 0
Since ~ ® M is right exact
B,oM™% 7 oM™ H oM——0

is exact as well and thus

T ®id

coker §,,11 = cokeri, ®id = reod = ke, o —

where m,, ® id " is the induced isomorphism on the quotient. Thus our desired map is
an: Hy, @M — Hp(P, @ M), ::L@)idown(@id_1

which maps precisely as claimed.
Step 6: Inserting the results of step 2-5 the seS of step 1 proves the claim.
Construction of the splitting: In step 1 we already constructed a splitting s,, : dP, — P, for

d

0 —— Zn(P,) —— P, ap, 0
Functoriality implies

dp 08y = iddpn = d, ®idos, ®id = iddPn@M = [dn ® id] o [Sn X ld] = idHn(dPn®M)

3.2 Lemma (Integers and Rings).

e For every ring R, there exists a unique ring homomorphism pp : Z — R. So Z is initial object
in the category of rings.

22



e Every ring R is a Z - Algebra.

e Every R-module is a Z - module.

Proof. By definition a ring homomorphism f : R — L between two rings R, L with unit is a map
satisfying

(1):Va,b€ R: f(a+b) = f(a)+ f(b) (2):Va,be R: f(ab) = f(a)f(b) (3): f(1g) =1L
Condition (1) immediately implies
f(Or) =0r Va€ R: f(-a)=—f(a)
So if ¢ : Z — R is any ring homomorphism, we have
p(0)=0 Vn>1:p(n)=¢ (Z 1z> U5 0012 1k Vi< —1:p(n) = —p(—n)
i=1 i=1 i=1

So ¢ is unique and using these relations to define ¢ we obtain the desired homomorphism.

Every ring R already has an additive and multiplicative structure. The scalar multiplication is defined
by Z x R — R, (n,r) — @r(n)r.

Given any R-module M, we obtain the Z-module structure by defining scalar multiplication by Zx M —
M, (n,m) — pgr(n)m. O

3.3 Corollary (Universal Coefficient Theorem for Singular Homology). Let X be a topological space
and R be any commutative ring with unit. Then there is a seS

0 —— Hy(X) ®z R — Hy(X,R) — Tor¥(H, 1,R) —— 0,
which splits non-canonically.

Proof. By the lemma above, we interpret R and Cy(X, R) as a Z-modules and drop ¢p in notation.
We define ¢ : Cy(X) x R — Cy(X, R), (D, nioi,7) — Y, niro;. This is bilinear and thus descends to
a linear map ¢ : Cy(X) ®z R — Cy(X, R). We claim that this is an isomorphism.

It is injective since

0= (Z n,0; @ r> = Znirai

i i
implies that for every i n;r = 0 (since the o; are linearly independent). This implies
(Z n;0; @ r) = (Z nirai> ®1=0

i i

To proof surjectivity let >, ;05 € Cy(X, R) be arbitrary. Clearly
. (z - ) A

This means, we can interpret

Hy(X,R) = Hy(C.(X,R)) = Hy(C.(X) ®z2 R)

and thus the statement follows from 3.1 ]
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3.4 Theorem (Universal Coefficient Theorem for Cohomology). Let R be a PID and C. be a projective
chain complex. Then there exists a split exact sequence

0 —— Exth(Ho1(C,), M) —2 H™(Homp((C,), M) —— Homp (H,(C.), M) —— 0

which is natural in C, and M.
But be warned, my fellow: Folks in town say, the splitting is not natural.

Proof. Define C* := Hompg(C\, M) with differentials 6" = Homp(d", M).
Construction of f: For any n € N define 3, : H"(Hompg((Cy), M)) — Hompg(H,(Cy), M) by the
following: Remember that

Z"(Homp(Cy, M) ker 6™

H (HOmR(C*aM)) = Bn(HOmR(C*yM)) - im g1

An arbitrary cohomology class [\] € H"(C*) has a representative A € Z™. For any ¢ € Cj,4+1 we obtain
A(On+1(c)) = 0"(A) =0. So imd,41 = By, C ker A. By the universal property of the quotient

we obtain a well defined A : H,, — B. Define 3,([\]) := A. In order to check that this definition does
not depend on the choice of representative A of [A] we have to check, that

AN=0=X=0

But [A\] = 0 implies the existence of a u € Hompg(C,_1, M) such that A\ = 6" Y(u) = pod,. So
Az, = 0 and thus A = 0.

Construction of a splitting for §: Given any 7 € Hompg(H,, M) we have to construct a [\ €
H"(Hompg(Cy, M)) such that B([A]) = 7. We want to extend 7

Cn

to the entire C),. In order to archieve this consider the sequence

on

0 Zn n Cn Bn—l 0

It is obviously exact and since R is a PID these are all projective modules. So the sequence splits
non canonically to C,, = Z,, ® B! Define A\ := 7 om,, & 0. We have to show that \ represents a

n—1-
cohomology class. But this is clear since

0"(A)=Aodpt1 =7T0om 00,11 =0

So we have constructed a well defined v : Homp(H,(Cy), M) — H"(Hompg(Cy, M)). It follows from
the definitions, that

(Boy)(r)=p(tom®0)=pF(tom) =T
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This proves that v is a splitting and also that 3 is surjective.
Construction of a: We need to construct an « : Exth(H,,_1(C\), M) — H"(Hompg(C,, M)). As in the
discussion above we obtain a s.e.S. of chain complexes

0 Z, —— C,

which splits since R is a PID. The differentials of Z, and B,_1 are just the zero maps. The splitting
implies that

0 —— Homp(B,—1, M) AN Homp(Cy, M) SN Hompg(Z,, M) ——0

is a s.e.S. as well. The snake lemma for co-chain complexes yields a long exact sequence in cohomology
with connecting homomorphisms 6™ :

n— H" (6«
e Homp(Zn1, M) 2= Homp(Bo_1, M) 20 (Homp(C., M)

If you paint the diagram for the snake lemma in this particular situation you see, that 6" = j™ where
j" : Hompg(Z,, M) — Hompg(B,,, M) is just the inclusion induced by j, : B, — Z,.

Next we consider

Jn Tn

0 B,

L, H, 0

and regard this as a projective resolution of H,,. Applying the Hom functor we obtain

Jn

0 —— Hompg(Z,, M) —— Hompg(By, M) —— 0
and thus
Hompg(B,, B)

Exth(H,, B) = .
n

Consider

mn—1_sn—1 n 5*
Homp(Zn_1, M) —-—=""" s Homp(Bn_1, M) —— =) i (Homp((C.), M)

EXt}%(Hn_l, M)
The upper row is exact since it is taken from the long exact sequence, so
im 0" = im j" = ker H"(6,)

Thus the existence of a follows from the universal property of the quotient.
« is injective by construction since we factored out the kernel.
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3.2 Kiinneth Formulae
3.2.1 Bicomplexes

3.5 Definition (Bicomplex). Let R be a ring. A family {C} 4}, qez of R-Modules together with maps
d" Cpg — Cp-1,gand d": Cp g — Cp g1

dh
P,q
Cp,q Cpfl,q —

v v
dp,q dpflyq

"'%Cp,qfl T>C —1,g—1 _ s
P,q—1

is a double complex or bicomplex, if
d"od"=d"od" =d"od"+d"0d" =0

A morphism of bicomplezes fpq : (Cpﬂ,dc’”,dc’h) — (an,dD””,dD’h) is a famliy of morphisms in
Modg such that

dD,vof:fodC,v dD,hof:fodC,h
This defines the category of bicomplezes BiCh(Modg).

3.6 Definition (Totalization). Let (C} 4, d”) be a bicomplex. Define

Tot(C),, := EB Cha et .= GB petn @ prext

pt+q=n ptg=n p+q=n

Then we call (Tot(C),d™" the totalized chain complex.
Given a morphism of bicomplexes f,, : (Cpq,d“?,dS") — (D, 4, dPV,dP") we define Tot(f), :
Tot(C),, — Tot(D),, by

Tot(f)n == @ fr.g

pt+g=n

3.7 Lemma (Totalization). Totalization is a functor
Tot : BiCh(Modg) — Ch(Modpg)

3.8 Definition (Tensorization). If (A,d"), (B,d?) are chain complexes of R-modules we obtain a
canonical tensorized bi-complex (Cpq,d”) by defining

Cpq:=A,® B, Sy = d) ®id, dSil = (-1)Pid, @d?
3.9 Lemma (Tensorization Functor). Tensorization is a functor
&) : Ch(Modg) x Ch(Modg) — BiCh(Mod)
3.10 Remark. By forgetting about all the differentials, we can interpret these functors as

Tot : Mod%*% — Mod% &) : Mod% x Mod% — Mod7”
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3.11 Theorem (Kiinneth Formula). Let (P, d"), (Q«,d?) be two chain complexes of R-modules,
such that every P, and every dP, is projective. Then there exists a short exact sequence

0 —— Tot(H.(P) @ H.(Q))n —— Hy(Tot(P, ©p Q) —— Tot(Torf(H. (P), H.(Q)))n_1 — 0
If R=7Z and P is a complex of free abelian groups, this sequence is non-canonically split.

Proof. The proof will be long and painful, but analogous to the universal coefficient theorem of homol-
ogy (Theorem 3.1) you should definitvely read first. Define Z, := Z,(P:) := kerd!, B, := B,(P.) :=
d,IfH, Bl := B,—1 = imdﬁPn C P,—1. Denote by ¢, : Z, — P, and i, : B, — Z, the canonical
inclusions. We always write ® := @ and we denote by d® the differential in Tot(P, ® Q).

Step 1 (Producing a seS): Since B’ is projective by hypothesis, we have a split exact sequence of chain
complexes

0 Z,—sp 2

B! 0
Since every _ ® @ is additive, we obtain in particular split exact sequences

®

L ®id; dy
Pr@Q ———

id
00— 7, ®Q < B, @Q——0

where id; := idg, and k,l € Z such that k 4+ 1 = n. Thus their direct sums assemble to short exact
sequences

I An
00— Drsi=n Zk ® Q—"= Bppimn L ® Q1 — Dy B ® Q1 —— 0

where I, := @ —, e ®@idi, Ap = Dpp—p dP ®id; and n € Z. Thus we obtain one short exact
sequence of chain complexes

0—— Tot(Z, ® Q) —— Tot(P, ® Q) —= Tot(B' ® Q,) —— 0
This seS induces a leS in their homology (by 1.3)

[In]

g (Tot(P @ Q) =201

 Hy(Tot(Z @ Q) Hy(Tot(B' ® Q) —2— Hy_1(Tot(Z © Q)) ...

In particular for every n € Z the sequence

0 i (’ie:[(lii@Q)) H”(TOt(P ® Q)) — lm[An] —0

where T is the map induced by [I] on the quotient, is short exact. By exactness of the long sequence
this seS is identical to:

T, A
0 — coker 0,11 LN H,(Tot(P ® Q)) 4 ker d,, 0

Step 2 (Analyze the Modules): Since homology is additive, since the differentials in Z, and B, are
identically zero and since Z, and B, are both flat, we obtain from the universal coefficient theorem
(c.f. 3.1)

H,(Tot(Z. ® Q.)) = H, ( &y Zk®Ql> > P H(Zo2Q.) = P Ze H(Q.)

k+l=x k+l=n k+l=n
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and likewise

H,(Tot(B. ® Q.) (EB Bk®Qz> ~ P H(B,2Q.)= P B, H(Q.)

k+l=x k+l=n k+l=n

P B H(Q.

k+l=n—1
Step 3 (Analyze the Connection Morphism): By the explicit formula (c.f. 1.3) for the connection
homomorphism & and Step 2, we obtain for any py € Py, b}, :== dip, € By, g1 € Z1(Qx)
Sn (b, @ [a]) = [(I; " 0 d® o AL (dE 1, @ [a1])]
(11 (d® (o © @)
(L Y e ® @+ (—1)F (e @ dPqy))
= Ju (b}, @ [@1])

where J;, := @ 1—,_1 Ik @ [idy].
Step 4 (Calculate ker d,,): For every k the sequence

0 dPpp1 —* Zu(P) — Hy(P,) —— 0

is exact and thus a projective * resolution of Hy(P,). Consequently the torsion of _® H;(Q.) may be
calculated by taking the first homology of the complex

1 ®[id;]

0 ———dPr1 ® H(Q4) Zy(Pe) @ Hi(Qx) ———0

Thus
Tor{*(Hy(P), Hi(Qx)) = ker i, @ [id)]
which implies
@ Torl*(Hy(P), H)(Q,)) = EB ker i, ® [id;] = ker J,, = ker d,,
k+l=n—1 k+l=n—1

Step 5 (Calculate coker d,): Consider again the sequence from step 4

0 —— dPyy1 — Z4(P) — Hy(P) ——0
Since ~ ® H;(Q) is right exact

dPyy1 ® Hi(Q) Zy(P) ® Hi(Q) Hy(P) ® Hi(Q) ———0

is exact as well. Consequently

Zp(P) @ H(Q)  Zp(P) ® Hi(Q)

fer i o ] — _
coker iy, ® [id)] = = - ix ® [idy] ker 7, ® [id]]

= Hy(P) ® Hi(Q)

Thus
coker 41 = coker Jp 41 = @ coker iy, ® [id;] = @ Hi(P) ® Hi(Q)
k+l=n k+l=n
O

“The fact that Zx(P) is projective follows as in the proof of the Universal Coefficient Theorem from the fact that the
sequence in step 1 splits and thus P, = Zr @ dPx4+1. Since Py is projective is it a direct summand of a free module
and thus Z; is as well.
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3.12 Remark. To appreciate the statement of the Kiinneth formula better, it may be helpful to view
the Kiinneth Theorem from a more categorical or algorithmical point of view: Its input are two chain
complexes, i.e. an object in Ch(Modg) x Ch(Modg) and its output are three different objects in
Mod% related to each other by an exact sequence. These three objects are obtained by totally different
compositions of functors:

Ch(MOdR) X Ch(MOdR)

HxH ® HxH
Mod% x Mod% BiCh(Modg) Mod% x Mod%
J@ Tot J'Tor
Mod%*% Ch(Modg) Mod%*%

JTot H J{Totl
0 — Mod% Mod% Mod% ——— 0

Mod% x Mod%

The bottom is supposed to visualize the splitting.

3.3 Method of Acyclic Models

An important topological application of the Kiinneth Formula is the Product Theorem for Singular
Homology, which relates H.(X x Y) to H.(X) ® H.(Y). In order to prove this, we need to establish
the theorem of Eilenberg-Zilber, which relates H,(X X Y) to H,(Ci«(X) ® C(Y) and in order to prove
this, we need the following rather abstract concept of acyclic models.

3.13 Definition (Natural Equivalence Classes). Let C be an arbitrary category. Consider two arbitrary
but fixed functors Fy, Gy : C — Ch>o(Modg). Two natural transformations ¢, : Fi. =% G are
naturally chain homotopic if for every object X € C there exists a family of natural transformations
DX : Fy(X) = Gpi1(X), n € N, such that DY is a chain homotopy between ¢, ¢X : Fi.(X) —
G.(X). This defines an equivalence relation on the set of natural transformations F, =2 G, and the
set of equivalence classes is denoted by

m(Fy, Gy).

3.14 Remark. It may be useful to write down the relations implied above somwhat more explicity.
So let’s take two functors Fy, G, : C — Ch>¢(Modpg) and consider two objects X,Y € C as well as a
morphism f € Home(X,Y).

(i) For ¢, to be a natural transformation F' = G, we require in particular, that is a morphism of

chain complexes, i.e.
pF € Homgy, , (Mod ) (F'(X), G(X))

which means by definition, that
Vn e N: dg(X) o (pi( = (pr)f_l odf(x)

(X)

where df(X) denotes the differential in the chain complex F,(X) and d*G denotes the differential

in G.(X).
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(ii) By definition of a natural transformation, this diagram commutes:

(iii) Contrary to (i), the D,, is only required to be a natural transformation F,, =% Gy, i.e.
D, € Homyjod,, (F(X), Gn(X))

and the diagram

Fo(X) — g ()
Jfo lD}f
G"L f
Gyt (X) 2 6 ()

commutes for every n € N. But the map D, is not a chain map Fi(X) — G,41(X), since this
would force the relation DX | o df = d% o D;X which in gereral conflicts with (iv).

(iv) For D, to be a homotopy between ¢, and 1, we require

G(X X X F(X X X
dn-f—l) ODn +Dn71 Odn( ) = “n _wn

For simplicity one can drop the superscript X or the subscript n if it is clear. But remember that ¢

and D of course depend on both. If you are confused over all these depencencies, first think of two

chain complexes F' and G and two maps ¢, between them and a homotopy D between ¢ and 1.

If you ’parametrize” this situation by objects in C, you get precisely what we have just defined. The

diagram looks like

i P (X) S By (X)) s By (X)) —— - -

X X Dy DAy X b's
Yoyt | Prgr VX | o n—1|%n-1
4G d,?(X)

o G (X) 5 G (X)) —— Gy (X)) s - -
3.15 Definition (Model Category). A functor F,, : C — Modpg is free, if there exists an index set J
and a set of objects {M,, j € C},cy, called models, and a set of elements {uy; € F, (M, j)}jecs, called
base generators, such that for every X € C the set

{Fn(f)(un,j) eFm(X)jed fe HomC(Mn,ij)}

is a basis for F,,(X).

A functor F; : C — Chx>o(Modg) is free if for every n € N the functor F), is free.

We define M to be the subcategory of C whose objects are given by all the M, ; and whose morphisms
are the same as in C. This category is called the model category of F' and its objects are the models
for F. Of course there is a canonical inclusion functor ¢ : M — C.

3.16 Example. For every n € N, the singular chain complex functor C,, : Top — Modp is free.
By definition C,(X) the R-module freely generated by all continuous maps f : A" — X, where
A", the standard n-simplex. So take M, := A" as the only model. The only base generator is
Up,p :=1d" : A" — A™. Then for any f: A" — X, we have by definition C,(f)(un0) = foid = f.

3.17 Lemma (Uniqueness of natural transformations).
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(i) Let F,,G, : C — Modpg be functors and let F' be free. For any prescribed set of objects
{vn,; € Gn(My ;) }jes, there exists a unique natural transformation ¢, : F;, =% G,, such that

Vj € J: pn(unj) = vn,

(ii) Let Fy, Gy : C — Chxo(Modg), let Fy be free and {v, j € Gyn(My ;) }nen jes, be any prescribed
set of objects. Then any natural transformation ¢, : Fix = G, satisfying

VnGN:dSOQDn:cpn,lodf

and
VneN:Vje J,:o(un;) = vn

is unique.

Proof.

(i) We show uniqueness first: Since F, is free, any = € F,,(X) has a unique representation
r =Y A Fulf)(ung)
»f

Since ¢y, is natural

on(2) = Y N (9n 0 Fal(f)) (ung) = D Xjp (Gulf) 0 ¢n) (tn,y)
if if

So the ¢y, (uy, ;) uniquely determine ¢;,.
On the other hand we can simply define ,, by this formula to show existence.

(ii) By (i) all the ¢, are unique and the compatibility condition ensures that ¢, is a chain map.
O

3.18 Definition (acyclic). Let G, : C — Ch>o(Modg) be a functor and M C C be any subcategory.
Then we call Gy acyclic with respect to M, if

VM e M :Vi>0: Hy(Go(M)) =0
Note carefully that Ho(G«(M)) # 0 is allowed.

3.19 Example. The singular chain complex functor is also acylic with respect to the model category
M = {A"|n € N}.

Notice, that the following theorem is a massive generalization of the Fundamental Theorem of Homo-
logical Algebra (2.3).

3.20 Theorem (Method of acyclic Models). Let Fy, G, : C — Chx>o(Modpg) be functors, let F be free
with model category M and let G, be acyclic with respect to M. Denote by H§'(F., Gy) the set of
natural transformations Hgo F, 07 = Hy o GG, oi. Then there is a set bijection

induced by
(o : Fy = Gy) — (Hpogppoi:HyoFyoi= HyoGgyoi)
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Proof. As in Definition 3.15 denote by
M :={My; € Clnenjer,

the model category of F, and by
{unj € Fu(Mp,;j)}nen e,

the set of base generators.
Surjectivity: Let
p:HyoF,o0i =3 HyoGyo1
be any natural transformation. For every j € Jy, there exists v ; € Go(Mp ;) such that
[vo,5] = ¢([uo,5]) € Ho(G«(Mo,;))

We define

wo(uo,;) = vo,;
and obtain a natural transformation ¢q : Fy = Gq satisfying

Hyopooi=g

by Lemma 3.17. We will inductively extend ¢ to a natural transformation F, = G,.. We will show
by induction, that there are natural transformations

VO<i<n:yg;:F=G;

satisfying the relations
VO <i<n:dSop =pi_10d’

By defining ¢_; := 0 the construction of ¢y above can be interpreted as the induction start n = 0.
For the induction step n — 1 — n assume the maps ¢; described above are already constructed. We
will construct the map ¢, as follows:

dF r

df

Fn(Mn,j) — Fn—l(Mn,j) ;) Fn—Q(Mn,j)
gon l‘ﬂnl l(p’RQ
v ds iy

Gn(My,j) — Gn1(My,;) —— Gn—2(M)

Ifn=1and j€e J;

[pn—1(dy, (un )] = ol ([d1 (u1,)]) = [¥)(0) = 0 = pn_1(dy, (uny)) € By (Mn,j)

If n>1 and j € J,, the induction hypothesis guarantees
dyi_1 (n—1(dy, (ung))) = (d7y 0 o1 0 dy)(un ) = (pn—2 0 dyy_y 0 dyy ) (up,5) = 0

and thus ¢,,—1(d% (u,;)) € Z& (M, ;). Since n —1 > 0 and G, is acyclic by hypothesis, we obtain in
any case
n-1(dy, (un ) € By (Mn,j)
Consequently
30nj € Gn(Mn.j) : dy (vn) = pn-1(dy (un,;))
Define

on(Unj) = vnj
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Again by Lemma 3.17 this defines a unique natural transformation ¢, : F,, = G,, which satisfies

dr? ° ¢n(Un,j) = Pn—10 dg(“mj)
by construction. We will show that this implies d§%) o X =X o b
commutative cube:

for every X € C using this

F(X)
Fo(X Fo_1(X)
y o frotld)
dr '
Fn(Mn,j) J anl(Mn,j) 807)571
dG(X)
on Gn(X) Gn-1(X)
W Pn—1
dG Gn—l(f)
Gn(Mn,j) = anl(Mn,j)
Since Fy is free by hypothesis, we may calculate
(d7 ) 0 o) (@) = (7N 0y ZAJ 7 Fn(f) (1 5) Zm Yo gl o Fu(f)) (un.s)

= Z g (Groa( f °© dn ° ¢n)(Un,j) = Z)‘j,f Son—l o Fp1(f)o df)(un,j)
] ]7f

=S N0 0 dEX) 0 Fy(1) (unyg) = Xy 0 dE) ZmF ) (tn,j)
5f
= (¢} 0 dF X)) (a)

Thus ¢, : Fix = Gy is the desired natural transformation.

Injectivity: Suppose @y, ¥, : Fix = G4 are both natural transformations such that
VM € M : [po] = [tho] : Ho(F(M)) — Ho(G(M))
We have to show that ¢, is naturally chain homotopic to .. The hypothesis implies, that in particular

[po] (0,5) = [tho] (uo,5) = [0 (u0,5) — Yo (uo,z)] = 0 = Jwy; € G1(Moy) : wol(uoz) —ho(uoy) = df (wi ;)

Define
Do (uo,j) = wy,;

and again use Lemma 3.15 to obtain a unique natural transformation Dy : Fy == G such that
df o Do = o — o

We will again proceed by induction and show, that there are natural transformations D,, : F,, = G411
such that

VO<i<n:dZ,oD;+Diqod =g, —
By setting D_; := 0 this hast just been accomplished for n = 1. For the induction step n —1 — n
consider

ﬂn,j = (@n_wn_Dn—lodrI;)(unJ)eG ( )
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Since
dryTin,j = dy} 0 (9n = tn = Doy 0 dy) (tn ) = (diy ©pn — diy © 1P — diy © Dy 0 dy ) (tn )
= (pn-10dy —tn-10dy — (Pn-1 = Y1 — Dn—zody_1) 0 d;)(upz) =0
we have @, ; € Z& (M, ;). Since G is acyclic, this implies @, ; € BS(M,, ;) and thus
Jwn; € Gua1(Mnyg)  dfyy (Wng) = ny
Setting Dy, (un,j) := wpj, this again defines a unique natural transformation D,, : F,, = Gpn41 such

that ngrloDn:cpn—wn—Dn_lodf. O

3.3.1 Applications

The method of acyclic models has some immediate powerful applications.

3.21 Corollary (Eilenberg-Zilber). Let X,Y be two topological spaces. Then there are natural chain
homotopy equivalences

a:Tot(Co(X)RC(Y)) S C(X xY):
In particular

H, (Tot(Co(X) @ Cu(Y))s) X H (X xXY)

Proof. Define C := Top x Top to be the product category between Top and Top, i.e. the objects
are tupels (X,Y) where X,Y € Top and morphisms f = (f1, f2) : (X1,Y1) — (Xo,Y2) where f; €
Hommop (X1, X2) and fo € Homop (Y1, Ya).

Construction of 3: Define functors F, G, : C — Ch(Modg) by

F.(X,Y) = C\(X xY) G.(X,Y) 1= Tot(C,(X) ® C,(Y))

Choose models M,, := M, = (A", A") and declare the generators u, := u,o : A" — A" x A"
to be the diagonal maps = +— (z,z). Clearly M C C and u, € F,(M,). To see that F, really is
free on these models, just notice that by the universal property of the product any pair (f1, f2) €
Home ((A™, A™), (X,Y)) defines a unique map f : A" — X x Y and that f(x) = (fi(z), f2(z)) =
(f1, f2)(un(x)). Conversely every map A™ — X x Y is of that form. Thus by definition

Fu(X,Y) = Co(X x Y) = Z[{f : A" — X x Y|f € Homrop(A", X x Y)}]
=Z[{(f1, f2) oun : A" — X x Y|(f1, f2) € Home((A", A", (X x Y))}]

So F'is free. Since all the simplices are convex
Hy(GL(A", A7) = H,(Tot(C.(A™) & CL(A™)).) = Tot(Hy(A") @ H.(A™),) = b,0Z

by the Kiinneth Formula (3.11) (here dg 4 is just the Kronecker delta). Thus G, is acyclic. Consequently
the method of acyclic models (3.20) is applicable. We calculate

Hy(F (A", A")) = Hy(A" x A") = §40Z

Thus
HM(F,,G,) = {£idz}

Chose B to be the natural transformation F, = G, corresponding to idz.
Construction of a: Redefine functors Fy, G, : C — Ch(Modpg)

Fu(X,Y) = Tot(C(X) ® CL(Y)) G.(X,Y) = C.(X xY)
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Choose new models M,, ; := (A7, A"7), 0 < j < n and generators Up,j = idj ®id,_;, where id; :=
ida; @ A — AJ. By definition

C5(X) = ZI{C.(F)(id;) : AT — X|f € Homrop(A7, X)}]
thus Fl is free. Again G, is acyclic with Ho(G4(AJ x A"7)) 22 Z = Ho(F.(AJ x A"77)). Define o
to be the natural transformation F, = G, corresponding to idyz.

Then o « is a natural transformation Fy, =2 F as well as id € Ch(Modg). Since they both agree in
zero homology, they are naturally chain homotopic. The same holds for a0 3. OJ
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